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Abstract

Background: Many biological properties of phages are determined by phage virion proteins (PVPs), and the poor annotation of PVPs
is a bottleneck for many areas of viral research, such as viral phylogenetic analysis, viral host identification, and antibacterial drug
design. Because of the high diversity of PVP sequences, the PVP annotation of a phage genome remains a particularly challenging
bioinformatic task.

Findings: Based on deep learning, we developed DeePVP. The main module of DeePVP aims to discriminate PVPs from non-PVPs
within a phage genome, while the extended module of DeePVP can further classify predicted PVPs into the 10 major classes of PVPs.
Compared with the present state-of-the-art tools, the main module of DeePVP performs better, with a 9.05% higher F1-score in the PVP
identification task. Moreover, the overall accuracy of the extended module of DeePVP in the PVP classification task is approximately
3.72% higher than that of PhANNs. Two application cases show that the predictions of DeePVP are more reliable and can better reveal
the compact PVP-enriched region than the current state-of-the-art tools. Particularly, in the Escherichia phage phiEC1 genome, a novel
PVP-enriched region that is conserved in many other Escherichia phage genomes was identified, indicating that DeePVP will be a useful
tool for the analysis of phage genomic structures.

Conclusions: DeePVP outperforms state-of-the-art tools. The program is optimized in both a virtual machine with graphical user
interface and a docker so that the tool can be easily run by noncomputer professionals. DeePVP is freely available at https://github.c
om/fangzcbio/DeePVP/.
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Introduction
Viruses are the dominant biological entities in the biosphere [1].
Because of the diversity of phage genomes, approximately 50–90%
of phage genes cannot be assigned functions [2]. Additionally, it
has been estimated that approximately 60–99% of viral metage-
nomic data do not have obvious homology to known sequences
within databases [3]. Thus, a large number of viral genes exist
as “dark matter,” which is a barrier to our understanding of viral
genomes. Therefore, the development of gene function prediction
tools for viral genomes is urgently needed.

Phage virion proteins (PVPs), also called phage structural pro-
teins, are the proteins that make up viral particles, such as the
head and tail. The comprehensive annotation of PVPs is essential
for many phage genome analyses [4]. For example, marker genes
(such as 16S ribosomal DNA in bacteria) are currently lacking for
phages, but it has been suggested that some PVPs may be used as
marker genes for phage genome analysis [5]. Additionally, analy-
ses of PVPs in the phage genome could improve our understanding
of phage–bacterial host interactions [6], direct antibacterial drug
and antibiotic design [7], select specific phages for phage therapy
[8], and assist in identifying prophages within bacterial genomes
[9].

Historically, mass spectrometry has been the experimental
method most commonly used for PVP identification [10]. With
the rapid increase in viral sequencing data, low-cost and high-
performing bioinformatic algorithms to perform PVP annotation
are urgently needed. However, the diversity of PVPs is much higher
than that of the enzymes encoded in the phage genome, which
makes the identification of PVPs much more difficult [11]. To over-
come this difficulty, several de novo algorithms for PVP identifi-
cation have been proposed [8, 11–24]. The publication by Kabir
et al. [25] provided a systematic review of most of these tools. Most
of these tools are 2-class classifiers that can distinguish whether
or not a given phage protein is a PVP. These tools were generally
developed first by constructing a benchmark training and test-
ing data set containing PVPs and non-PVPs from public databases
and then using specific machine learning–based algorithms, such
as support vector machine (SVM), to train and test the classifier
using the data set. Among the tools mentioned above, PVPred [13],
PVP-SVM [15], PVPred-SCM [20], Meta-iPVP [21], and VirionFinder
[22] are available via a 1-click software package or a web server
during the period of this work. In addition to these 2-class classi-
fication tools that distinguish PVPs and non-PVPs, other tools have
been designed for identifying specific PVPs, such as the capsid and
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tail [5, 11]. Distinct from these tools, PhANNs [8] is a multiclass
classifier that not only can identify whether a given protein is PVP
but also further classifies the predicted PVP into one of several
major PVP classes, making PhANNs a more powerful tool for PVP
annotation.

