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Pancreatic cancer, a disease with extremely poor prognosis, has been noto-

riously resistant to virtually all forms of treatment. The dynamic crosstalk

that occurs between tumour cells and the surrounding stroma, frequently

mediated by intricate Src/FAK signalling, is increasingly recognised as a

key player in pancreatic tumourigenesis, disease progression and therapeu-

tic resistance. These important cues are fundamental for defining the inva-

sive potential of pancreatic tumours, and several components of the Src

and downstream effector signalling have been proposed as potent anti-

cancer therapeutic targets. Consequently, numerous agents that block this

complex network are being extensively investigated as potential antiinvasive

and antimetastatic therapeutic agents for this disease. In this review, we

will discuss the latest evidence of Src signalling in PDAC progression,

fibrotic response and resistance to therapy. We will examine future oppor-

tunities for the development and implementation of more effective combi-

nation regimens, targeting key components of the oncogenic Src signalling

axis, and in the context of a precision medicine-guided approach.
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Introduction

Our definition of ‘cancer’ is constantly being revised,

with the traditional definition of a malignancy derived

from epithelial cells now being inapplicable [1]. It is

now well recognised that carcinomas are not simply

collections of individual clonal tumour cells, but rather

comprise a complex environment of distinct cell types

including molecularly diverse malignant cells and sup-

porting nontransformed components that promote

cancer development, spread and therapeutic resistance

[2]. These include resident cancer-associated fibrob-

lasts, pericytes, endothelial cells, adipocytes, nerves

and infiltrating immune cells, which through dynamic

communication with tumour cells, collectively regulate

tumour growth and progression [2].

Pancreatic ductal adenocarcinoma (PDAC) is a

highly lethal malignancy with a dismal 5-year survival

of < 8%, and this statistic has remained largely

unchanged for the past 50 years [3,4]. PDAC is the

third leading cause of all cancer deaths and is pre-

dicted to become the second by 2030 [3], representing

a significant burden in the Western society [3–5]. Com-

bination of chemotherapy agents, fluorouracil [5-FU],

leucovorin, irinotecan and oxaliplatin (FOLFIRINOX)

or gemcitabine and nanoparticle albumin-bound pacli-

taxel (Abraxane) represent current first-line treatments

for advanced PDAC [6–8]. As most recent data indi-

cate, their efficacy may also be of significant benefit in

both adjuvant [9] and neoadjuvant settings [10]. How-

ever, due to the toxicity associated with multiagent

chemotherapy, there is a discernible need for novel,

more tailored treatment combinations, as well as the

identification of biomarkers to help rationalise treat-

ment selection [5].

PDAC has a high molecular heterogeneity despite

being morphologically indistinguishable [11,12]. Char-

acterisation of this complex molecular landscape has

revealed key insights into the biology of tumours

[11,13,14], enabling us to build upon the traditional

anatomical definition of cancer and further includes

molecular subtyping or ‘omic’ stratification as a foun-

dation for developing approaches for early detection

and improved treatment options [11,15,16], as well as

identification of mechanisms of therapeutic resistance

[11,12,17]. With new advances in sequencing and ana-

lytical methodologies, PDAC has been genomically

and transcriptomically characterised to an incredible

depth, as reviewed recently [14]. Building on early

studies which have identified the 12 key pathways and

oncogenes genetically altered in most pancreatic can-

cers [18], this disease has since been stratified into dis-

tinct molecular subtypes using gene expression

profiling [17], and comprehensive whole genome

sequencing (WGS) approaches [11,12,19]. For example,

these analyses have led to the identification of a

PDAC subtype characterised by high structural varia-

tion (> 200 structural rearrangements per tumour),

that may be preferentially sensitive to DNA-damaging

agents, including PARP inhibitors and cisplatin [11].

Subsequent integrative analysis of genomic and tran-

scriptomic signatures has further characterised an ‘im-

munogenic’ subtype in PDAC [12], associated with a

significant immune infiltrate, with predominant expres-

sion profiles related to infiltrating B and T cells, upreg-

ulation of CTLA4 and PD1 immunosuppressive

pathways, suggesting that a proportion of PDAC

tumours may potentially be targeted with immune-

modulating agents. Further work by Connor et al. [19]

has described an interesting correlation between signa-

tures that define double-stranded DNA break repair

and mismatch repair deficiencies and specific immune

profiles in pancreatic cancer, highlighting that similar

to other solid cancers [20], a subset of pancreatic

cancers with a high mutation burden may present a

viable target for immune-modulating combination

therapies.

Moreover, comprehensive genomic and transcrip-

tomic studies in more frequently occurring cancers,

such as breast cancer, have not only transformed and

improved our understanding of the tumour landscape,

but have been utilised to refine breast cancer classifica-

tion, assess prognosis and response to therapy [21,22].

These examples demonstrate how the identification of

key mutations can clearly benefit a larger number of

selected cancer patients, and illustrate the need to

include a molecular taxonomy when establishing effec-

tive treatment plans.

In addition to the novel approaches to cancer treat-

ment developed from the genomic characterisation of

cancer cells within tumours, the equally complex and

dynamic tumour microenvironment (TME) has been

shown to play a significant role in promoting cancer

development, progression and treatment failure. Of

note, PDAC is characterised by a hypoxic, immuno-

suppressive and highly fibrotic environment, with stro-

mal components outnumbering pancreatic cancer cells

[23,24]. Intricate communication between pancreatic

cancer cells and their surrounding environment, driven

by a dynamic signalling network of cellular and matrix

remodelling enzymes, cytokines, chemokines and

growth factors, collectively promotes tumour growth

and treatment resistance [25–28].