Although these tools achieved better performance than the
other tools available prior to their publication, further efforts can
be made to improve PVP annotation. For example, most of these
tools were trained and tested using small-scale data sets contain-
ing fewer than 1,000 proteins, which may not reflect the full di-
versity of PVP sequence features. With the rapid growth of public
databases, more PVPs and non-PVPs can be included in the algo-
rithm development processes. In terms of the protein sequence
characterization method used, most of these tools used amino
acid composition-based vectors; for example, PhANNs uses a k-
mer vector. However, such vectors may be sparse and thus diffi-
cult to fit by the algorithm. Additionally, for many of the currently
available tools mentioned above, a feature selection step must
be performed before the feature vector is imported into the algo-
rithm. Moreover, except for PhANNs, the current PVP annotation
tools can only distinguish PVPs and non-PVPs or identify a cer-
tain class of PVPs; they cannot further classify PVPs into specific
classes, which prevents detailed analysis of the phage genome.

To improve the performance of PVP annotation, we present
DeePVP. DeePVP takes a phage protein as input; then, the main
module of DeePVP outputs a PVP likelihood score to reflect
whether the given protein belongs to the PVP, while the extended
module further calculates whether a predicted PVP belongs to 1
of 10 major classes of PVPs, namely, head–tail joining, collar, tail
sheath, tail fiber, portal, minor tail, major tail, baseplate, minor
capsid, and major capsid, which are the dominant categories in
PVP. Both modules use the one-hot encoding method to charac-
terize the protein sequence and use a convolution neural network
(CNN) as the classifier for protein feature extraction. Testing us-
ing the benchmark data set and 2 application cases demonstrate
the advantages of DeePVP over existing tools in PVP annotation.

Materials and Methods
Several benchmark training and testing data sets of PVP and non-
PVP sequences have been constructed in previous work [8, 11–24].
In this work, the benchmark data set of PhANNs (http://edwards.
sdsu.edu/phanns/download/expandedDB.tgz, downloaded on 17
September 2021) [8], which was constructed using proteins from
the NCBI protein database and GenBank database, was used to de-
velop DeePVP. This data set was chosen for the following reasons:
(i) at the time of this work, the PhANNs data set is the largest
PVP and non-PVP data set, containing a total of 168,660 PVPs and
369,553 non-PVPs, whereas most of the other data sets contain
fewer than 1,000 proteins; (ii) the homology between the cross-
validation and testing proteins is less than 40%, which is impor-
tant in evaluating whether the algorithm can predict novel pro-
teins, and within the cross-validation set, the sequence homology
between the training and validation set in each rotation of the 10-
fold cross validation is also less than 40%; and (iii) the data set
includes all 10 major classes of PVPs that we focused on.

The framework of DeePVP is shown in Fig. 1. Selecting an appro-
priate representation method for biological sequences is an im-
portant step for bioinformatics algorithm development. Although
the k-mer frequency vector has been widely used in many studies,
such global statistics may lose certain local sequence informa-
tion, such as information related to conserved domains or motifs
in the sequence [26]. In DeePVP, we used the “one-hot” encoding

form to represent the protein sequence. In this way, each amino
acid is represented by a “one-hot” vector containing 20 bits, in
which 19 bits are 0 and a certain bit is 1; therefore, the information
of each amino acid is retained in the digitized model (see Section
1 of Additional File 1 for more details). Because of the data set size
limitation, in addition to the sequence information, previous tools
often included other hand-designed features to represent the se-
quence, such as some chemical properties of the corresponding
amino acid. Considering that the data set for DeePVP contains a
large number of protein sequences and that deep learning can ex-
tract meaningful features from large-scale raw data [27], we did
not use additional information for the DeePVP construction.

It has been shown that CNN can effectively extract abstract
features from “one-hot” protein sequence representations and
make reliable classifications. For example, Google Research re-
cently designed a tool named ProtCNN, which used the “one-hot”
encoding form to represent a protein domain sequence and used
a CNN to classify the domain into one member of the Pfam family
[28]. In DeePVP, the “one-hot” encoded protein is first processed by
the main module. The main module uses CNN to extract the se-
quence features to determine whether the given protein is a PVP.
The CNN contains a 1-dimensional (1D) convolution layer, a 1D
global max pooling layer, a batch normalization layer, a full con-
nection layer, and, finally, a sigmoid layer that outputs a PVP score
between 0 and 1. By default, a protein with a PVP score higher than
0.5 is regarded as a PVP. The extended module also uses CNN to
classify the protein into a specific class of PVP. The CNN in the ex-
tended module contains a 1D convolution layer, a 1D global max
pooling layer, a batch normalization layer, a full connection layer,
and, finally, a softmax layer that outputs 10 likelihood scores rep-
resenting the probability that the protein belongs to the head–tail
joining, collar, tail sheath, tail fiber, portal, minor tail, major tail,
baseplate, minor capsid, or major capsid class. By default, the cat-
egory with the highest score will be chosen as the final prediction.
The details of the hyperparameter selection are provided in Sec-
tion 2 of Additional File 1.

In the training process, both the PVPs and non-PVPs in the
training set were used to train the main module, and only PVPs
were used to train the extended module. In the prediction process,
each protein is processed through the main module and extended
module. However, it is worth noting that if a protein obtains a PVP
score lower than the threshold, the 10 scores calculated by the
extended module will not make sense because this protein is not
a PVP. Therefore, in the DeePVP workflow, we normalize the 10
scores from the extended module such that their sum is equiv-
alent to the PVP score.

Results
Performance comparison in the PVP
identification task
We first evaluated the PVP identification performance of the main
module of DeePVP using 10-fold cross validation with the cross-
validation set. The evaluation criteria are as follows:

recall = TP
TP + FN

(1)

precision = TP
TP + FP

(2)

F1 − score = 2 × recall × precision
recall + precision

(3)

where TP, TN, FN, and FP represent the number of true-positive,
true-negative, false-negative, and false-positive predictions,

http://edwards.sdsu.edu/phanns/download/expandedDB.tgz
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Figure 1: The framework of DeePVP. DeePVP takes a protein sequence as input, the main module calculates a PVP score representing the probability
that the protein belongs to PVP, and the extended module calculates likelihood scores for each of the 10 PVP classes to determine the most likely class.

Table 1: Performance comparison of DeePVP and related tools in
the PVP identification task

Tool Recall (%) Precision (%) F1-score (%)

DeePVP 88.10 96.75 92.22
VirionFinder 90.91 44.00 59.30
PhANNs 91.68 76.11 83.17
Meta-iPVP 82.41 53.29 64.72
PVPred-SCM 41.28 38.71 39.95
PVP-SVM 41.31 46.19 43.62
PVPred 29.84 42.23 34.97

respectively. Among these 3 criteria, the F1-score can serve as a
comprehensive index for evaluating PVP identification tools. We
found that the main module of DeePVP achieved satisfactory
performance, with average recall, precision, and F1-score values of
85.61%, 96.65%, and 90.76%, respectively.

We then trained the main module of DeePVP with all sequences
in the cross-validation set and compared the performance be-
tween DeePVP and several state-of-the-art tools, namely, PVPred,
PVP-SVM, PVPred-SCM, Meta-iPVP, PhANNs, and VirionFinder, us-
ing the test set. The performance comparison is shown in Table 1.
Although the recall of DeePVP is slightly lower than that of PhANNs
and VirionFinder, the precision of DeePVP is better than those of all
the other tools, and the comprehensive index of F1-score is 9.05%
higher than that of PhANNs, which performs the best among the
other tools. Since DeePVP and PhANNs were trained using the
same training data, the improved performance of DeePVP sug-
gests that “one-hot” encoding may provide a more detailed rep-
resentation method than the k-mer frequency used to character-
ize the protein sequences in PhANNs, and the deep convolution

neural network in DeePVP may be more powerful than the sim-
ple shallow network containing 2 hidden layers used for feature
extraction in PhANNs.

Selecting appropriate hyperparameters, such as the number of
convolutional kernels and the kernel length, is one of the most
important steps for constructing a robust and reliable neural net-
work [27]. To test the advantage of the hyperparameters selected
for DeePVP, we retrained DeePVP with different numbers of con-
volutional kernels and kernel lengths. As shown in Section 3 of
Additional File 1, the performance achieved by DeePVP with other
hyperparameters is not better than that of the CNN with the orig-
inal hyperparameters, indicating that the hyperparameter design
of DeePVP is suitable.

In the evaluation, we used 0.5 as the default threshold for
DeePVP. In general, with a higher threshold, the recall will be lower,
while the precision will be higher. In Section 4 of Additional File
1, we shown the recall, precision, and F1-score values yielded by
DeePVP under different thresholds. In the released package of
DeePVP, the output file also includes the PVP score for each pro-
tein, and the user can select a proper threshold according to their
needs.