A key pathway that regulates the tumour microenvi-

ronment is the Src signalling network. The c-Src non-

receptor tyrosine kinase is frequently overexpressed in
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numerous human malignancies, including PDAC [29],

where it has been shown to promote tumour develop-

ment and progression to distant metastases, leading to

poor patient survival. Moreover, Src kinase is a media-

tor of integrin signalling in pancreatic cancer cells [30],

and plays an important role in the regulation of sev-

eral proteins that are frequently deregulated in cancer

including focal adhesion kinase (FAK), epidermal

growth factor receptor (EGFR), Akt/PI 3-kinase, and

Rho/ROCK signalling. These pathways directly drive

tumour-cell to stromal-cell crosstalk, [31–35] and play

a prominent role in regulating pancreatic tumour cell

survival, adhesion, migration and invasion [29]. In this

review, we summarise and discuss the current under-

standing of the diverse and complex roles of aberrant

Src signalling in the complex niche of a rapidly devel-

oping and metastasising pancreatic tumour, highlight-

ing challenges with and new avenues for the utilisation

of inhibitors that target this dynamic network.

The Src signalling axis promotes
pancreatic cancer progression

The proto-oncogene tyrosine-protein kinase Src or cel-

lular Src (c-Src) belongs to a family of nine nonrecep-

tor tyrosine kinases that share similar structure and

function [36]. Src kinase localises at cell–matrix adhe-

sions, and is readily activated by positive migratory

growth factor signalling, including, but not limited to,

epidermal growth factor (EGF), hepatocyte growth

factor (HGF), platelet-derived growth factor (PDGF),

vascular endothelial growth factor (VEGF) and inte-

grin [37] and Eph receptor (EphA2) activation [38]. In

turn, Src can phosphorylate substrates from numerous

molecular pathways and consequently promotes

tumour cell survival, proliferation, cell adhesion,

migration, invasion and angiogenesis, key hallmarks of

cancer (Fig. 1) [29,30,39–44]. The roles of Src in

tumourigenesis and metastasis are well established,

with constitutive activation of Src being observed in a

Fig. 1. Schematic of the canonical Integrin/Src/FAK signalling network. Src and FAK interact with, and are activated by, numerous receptor

tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), fibroblast

growth factor receptor (FGFR), and platelet-derived growth factor receptor (PDGFR), as well as the ‘matrix receptor’ integrins, which all

facilitate their downstream signalling. (a) Phosphorylation and activation of RAS, RAF, MEK1/2 and ERK1/2 leads to the transcriptional

regulation of genes associated with cell growth and proliferation. (b) Phosphorylation of signal transducer and activator of transcription 3

(STAT3), enables STAT3 dimerisation and translocation into the nucleus where it regulates gene expression of VEGF, IL10 and FoxP3,

stimulating angiogenesis and immunosuppression. (c) PI3K assists in the recruitment of Akt to the plasma membrane, where it is

phosphorylated and activated by PDK1/2, and then translocates to the cytosol or nucleus. Through its downstream mediators, Akt promotes

RNA translation and protein synthesis, and cell survival. (d) Activation of Rho GTPases results in the binding of Rho-associated protein

kinase (ROCK) leading to actin cytoskeleton remodelling and cell motility. Rho GTPases can also activate myosin-light chain (MLC) which is

involved in the maintenance of stromal feedback and extracellular matrix deposition. Activation of Rac GTPases leads to the recruitment and

activation of Arp2/3 via WAVE, leading to the formation of new actin polymers, whilst Rac can also activate PAK, leading to the inhibition of

depolarisation of actin, key processes affecting actin dynamics and lamellipodia formation.
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variety of cancers including breast, lung, colon, pros-

tate and pancreas [29,42,45].

Src modulates integrin adhesions, cadherin-mediated

cell–cell adhesions and metalloproteinase expression,

and it is this disruption of intercellular adhesion that

results in the detachment of tumour cells from the

tumour mass, allowing them to invade through the

extracellular matrix (ECM), penetrate the blood vessels

and metastasize to other sites [43]. Furthermore, Src

kinase activity is required for mesenchymal invasion

(involving integrin and protease-dependent stromal

remodelling) as it controls the turnover of integrin-

based adhesions [46]. In addition, Src has been sug-

gested as a mechanistic link between inflammation and

cancer [47]. Specifically, Src activation in tumour-asso-

ciated macrophages, leads to their increased motility

and infiltration into the tumour, a process which is

driven by the secretion of pro-inflammatory cytokines

within the tumour microenvironment [47–49]. Src also

plays a role in the metabolic reprogramming of can-

cers by promoting the Warburg effect. This involves

activation of hexokinases and upregulation of glycoly-

sis, which in turn promotes tumourigenesis [45].