Performance comparison in the PVP
classification task
We further evaluated the PVP classification performance of the
extended module of DeePVP. For each PVP category, we used the
criteria of recall, precision, and F1-score to evaluate the performance
of the tool, and we also used the accuracy, which was defined as
the ratio of the correctly predicted sequences to the total num-
ber of sequences, to evaluate the overall performance of the tool.
In the 10-fold cross-validation, the extended module of DeePVP
again achieved satisfactory performance, with an average accuracy
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Table 2: Performance comparison of DeePVP and PhANNs in the
PVP classification task

Category Tool
Recall

(%)
Precision

(%)
F1-score

(%)
Accuracy

(%)

Major capsid DeePVP 98.58 90.88 94.57

NA

PhANNs 91.98 94.24 93.10
Minor capsid DeePVP 50.62 44.09 47.13

PhANNs 80.25 13.98 23.81
Baseplate DeePVP 86.49 95.96 90.98

PhANNs 78.85 88.76 83.51
Major tail DeePVP 77.09 61.23 68.25

PhANNs 80.48 86.88 83.56
Minor tail DeePVP 90.28 93.24 91.74

PhANNs 85.42 90.50 87.89
Portal DeePVP 93.10 93.62 93.36

PhANNs 85.88 93.77 89.65
Tail fiber DeePVP 78.24 68.42 73.00

PhANNs 77.93 69.66 73.56
Tail sheath DeePVP 92.86 99.42 96.03

PhANNs 94.39 99.64 96.94
Collar DeePVP 36.33 80.15 50.00

PhANNs 87.00 75.65 80.93
Head–tail joining DeePVP 96.48 96.33 96.40

PhANNs 88.49 71.88 79.33

All
DeePVP

NA
91.06

PhANNs 87.34

NA: not applicable.

of 90.19%. The recall, precision, and F1-score for each PVP category
in the cross-validation are shown in Section 5 of Additional File 1.

After training the extended module of DeePVP using all se-
quences in the cross-validation set, we further compared the per-
formance between the extended module of DeePVP and PhANNs
in the PVP classification task using the test set. Since the other
tools cannot further classify a given PVP into a specific class, these
tools were not included in this analysis. During the comparison,
we assume that all the PVPs have already been correctly predicted
in the upstream analysis; therefore, non-PVPs are excluded from
the test set in this subsection. In practice, in the released pack-
age of DeePVP, the main module and the extended module can
be run consecutively using an integrated pipeline or be run sepa-
rately. For example, if researchers have already identified PVPs us-
ing other computational or experimental methods, such as mass
spectrometry, they can run the extended module of DeePVP di-
rectly for PVP classification.

We used the criteria of recall, precision, and F1-score to evaluate
the performance of DeePVP and PhANNs for each PVP category.
We also used accuracy to evaluate the overall performance of the
tools. The performance comparison is shown in the Table 2. The
overall accuracy of DeePVP is 3.72% higher than that of PhANNs, in-
dicating that DeePVP has a better ability to classify PVPs. In terms
of each category, although the F1-score values of DeePVP for the
major tail, tail fiber, tail sheath, and collar are lower than those of
PhANNs, DeePVP presents a higher F1-score for other categories.
While the accuracy advantage of DeePVP is not as prominent, as
it is only 3.72% higher than that of PhANNs, it is worth noting
that such performance is evaluated under the assumption that all
PVPs have been correctly predicted. Since DeePVP performs better
than PhANNs in PVP identification, we consider that the compre-
hensive PVP annotation performance of DeePVP is better than that
of PhANNs.

Table 3: Performance comparison in the PVP identification task
in the PDRPxv genome, validated according to mass spectrometry
data

Tool Recall (%)
Precision

(%) F1-score (%)

DeePVP 75.00 100.00 85.71
VirionFinder 91.67 27.50 42.31
PhANNs 83.33 52.63 64.52
Meta-iPVP 75.00 15.79 26.09
PVPred-SCM 58.33 12.28 20.29
PVP-SVM 58.33 17.07 26.42
PVPred 50.00 18.18 26.67

Application case 1: PVP annotation of the
mycobacteriophage PDRPxv genome
To demonstrate the value and reliability of DeePVP in PVP annota-
tion, we first used DeePVP and related tools to perform PVP anno-
tation of the genome of the mycobacteriophage PDRPxv (GenBank
accession: KR029087, downloaded on 30 September 2021), which is
considered a candidate therapeutic for pathogenic Mycobacterium
species [29]. The PVPs in the PDRPxv genome have been identified
experimentally by mass spectrometry; such experimental data
can be used to evaluate the reliability of computational tools. The
tools DeePVP, PVPred, PVP-SVM, PVPred-SCM, Meta-iPVP, PhANNs,
and VirionFinder were used to perform PVP annotation of the PDR-
Pxv genome, and the mass spectrometry data were used to evalu-
ate the recall, precision, and F1-score of each tool. The performance
of each tool in the PVP identification task is shown in Table 3.
We found that most of the compared tools did not perform well,
with F1-scores lower than 50%. PhANNs performed better than the
other tools, and the F1-score of DeePVP was 21.19% higher than
that of PhANNs, indicating that DeePVP provides a more reliable
prediction.

In Fig. 2, we show the base coordinates for the PVPs uncovered
by mass spectrometry and the PVPs predicted by each tool. The
mass spectrometry data showed that all PVPs were located within
a compact PVP-enriched region, and no PVPs were identified out-
side the PVP-enriched region. In fact, it has been shown that PVPs
are often located near each other within the genome [30, 31], and
such PVP distribution patterns may be common among phages.
Interestingly, we found that the PVP distribution pattern revealed
by DeePVP was quite consistent with that revealed by mass spec-
trometry. Although DeePVP failed to predict a few PVPs, all of the
other predicted PVPs were located within the PVP-enriched re-
gion. In contrast, the PVPs predicted by the other tools seem to be
distributed randomly throughout the genome. This phenomenon
shows that, in comparison with other tools, DeePVP provides more
reliable prediction and has a better ability to reveal the genomic
structure of a phage genome.

According to mass spectrometry, the PDRPxv genome contains
12 PVPs. Sinha et al. [29] inferred the putative function of each
PVP through a combination of several strategies, including do-
main search, homology analysis, adjacent gene analysis, and pro-
tein secondary structure analysis. In Table 4, we compared the
PVP classes predicted by DeePVP and PhANNs with the putative
functions revealed by Sinha et al. We found that the predictions of
DeePVP and PhANNs were basically consistent with the putative
functions. In particular, 5 putative minor tail proteins are encoded
continuously (Gp29–Gp33) in the genome, and both DeePVP and
PhANNs predicted this minor tail protein cluster appropriately.
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Figure 2: The distribution of the PVPs uncovered by mass spectrometry and the PVPs predicted by each tool on the mycobacteriophage PDRPxv
genome. The blue bars represent the PDRPxv genome, and the red boxes represent the PVPs. The horizontal axis represents the base coordinates.

Table 4: PDRPxv genome PVP classification by DeePVP and
PhANNs

Protein ID Putative functiona

DeePVP
prediction

PhANNs
prediction

Gp8 Portal protein Portal Portal
Gp10 Minor head protein Portal Portal
Gp11 Scaffolding protein NAb NA
Gp12 Major capsid protein Major capsid Major capsid
Gp18 Major tail subunit Major tail Major tail
Gp25 Tail assembly

chaperone
NA NA

Gp28 Tape measure protein NA Minor tail
Gp29 Minor tail protein Minor tail Minor tail
Gp30 Minor tail protein Minor tail Minor tail
Gp31 Minor tail protein Minor tail Minor tail
Gp32 Minor tail protein Minor tail Minor tail
Gp33 Minor tail protein Minor tail Minor tail

aPutative function as analysed by Sinha et al. [29].
bNA indicates that the tool did not identify the corresponding protein as a PVP.

Application case 2: A novel conserved
PVP-enriched region was found in Escherichia
phage phiEC1
Viral genomes are highly diverse, which presents a challenge to
understanding viral evolutionary mechanisms [32]. Phage diver-
sity is sometimes driven by PVPs [11]. In this subsection, we used
DeePVP to perform PVP annotation on Escherichia phage phiEC1
(RefSeq accession: NC_041920.1, downloaded on 20 June 2021), a
phage that may be an effective treatment for murine models of

bacteremia [33], to reveal its genomic features. According to the
annotation of the RefSeq database, the Escherichia phage phiEC1
genome encodes 269 proteins, all of which lack functional anno-
tation information in the RefSeq database. Additionally, no ex-
perimental data are available to determine which proteins are
PVPs; therefore, PVP annotation using computational methods is
an efficient way to analyze the genome. We used all the related
tools to perform PVP annotation on the phage phiEC1 genome. The
base coordinates for the PVPs predicted by each tool are shown in
Fig. 3. We defined a “PVP prediction overlapping index” for each
PVP predicted by each tool to speculate the prediction reliability.
For a certain protein predicted as a PVP by a certain tool, if this
protein was also predicted as a PVP by n tools simultaneously,
then the “overlapping index” for this predicted PVP was n. The
average “overlapping index” of each tool is shown in Fig. 3. We
found that DeePVP achieved the highest index of 4.75, indicating
that PVP predicted by DeePVP is more often predicted by other
tools.