The significance of Src in PDAC tumourigenesis is

also well established [29,48,50]. Src kinase expression

and activity is upregulated in PDAC, increased further

during progression to invasive and metastatic (ad-

vanced) PDAC and is associated with poor survival

[29,50,51]. Src also plays a role in the progression of

pancreatitis, an inflammatory condition that presents a

risk for development of pancreatic cancer [52]. Similar

to other cancers, Src inhibition has been shown to

reduce proliferation, migration and invasion in PDAC

cell lines, as well as inhibits tumour progression and

metastasis in vivo [43,53–57]. Src can also promote the

progression of PDAC by reducing tumour response to

gemcitabine, one of the current standards of care

chemotherapies for this cancer [58].

In addition to SRC, the integrin–focal adhesion sig-

nalling-mediated modulation of ECM mechanics and

cytoskeleton stability involves several important sensor

proteins that are also frequently deregulated in cancer,

including integrins, FAK and downstream Akt/PI 3-ki-

nase, LIM kinase, and Rho/ROCK activation [59–62]

(Fig. 1). Integrins are composed of two noncovalently

associated transmembrane glycoprotein subunits, and

can be divided into several subtypes [63]. These mole-

cules can signal bidirectionally: through the recruit-

ment of adaptor proteins the integrin receptor

becomes activated and has a high affinity for ECM

ligands, which in turn leads to the recruitment of sig-

nalling proteins and the assembly of focal adhesions

[63]. Integrins bind to, and remodel ECM components

such as vitronectin, laminin, fibronectin and collagen,

thereby providing the traction required for tumour cell

motility and invasion. Increased deposition and cross-

linking of ECM proteins can also further promote

tumour progression via mechanical force-induced clus-

tering of integrin receptors [64].

The crosstalk between integrins, growth factor

receptors and SRC oncogene is readily exploited by

cancer cells during both tumour initiation and disease

progression [59]. Furthermore, integrins also play a

role in angiogenesis, by providing a docking site for

several cell types, including endothelial cells, endothe-

lial stem cells and inflammatory cells, at the site of

angiogenesis [65]. Upregulation of amb6-integrins
occurs in a variety of tumours, including PDAC,

where it has been shown to activate TGF-b, stimulat-

ing tumour cell epithelial-to-mesenchymal transition

(EMT) and stromal myofibroblast differentiation [66],

which has in turn been shown to either promote [67]

or restrict tumour growth and progression [68]. The

association between amb6-integrins and increased

migration, invasion and cell survival is partly due to

the regulation of proteases (MMPs), and urokinase-

type plasminogen activator (uPA) [63,66,69–71]. In

PDAC specifically, overexpression of integrin amb3/
amb6 has been previously shown to associate with poor

survival of patients as well as lymph node metastasis

[59,72], and recent findings indicate that the stromal

localisation and levels of active a5b1-integrin and

FAK can identify two readily distinguishable desmo-

plastic phenotypes in pancreatic cancer. Tumours with

high stromal pSMAD2/3 levels were found to be prog-

nostic of poor outcome, whilst increased stromal levels

of active a,b-integrin constituted a patient-protective

PDAC-associated desmoplastic phenotype [73]. In

addition, integrins also play a role in regulating cancer

stem cell properties leading to metastasis as well as

resistance to tyrosine kinase inhibitors in PDAC [74].

Focal adhesion kinase (FAK) is a ubiquitously

expressed nonreceptor tyrosine kinase that regulates inte-

grin-mediated cell-ECM signalling, and its phosphoryla-

tion and activation is dependent on Src. The Src-FAK

multiprotein complex localises at cell–matrix attachment

sites and influences several downstream pathways includ-

ing cell motility, migration, invasion, survival, immuno-

suppression and apoptosis [25,29,75,76]. The mechanisms

involved are complex but often include the regulation of

downstream effectors, including TGFb, as well as regula-
tors of ERK, Jun kinase (JNK) and Rho signalling path-

ways [34,35,42,77–79]. FAK is overexpressed in a variety

of cancers including PDAC, and overexpression is associ-

ated with poor prognosis [76,80]. It has recently been

shown that FAK plays an important role in regulating
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pro-inflammatory pathway activation and cytokine pro-

duction during wound healing [25,44,80–83]. In PDAC

specifically, FAK activity has been shown to correlate

with high levels of fibrosis and poor CD8+ cytotoxic T-

cell infiltration, making it a promising target to overcome

the highly fibrotic and immunosuppressive nature of

PDAC [25,84].

Src-family kinases (SFKs) not only promote cell–
matrix adhesion turnover through FAK, but also regu-

late Rho family of small GTPases, in particular RhoA

and Rac1 activation [85,86]. Rho GTPases are often

hijacked by cancers because they regulate diverse cellu-

lar processes that are important for tumour growth

and metastasis including cytoskeletal dynamics, motil-

ity, contractility, cell polarity, membrane transport,

gene transcription, as well as regulating the interaction

between stromal cells and cancer cells [87–93]. SFKs

control the regulatory molecules of Rho GTPases

(guanine nucleotide exchange factors (GEFs), GTPase-

activating proteins (GAPs) and guanine dissociation

inhibitors (GDIs)), and it is the tight regulation and

extensive crosstalk between Src/FAK and Src/RhoA/

Rac1 that controls integrin-mediated cell adhesion and

migration [94–96]. We have recently reviewed the role

of Rho-associated kinase signalling in cancers includ-

ing PDAC [87,88].