Additionally, we found that the genomic features of the phage
phiEC1 genome revealed by DeePVP were interesting. Compared
with the PVP distributions of other tools, which were disperse
across the genome, the distribution of all PVPs predicted by
DeePVP was highly compact; a PVP-enriched region was clearly
present, and there were no predicted PVPs outside the PVP-
enriched region. This phenomenon is quite consistent with that
of mycobacteriophage PDRPxv in application case 1, in which all
PVPs are compactly encoded on the genome. Since such compact
PVP distribution patterns are common [30, 31], we consider that
DeePVP may perform better in revealing the features of the phage
genome. Meanwhile, from the DeePVP prediction results, we found
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Figure 3: The distribution of PVPs predicted by each tool in the Escherichia phage phiEC1 genome. The blue bars represent the Escherichia phage phiEC1
genome, and the red boxes represent the predicted PVPs. The average overlapping index of each tool is shown on the right side of the bar. The genomic
features revealed by DeePVP are also marked in the first bar. The horizontal axis represents the base coordinates.

that there was a clear spacer without predicted PVPs within the
PVP-enriched region, as shown in Fig. 3.

To perform further comparative genomic analysis, we aligned
the phage phiEC1 genome to the NT database using the
NCBI blastn online server (https://blast.ncbi.nlm.nih.gov/Blast.c
gi), with all parameters at the default settings. The alignment re-
sults of the top 100 subject sequences are shown in Fig. 4, and de-
tailed information about each subject sequence obtained from the
server is provided in Additional File 2. All subject sequences were
phage sequences. The alignment graph showed that the phage
phiEC1 genome contained a low conserved region, which was con-
served in some phage genomes but lacked obvious homology in
other genomes, and a highly conserved region, which was present
in almost all subject sequences. In addition, within the highly con-
served region, there was a low conserved spacer that was less
conserved among the subject sequences. More interestingly, when
comparing the DeePVP prediction in Fig. 3 with the alignment re-
sults in Fig. 4, we found that the highly conserved region corre-
sponded to the PVP-enriched region, while the low conserved re-
gion corresponded to the region outside of the PVP-enriched re-
gion. Additionally, the low conserved spacer within the highly con-
served region approximately corresponded to the spacer within
the PVP-enriched region. The above phenomenon suggests that
the Escherichia phage phiEC1 genome contains a compact PVP-
enriched region that has been conserved during viral evolution
and that this PVP-enriched region contains a non-PVP spacer that
might have been generated through recombination or horizontal
gene transfer.

Moreover, the alignment results showed that most of the sub-
ject sequences (71% in total, including the phage phiEC1 genome
itself) were also Escherichia phages, as shown in Fig. 5. Such results

indicate that among phages that infect the same host, the PVP-
enriched region may be more conserved than the non-PVP region
during the viral evolution process. Generally, the host of a phage is
determined by the interactions between the PVPs and the host cell
receptors [34]; recently, a tool for phage host prediction based on
PVP sequences was developed [6]. It is thus expected that DeePVP
may be employed for the related processes of the phage–host pre-
diction in the future.

The PVP classification results of DeePVP and PhANNs are
shown in Table 5 and Section 6 of Additional File 1, respectively.
We found that the categories predicted by DeePVP covered most
of the essential PVPs for the viral particle, including the major
capsid, major tail, tail sheath, tail fiber, baseplate, and portal.
Additionally, 3 tail-associated PVPs, tail fibers, are encoded next
to each other (YP_009965877.1, YP_009965879.1, YP_009965880.1).
This phenomenon is similar to that of application case 1, in which
5 putative tail-associated PVPs, minor tails, are encoded continu-
ously in the genome.

Discussion
To develop DeePVP, we chose to train a 2-class classifier and a 10-
class classifier separately rather than to train an 11-class classifier
directly. This is because the number of protein sequences in each
category of the data set is unbalanced. For example, in the data
set, 369,553 of the proteins belong to the non-PVP category, while
only 2,105 proteins belong to the collar category. An unbalanced
data set presents a challenge for training a neural network be-
cause the neural network may tend to assign most of the samples
to the category with the largest size automatically. In DeePVP, we
first trained a CNN to separate PVP and non-PVP sequences; this

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 4: The alignment results of the top 100 subject sequences for the Escherichia phage phiEC1 genome. The blue bar represents the phage phiEC1
genome query sequence. Each line below the query sequence represents a certain subject sequence, and the colored box on the subject sequence
represents a certain blast hit.
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Bacterial Host
Unclear (1%)
f__Enterobacteria; g__Citrobacter (1%)
f__Yersiniaceae; g__Serratia (1%)
f__Enterobacteria; g__Salmonella (2%)
f__Yersiniaceae; g__Yersinia (2%)
f__Enterobacteria; g__Unclear (9%)
f__Enterobacteria; g__Shigella (13%)
f__Enterobacteria; g__Escherichia (71%)

Figure 5: Host compositions of the subject sequences. We calculated the frequency of each host family and genus among the alignment results of
Escherichia phage phiEC1 and found that most of the subject sequences were also Escherichia phages. The frequency of each host family and genus is
shown in parentheses.

Table 5: PVP category predicted by DeePVP on the Escherichia phage
phiEC1 genome

Protein ID DeePVP prediction

YP_009965784.1 Tail sheath
YP_009965791.1 Baseplate
YP_009965797.1 Tail fiber
YP_009965805.1 Tail sheath
YP_009965807.1 Portal
YP_009965812.1 Major capsid
YP_009965814.1 Major capsid
YP_009965818.1 Major tail
YP_009965826.1 Baseplate
YP_009965877.1 Tail fiber
YP_009965879.1 Tail fiber
YP_009965880.1 Tail fiber

reduces the impact of the non-PVP category, which contains many
more sequences than the other PVP categories, on the PVP classi-
fication task.

Among the related tools, amino acid composition-based fea-
ture vectors are commonly used to characterize sequences. Such
global statistics may fail to capture certain local information, such
as conserved domains or motifs, in the sequence. Additionally,
such feature vectors may be sparse. For example, PhANNs uses
a k-mer-based feature vector containing thousands of bits, while
a large number of proteins contain only approximately 250 amino
acids (aa); therefore, most of the bits in the feature vector are likely
to be 0. Such sparse vectors may make it difficult for the algo-
rithm to fit the data. In DeePVP, we used “one-hot” encoding for
the sequence, such that the information about each amino acid
was retained in the characterization model. We then used CNN to
extract the useful features from the raw data. It has been shown
that CNN is powerful for extracting useful features, and the con-
volution kernel may serve as a sensitive position weight matrix
to detect local specific motifs [35–37]. We therefore consider that
this method may help to improve the performance of DeePVP.

Although the benchmark data set we used in this work is by
far the largest and best-designed PVP and non-PVP data set cur-
rently available, it is primarily focused on the 10 major classes of
PVPs and was created using keyword searches of public databases.

Thus, some less frequently occurring PVPs may be excluded from
the data set. In application case 1, we found that DeePVP failed
to identify a putative scaffolding protein (Gp11) and a putative
tail assembly chaperone (Gp25), which may be because these 2
types of proteins were not included in the data set by the keyword
search process. Additionally, it is important to know how DeePVP
judges PVPs that do not belong to these 10 types. We downloaded
340 tail fiber assembly proteins that were explicitly excluded from
the PhANNs data set [8]. We found that 147 of them were predicted
as PVP by the main module, and among these 147 predicted PVPs,
146 of them were predicted as tail-associated PVP classes by the
extended module, including major tail, minor tail, tail fiber, and
head–tail joining. This result shows that for a PVP that does not
belong to the 10 types, the extended module of DeePVP may clas-
sify this PVP into the most relevant category. In the future, more
efforts should be made to create more exhaustive PVP sets to fur-
ther improve the algorithm performance. Additionally, the num-
bers of instances of some PVP types in the PhANNs data set are
low, which may lead to poor performance for these types. For ex-
ample, the minor capsid category contains the least number of
sequences, with only 1,055 sequences included, and both PhANNs
and DeePVP achieve low F1-scores on this class. Therefore, to im-
prove the performance on PVPs with small data sizes, more se-
quences should also be added to such categories in the future with
the continuous expansion of the public database.