PI 3-kinase (PI3K) signalling is another relevant,

tumour-promoting and potentially druggable effector

network activated through FAK/SFK [97–99]. Acti-

vated PI3K phosphorylates phosphatidylinositol 4,5-

biphosphate (PIP2) to produce PIP3, and this process

is negatively regulated by PTEN [100]. Activation of

PIP3 can then further activate Akt (Akt activation

occurs in ~ 59% PDAC samples [101]) and additional

downstream targets such as Bcl-2, Mdm2, GSK3beta,

NF-kappaB and mTOR [97,102], ultimately promoting

cancer cell survival, growth, and motility and inhibit-

ing apoptosis [97,100,103,104]. The PI3K-Akt-mTOR

pathway is also responsible for controlling cellular

metabolism. Oncogenic K-Ras can enhance the activity

of the metabolic enzyme ATP citrate lyase in an Akt-

dependent manner leading to histone acetylation and

alteration of the acetyl-CoA pool, subsequently leading

to changes in gene expression, DNA damage response

and DNA replication [105]. The PI3K/Akt pathway

can also inhibit glucose metabolism by blocking glyco-

gen synthase kinase 3b and can alter glucose uptake

by mediating expression of glucose transporters such

as GLUT1 [105,106]. Furthermore, Akt signalling is

present in preneoplastic lesions during pancreatic car-

cinogenesis induced by mutated Kras, and is associ-

ated with progression towards higher grade tumours

and poorer patient survival [99,107–109].

Molecular and genomic aberrations of
the Src signalling axis in Pancreatic
Cancer: Implications for therapeutic
targeting

Historically, the documented cases of activating Src

mutations are rare, with only one major study in colon

cancer documenting 12% of cases with a truncating

mutation at codon 531 [110], which when functionally

validated, was shown to lead to increased Src speci-

ficity and transformation of NIH 3T3 cells. Despite

this, other studies using larger colon cancer popula-

tions document no such mutations [111,112]. In addi-

tion, no such mutations have been documented for

Src-implicated cancers, such as haematological malig-

nancies [113]. In PDAC specifically, examination of

multidimensional publically available cancer genomics

datasets (TCGA, PanCan Atlas and QCMG cohorts)

revealed that Src mutations occur at a frequency of

less than 2% (Fig. 2B) [114,115], indicating that aber-

rant intratumoural Src activity occurs through consti-

tutive activation of Src, or by changes in the levels of

regulators of Src and amplification of downstream sig-

nalling pathways [113,116–118].

Integrins are key regulators of Src signalling, and

are also deregulated in cancers, but are rarely mutated.

Several cancers, including glioblastoma, show modifi-

cations of the integrin pattern to be associated with

tumour progression and poor patient survival, includ-

ing a6b4, a6b1, avb6 and avb3 [119]. An early

sequencing study demonstrated a positive association

between mutations in subunit a7 (encoded by ITGA7

gene), identified in 57% of prostate cancers, and

increased cancer recurrence [120]. The mutation also

occurred in 21% of hepatocellular carcinomas and

83% of glioblastomas, as well as leiomyosarcomas

[120]. Decreased integrin expression has also been cor-

related with cancer progression. In mesothelioma,

reduced expression of ITGA7 was associated with pro-

moter methylation and was identified as an important

mechanism for the aggressive migratory transforma-

tion of mesothelioma [121,122]. Similar results have

also been seen with a2b1 in breast cancer, and a6b4/
a6b1 in oesophageal carcinoma [59]. In PDAC, early

sequencing studies identified genetic alterations in the

integrin signalling pathway (ITGA4, ITGA9, ITGA11,

LAMA1, LAMA4, LAMA5, FN1 and ILK) in 67% of

tumours [18]. However, these alterations appear less

frequent (67% versus 13%) when compared to the

findings of the TCGA, UTSW, ICGC and QCMG

[114,115,123] (Fig. 2A). This inconsistency may be

explained through the study design of Jones et al.

[124], where only small cohorts derived from cell lines

3514 The FEBS Journal 286 (2019) 3510–3539 ª 2019 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Targeting Src signalling in pancreatic cancer A. Parkin et al.



(commercial and patient-derived; n = 24); and xeno-

graft models (n = 90) were used to analyse the muta-

tional cancer landscape. Recent findings suggest that

molecular landscapes of patient-derived models may

diverge from their parental tumours during long-term

propagation. More recently, the integrin b4 subunit

was found to be commonly overexpressed in PDAC

and is an adverse prognostic marker; however, it is not

commonly mutated [125]. An alternate mechanism

involving a mutation in TP53 is thought to promote

integrin a6b4-mediated tumour cell survival [125].

In addition, recent large-scale, pan-cancer proteoge-

nomic studies have identified molecular alterations in

several Src effector networks including PI3K/Akt/

mTOR and FAK [80,126–128]. Of > 7000 tumours

examined, 63% harboured nonsilent somatic mutations

or copy number alterations within the PI3K/AKT/

mTOR pathway [127]. In PDAC specifically, ~ 17% of

tumours carried alterations, the majority of which

involved gene amplification, and this finding is consis-

tent across multiple cohorts [114,115] (Fig. 2D). The

PI3KCA gene mutations present in 3–5% of pancreatic

cancer patients can act as activating mutations

initiating pancreatic tumour formation [129]. Further,

inactivating aberrations in PTEN (negative regulator

of PI3K/PI3K pathway) occur in up to 70% of human

PDAC, and have been shown to activate the tumour-

promoting stromal and immune cell components that

shape the PDAC TME [130]. FAK is also frequently

overexpressed and deregulated in PDAC, with geno-

mics alterations occurring at a frequency of ~ 6%, the

majority of which are gene amplifications (Fig. 2C)

[114,115]. FAK inhibitor monotherapy has shown

mixed clinical efficacy in mesothelioma tumours that

harbour loss of specific tumour suppressive signals,

such as Merlin (encoded by NF2 gene; [131–133]).