Although the comprehensive index F1-score of the main mod-
ule of DeePVP is better than that of the other tools, the recall of
DeePVP is slightly lower than that of some tools, such as PhANNs
and VirionFinder, in the PVP identification task, indicating that
DeePVP may fail to identify some PVPs. On the other hand, DeePVP
was better able to identify the PVP-enriched region, and PVPs are
encoded compactly within a single region in many phages. There-
fore, we suggest that users can combine DeePVP with other tools
to identify as many PVPs as possible with a low false-positive
prediction rate. In application case 1, for example, the user can
first use DeePVP to identify the PVP-enriched region (from Gp8 to
Gp33, as shown in Fig. 2 and Table 4). Then, within this region,
users can apply the more sensitive tool PhANNs to identify more
PVPs. Since proteins within the region are more likely to be PVPs,
such an operation may be less likely to generate false-positive pre-
dictions. With this approach, the PVP of Gp28, which fails to be
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predicted by DeePVP, was included in the prediction, and the recall
was increased from 75% to 83.33%. Although this approach also
introduced 3 false-positive predictions (Gp14, Gp19, Gp26), a large
number of false-positive predictions outside the PVP-enriched re-
gion are excluded. In the future, it would be worth constructing
a comprehensive workflow that integrates different algorithms to
improve the PVP annotation performance.

In metagenomic data, because of the difficulty of sequence as-
sembly, some proteins exist as partial genes. Although the cur-
rent version of DeePVP is primarily designed for complete phage
genomes, we also test the performance of DeePVP on partial
genes. The results in Section 7 of Additional File 1 show that
DeePVP still achieves relatively satisfactory performance when
the partial gene is longer than 50% of the full length, indicat-
ing that DeePVP is still capable of working with long contigs in
metagenomic data.

Conclusion
In this work, we present DeePVP, a new tool for PVP annotation
of a phage genome. The main module of DeePVP aims to identify
whether a phage protein is a PVP, while the extended module can
further judge the class to which the PVP belongs. Evaluation using
the large-scale benchmark data set shows that DeePVP performs
better than the related tools. We provided 2 application cases to
demonstrate the value of DeePVP. In the case of mycobacterio-
phage PDRPxv, by referring to experimental mass spectrometry
data, we illustrated that the prediction of DeePVP was more re-
liable and could better reveal the compact distribution pattern
of PVP over the genome than those of other tools. We then used
DeePVP to perform PVP prediction on Escherichia phage phiEC1,
which previously lacked experimental data and annotation in-
formation for its PVPs. Compared with the other tools, DeePVP
again showed a clear PVP-enriched region within the genome, and
we found that this newly discovered PVP-enriched region is con-
served in many other phages that infect the same host genus dur-
ing the viral evolution process. We therefore suggest that DeePVP
may be a powerful tool for various phage genomic analysis appli-
cations, such as host prediction. DeePVP software is optimized in
both a virtual machine with graphical user interface and a docker,
which makes the software easy to install on a local PC or high-
performance computing system. Noncomputer professionals who
are not familiar with the command line can also easily run the
tool on large-scale data.

Availability of Supporting Source Code and
Requirements
Project name: DeePVP.
Project home page: https://github.com/fangzcbio/DeePVP/.
Operating system: The code of DeePVP was written on Linux.
We optimized the program in a virtual machine and docker thus
DeePVP is platform independent.
Programming language: python, matlab.
Other requirements: no other requirements are needed.
License: GPL-3.0.
RRID: SCR_022474.
biotoolsID: DeePVP.

Availability of Supporting Data
The supporting data related to the manuscript are available in the
GigaScience repository, GigaDB [38].

Additional Files
Additional File 1. Section 1: description of the one-hot encoding
form; Section 2: description of the details of the hyperparame-
ter selection of the neural network; Section 3: the performance
achieved by DeePVP with different numbers of convolutional ker-
nels and different kernel lengths on the PVP identification task;
Section 4: the recall, precision, and F1-score values produced by
DeePVP under different thresholds in the PVP identification task;
Section 5: the average of recall, precision, F1-score, and accuracy of
the extended module of DeePVP in the 10-fold cross-validation;
Section 6: PVP category predicted by PhANNs on the Escherichia
phage phiEC1 genome; Section 7: DeePVP performance on partial
genes.
Additional File 2. Detailed information about each subject se-
quence of Escherichia phage phiEC1 genome obtained from the
NCBI blastn server.
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