Although mutations at the NF2 locus are rare (~ 10%)

in human PDAC [12,19], Merlin expression is lost in

> 40% of PDAC and is negatively correlated with

tumour stage, regional lymph node metastasis and

differentiation [134]. Assessment into the efficacy of

FAK inhibition in the context of Merlin loss, and

combined with additional biomarkers, in PDAC may

be of interest.

A personalised treatment strategy using pharmaco-

logical inhibition of Src, Src-associated regulators or

Fig. 2. Genetic alteration frequency (% of

patients) for key Src signalling components,

generated from publically available

pancreatic cancer genomics datasets. These

datasets include The Cancer Genome Atlas

(TCGA), PanCan Atlas (TCGA PanCan),

University of Texas South Western Medical

Centre (UTSW) and Queensland Centre for

Medical Genomics (QCMG 2016) cohorts

[114,115]. The genetic alterations examined

include mutations (green), fusions (purple),

amplifications (red), deletions (blue) and

multiple alterations (grey) (F). (A) Genetic

alteration frequency of integrins, with

integrin genes being defined in (E). (B)

Genetic alteration frequency of Src. (C)

Genetic alteration frequency of FAK (PTK2).

(D) Genetic alteration frequency of the PI3K/

AKT pathway. (E) The list of genes used to

define the PI3K/AKT pathway.

Figure reproduced from Refs [114,115]
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downstream targets, in tumour subtypes carrying these

aberrations, could be beneficial and remains to be

examined. Currently there are no FDA-approved prog-

nostic or predictive biomarkers for PDAC [7]. Impor-

tantly, moving forward, the integration of DNA copy-

number alterations, methylome, mRNA and protein,

metabolomics and clinical information may help to

further delineate the extent of Src signalling deregula-

tion in pancreatic and other cancers, and could poten-

tially lay the foundation for more accurate and rapid

implementation of therapeutic inhibitors of Src as per-

sonalised cancer therapeutics.

Targeting Src kinase in pancreatic
cancer

Recognising the established role of Src in cancer initia-

tion and progression led to the rapid development of

several small molecule inhibitors (Table 1) [135]. Inhi-

bitors including bosutinib, saracatinib and dasatinib

have shown measurable antitumour activity in several

in vitro and in vivo models of cancer [47,53,56,136–

138]. Dasatinib is a potent adenosine triphosphate-

competitive inhibitor of Src and Abl kinases, as well

as c-KIT, PDGFR and ephrin-A2, which works by

competitive inhibition of the ATP binding site. Its

activity results in inhibition of cell proliferation (caus-

ing G0/G1 arrest), as well as inhibition of cell adhe-

sion, migration, invasion and tumour metastasis

[44,53,139–143]. These results were particularly promis-

ing in models of advanced PDAC, presenting dasatinib

as an encouraging antimetastatic agent for this disease

[29,56,144]. Despite the encouraging clinical results for

the use of dasatinib as a standalone therapy in CML,

clinical findings with dasatinib or alternative Src/ABL-

kinase inhibitors (saracatinib, bosutinib) [145,146] in

PDAC were predominately negative, partially due to

poor drug tolerance, but also due to the highly aggres-

sive and adaptable nature of this disease to single-

agent targeted therapies and rapid onset of resistance

[53,138,147–156]. Moreover, the presumption that

these biologic agents would significantly improve sur-

vival in nonstratified cohorts, particularly in PDAC, is

inconsistent with prior preclinical data, which suggests

that therapeutic response may correlate with biological

markers. For example, Saracatinib effectively inhibited

the growth of three patient-derived pancreatic xeno-

grafts characterised by decreased FAK, paxillin and

STAT3 signalling [136]. In addition Bosutinib sensitiv-

ity was shown to correlate with caveolin 1 expression

[138], and clinical trial data indicate that selected indi-

viduals experienced durable and sustained responses to

dasatinib treatment [102,150,151]. Collectively, these

data highlight the need for further investigation into

the biological ‘omics’ of patients prior to treatment in

order to identify the mechanistic rationale that can

predict which patients may most optimally respond to

Src-based therapies.

Given that in pancreatic (and other) cancers, multi-

ple mechanisms often work in synchrony to lead to

chemoresistance, considering more tailored treatment

combinations that involve inhibition of Src, other

molecular targets, plus tumour-debulking cytotoxic

agents may present a more effective approach. The

rationale behind this includes the finding that Src is

associated with increased chemoresistance in PDAC,

and that inhibition of Src can overcome resistance to

gemcitabine [58,137,143]. Furthermore, Src inhibition

is associated with decreased thymidylate synthase,

which in turn is associated with the reversal of 5-fluo-

rouracil resistance [137]. Src inhibition can also

increase oxaliplatin activity, and inhibit oxaliplatin-in-

duced Src activation [137]. When dasatinib was com-

bined with gemcitabine in locally advanced pancreatic

cancer, there was no improvement in progression-free

or overall survival (NCT01395017) (Table 1) [157].

However, newer combination chemotherapy regimens,

such as FOLFIRINOX [6], lead to significantly higher

response rates and disease control in patients with

metastatic disease. Hence, a potentially more appropri-

ate future study design may involve sequential admin-

istration of dasatinib as ‘maintenance’ therapy, after

optimal disease control is achieved with this highly

active chemotherapy regimen (similar to successful pre-

vious studies utilising sunitinib [152]), or alternatively

a ‘priming regimen’ could be applied [92], thus limiting

toxicity associated with chronic dosing.

The Src signalling network is also known to play an

important role in the movement and infiltration of

immune cells into the tumour. In addition Src activation

is mediated by inflammatory cytokines within the

tumour microenvironment, whilst also being involved in

intercellular communication [47]. Although there is min-

imal evidence in pancreatic cancer, research into other

solid cancers including melanoma, sarcoma, colon and

breast cancer demonstrates that Src-inhibitors such as

dasatinib have potent immunomodulatory functions

[158], and consequently may present a promising

adjunct to immunotherapy. Dasatinib may enhance cel-

lular immunity through a number of mechanisms

including T-cell immunomodulation, whereby treatment

has been shown to reduce the number of intratumoural

regulatory T cells, in various solid tumour mouse mod-

els and haematological malignancies, promoting natural

killer (NK) cell expansion and differentiation [158–160].

In chronic myeloid leukaemia (CML) cancer models,
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dasatinib may increase the number of Granzyme B

(GrB) expressing memory CD4+ T cells (GrB+CD4+
T-cells) and promote their differentiation into Th1-type

T-cells, which in turn produce interferon-gamma, a

powerful tumour-suppressive cytokine [161]. Moreover,

in CML and head and neck cancers, dasatinib has been

shown to reduce the number of myeloid-derived sup-

pressor cells (MDSCs), and induce anti-inflammatory

macrophages (defined by increased production of IL-10,

decreased production of IL6, IL-12p40 and TNF-alpha,

and high expression of LIGHT, SPHK1 and arginase

1), via the inhibition of salt-inducible kinases

[160,162,163]. Surprisingly, the potential in combining

the immunomodulatory effects of Src-inhibitors with

other immunomodulatory therapies has not been exten-

sively studied. Preclinical data in head and neck squa-

mous cell carcinoma (HNSCC) showed inhibition of

tumour growth, suggesting that combining dasatinib

with anti-CTLA4 immunotherapy may be a viable treat-

ment approach [164]. However in a clinical study of

gastrointestinal stromal tumours (GIST), dasatinib and

anti-CTLA4 antibody ipilimumab were well tolerated

yet the combination was not synergistic, potentially due

to the lack of a biomarker-driven approach [165]. At

present there is only one phase II trial underway

examining the combination of dasatinib and anti-PD-1

therapy nivolumab in nonsmall cell lung cancer (NCT

02750514). However due to the strong immunomodula-

tory effects of Src inhibition seen in vivo, assessment of

synergistic combinatorial therapies including dasatinib

and other immunomodulatory drugs is warranted. This

could be particularly relevant in pancreatic cancer

where immunotherapy provides no therapeutic benefit

as a result of the immunosuppressive microenvironment

that defines these tumours [166].

Combining Src inhibition with additional targeted

therapies is another potentially beneficial approach

aimed at enhancing antitumour efficacy, while min-

imising inherent and acquired resistance. This strategy

has already shown promise in several cancers [167].

Almost 30 years ago, Src tyrosine kinase and EGFR

were found to synergistically stimulate EGF-induced

mitogenic cellular responses in fibroblast cultures

[168]. Since then, Src has been shown to directly

phosphorylate EGFR and may also mediate transacti-

vation of EGFR by other receptor signalling path-

ways [37,169,170]. The EGF-mediated RAS/RAF/

MEK/ERK pathway (Fig. 1) is one of the major

players in the regulation of tumour growth, survival,

proliferation, inhibition of apoptosis and autophagy

[171,172], with deregulated activation associated with

poor prognosis in solid tumours [173], including

PDAC [174].

Targeting this key pro-tumourigenic molecular path-

way has been explored in PDAC with the combination

of standard therapy gemcitabine and small molecule

EGFR inhibitor erlotinib revealing a modest but sig-

nificant improvement in patient survival in advanced

disease [175–177]. However, significance was lost when

this combination was trialled in all-comers in the adju-

vant setting [178]. Further analyses revealed that thera-

peutic benefit of combined gemcitabine/EGFR

inhibition associated with KRAS wild-type tumour

status [179,180] or development of skin rash in

patients, which represents another measure of EGFR

inhibitor activity [181]. Dasatinib has been combined

with the EGFR inhibitor, erlotinib in NSCLC, result-

ing in two partial responses, and a disease control rate

of 63% [182]. Collectively, these studies highlight the

potential utility of this treatment combination when

applied in small, but potentially well-defined sub-

groups of patients with pancreatic cancer. Moreover,

the combination of dasatinib, erlotinib and gemc-

itabine showed significant synergy in preclinical stud-

ies, with potent inhibition of cancer cell proliferation,

viability and xenograft tumour growth [183]. The triple

combination was also shown to overcome constitutive

activation of STAT3-mediated signalling, a key player

in PDAC chemoresistance [27,55,183,184], and was

shown to be well tolerated, with promising preliminary

clinical activity in advanced pancreatic cancer [185].

The potential of this therapeutic combination also pro-

vides support for the development of a novel multiki-

nase inhibitor (SKLB261) that potently inhibits

EGFR, Src and VEGFR2 kinases. In the context of

PDAC, this inhibitor effectively inhibited cancer cell

proliferation, migration, invasion and induced apopto-

sis in vitro, and demonstrated potent antiangiogenic

effects in pancreatic cancer xenografts, with stronger

antitumour activity when compared to dasatinib, erlo-

tinib and gemcitabine monotherapies [186].

Dual Src/MEK blockade using saracatinib/selume-

tinib presents another interesting therapeutic strategy

shown to induce apoptosis of dormant cancer cells and

limit tumour recurrence in breast cancer models [187]

that may potentially be applied to other solid cancers,

including PDAC. Dual targeting of Src and the pro-

tein tyrosine phosphatase SHP-2, required for full acti-

vation of the RAS/ERK1/2 pathway, has also shown

promise in in vitro and in vivo models of pancreatic

cancer. Combined Src/SHP-2 inhibition resulted in a

supra-additive loss of phosphorylation of Akt and

ERK-1/2, and led to an increase in apoptotic marker

expression in L3.6pl and PANC-1 pancreatic cancer

cells. The combination also led to a reduction in cell

viability, adhesion, migration and invasion in vitro and
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reduction in pancreatic tumour formation in vivo,

using the L3.6pl orthotopic model [188]. The central

role for SHP-2 in oncogenic KRAS-driven tumours

has been therapeutically exploited in other contexts,

with most recent data demonstrating potent synergistic

antitumour effects of combined SHP-2 and MEK inhi-

bition in multiple cancer types [189], including geneti-

cally engineered models of KRAS-mutant lung and

pancreatic cancer [190]. Further exploration of these

targeted therapeutic combinations, particularly in

molecularly enriched patient subsets, is warranted,

with early dose-finding clinical studies underway

(NCT03114319, NCT03634982; Table 1).

Modulation of the upstream and
downstream Src signalling
components in pancreatic cancer

Modulation of the downstream mediators and interact-

ing partners of Src represents another potentially

viable therapeutic approach that is increasingly being

investigated (Table 2). Inhibition of FAK decreased

PDAC cell growth and migration in vitro [191,192],

and limited pancreatic tumour progression in vivo,

doubling the survival in the p48-Cre;LSL-KrasG12D;

Trp53flox/+ (KPC) mouse model of PDAC

[25,193,194]. FAK inhibitor VS-4718 treatment further

reduced tumour fibrosis and numbers of infiltrating

immunosuppressive populations of myeloid-derived

suppressor cells (MDSCs), tumour-associated macro-

phages (TAMs) and regulatory T-cells, sensitising the

KPC mouse model to checkpoint immunotherapy [25].

As a result, several trials are now focused on combining

FAK inhibition with immunotherapies such as trame-

tinib, and pembrolizumab in PDAC (NCT02428270

[195], NCT02758587) (Table 2). In addition, FAK inhi-

bitors such as PF-00562271 are well tolerated and hence

show significant promise for the treatment of PDAC

[131,196]. Promising preclinical data in malignant pleu-

ral mesothelioma, ovarian and other solid tumours sug-

gest that therapeutic responsiveness to FAK inhibition

may be guided by Merlin loss [197,198] or E-cadherin

levels [199]. This is supported by positive data from two

phase I studies (NCT01138033, NCT01938443) in

advanced solid tumours, where improved response to

the FAK inhibitor GSK2256098 was observed in Mer-

lin-negative mesothelioma [131,133]. However, findings

of a recent prospective phase II trial in malignant pleu-

ral mesothelioma (MPM; COMMAND study), has

since failed to confirm Merlin expression as a predictive

biomarker of efficacy to a different FAK inhibitor,

defactinib [132]. The observed discordance in the find-

ings of these studies could potentially be due to a

substantial difference in the cut-offs utilised to define

Merlin-negative or Merlin-low tumour status, with the

Soria et al. [131] and Mak et al. [133] trials more strin-

gently defining Merlin-negative cancers. These studies

also differ in terms of their patient selection and cohort

size, with the larger COMMAND trial [132] being a

prospective study examining defactinib efficacy as a

maintenance therapy in chemo-responsive advanced

MPM, whereas the smaller phase I and Ib studies of the

GSK2256098 compound examined efficacy in advanced

chemo-resistant solid tumours, including mesothelioma.

Moreover, as defactinib targets both FAK and Pyk2

[200] while GSK2256098 is selective for FAK alone, this

difference in target selectivity between the two com-

pounds may potentially lead to divergent antitumour

activity, and mechanism of action on tumour cells, as

well as the distinct components of the tumour microen-

vironment. Further assessment into the efficacy of FAK

inhibition in the context of Merlin loss may still be of

interest, particularly in pancreatic cancer where it has

yet to be examined. Future trials would however need to

consider standardisation of the biomarker analysis and

interpretation of Merlin loss, sampling of multiple

tumour areas where possible to account for potential

intratumoural heterogeneity of molecular marker(s) of

interest and incorporation of additional promising

biomarkers to aid identification of clinical responders to

FAK inhibitor-based treatment regimens.

Several inhibitors that target Rho GTPase or its

downstream effectors including Rho-associated kinases

(ROCK) have shown antitumour activity in preclinical

models, which we have reviewed previously [87,88].

Most recently, fasudil, an inexpensive, off-patent

ROCK inhibitor, may present a promising new treat-

ment approach for PDAC. It has recently been shown

that using a short-term ‘priming’ treatment approach

to inhibit ROCK signalling can reduce tissue stiffness,

improve vascular patency, increase tumour perfusion,

decrease in vivo primary tumour growth, metastasis

and improve response to standard of care therapy

[23,92], similar to chronic fasudil treatment [89]. Newer

ROCK inhibitors (such as ripasudil, CCT129254 or

AT13148), are currently being trialled, and utilise a

similar ‘priming’ [92,93] or intermittent regime [201].

The rationale behind this novel treatment scheduling

involves modulating or ‘loosening’ the ECM, via

ROCK inhibition, prior to chemotherapy administra-

tion in order to improve chemotherapy drug perfusion

and reduce toxicity [92]. Potentially, this regime could

be applied for the use of other stromal-based therapies

in PDAC as well as other stromal-driven cancers.

Furthermore, there has been significant research

dedicated to targeting the PI3K/AKT signalling
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pathway in PDAC due to its role in cell metabolism,

cell cycle, protein synthesis and apoptosis [202]. Rapa-

mycin, an mTORC1 inhibitor, showed promising pre-

clinical results in PDAC, significantly halting disease

progression in PI3K/AKT-activated tumours [203].

However clinical data failed to demonstrate a benefit,

particularly when administered as monotherapy

(Table 2) [204]. This may further be explained by

mTORC1 being involved in complex negative feedback

loops that restrain upstream signalling. For example,

inhibition of mTORC1 drives activation of PI3K-,

AKT- or ERK pathways [205], which in turn limits

the efficacy of mTORC-inhibitors as targeted therapies

[206]. More recently developed dual ATP-competitive

agents that target mTORC1/mTORC2 have shown

favourable results [207,208] with AZD2014 effectively

inhibiting PDAC cell division (G1 arrest), prolifera-

tion, and invasion in vitro [158,160] and prolonging

survival in the KPC mouse model of PDAC

[109,208,209]. However there is still some debate as to

whether blocking mTORC1/2 leads to the adaptive

activation of the PI3K-AKT pathway [209], and conse-

quently whether multiple targeting of this network is

required to effectively interfere with both branches of

adaptive signalling and to elicit a durable therapeutic

response.

The combination of Cyclin-dependent Kinase

(CDK) inhibitors with PI3K pathway inhibition has

been shown to inhibit tumour growth and metastasis

in a variety of cancers including PDAC [210,211], with

a need for molecular stratification into responsive sub-

types [212]. Furthermore, multitarget, unique formula-

tions, including SM-88, a combination of a tyrosine

derivative (D,L-alpha-metyrosine), mTOR inhibitor

(sirolimus), CYP3a4 inducer (phenytoin) and oxidative

stress catalyst (methoxsalen), are showing encouraging

efficacy in early stage trials, particularly in patients

with advanced pancreatic cancer (Table 2) [213], who

have frequently exhausted all options. There is also

ample evidence supporting the combination of PI3K/

AKT/mTOR inhibitors with tyrosine kinase inhibitors

(TKIs). Cancers with active/overexpressed TKIs often

display resistance to TKIs through PI3K signalling

[214]. In addition, targeting RAS/RAF/MEK/ERK

pathway in combination with PI3K/AKT/mTOR inhi-

bitors is another promising strategy because there is

significant stimulatory crosstalk [214]. Synergy has pre-

viously been shown between a MEK-inhibitor and

PI3K/mTOR inhibitor in a lung cancer model, where

inhibition of MEK/ERK was shown to stabilise BIM,

and PI3K/AKT inhibition upregulated PUMA via

FOXO, all of which are key mediators of apoptosis

[215,216]. Inhibition of the MAPK pathway has also

been shown to associate with increased PI3K pathway

activity [217,218]. This therapeutic combination could

also be beneficial in PDAC, as an alternative approach

for inhibiting oncogenic Kras, which is located

upstream of MEK/ERK and PI3K. Thus far, attempts

at targeting the most frequently mutated protein in

PDAC, KRAS, have been unsuccessful [14,219].

Whilst the combination of MEK inhibitors with alter-

native pathway inhibitors such as PI3K or Src has

shown early promise [218,220,221], the combinations,

including addition of chemotherapies, may require an

alternative, intermittent dosing regimen design due to

issues with chronic administration [222–224], and are

yet to be systematically examined in PDAC. Preclinical

data suggest that therapeutic efficacy may be depen-

dent on PDAC subtype, as well as MEK activity and

expression [225], with further investigation, including

determination of biologically effective dose(s) of tar-

geted therapies, testing and implementation of alterna-

tive dosing regimens, warranted.

Given the importance of the integrin/Src/FAK sig-

nalling in diverse cancer types, significant research has

also gone into targeting molecules upstream of Src,

including integrins, which critically modulates ECM

mechanics and cytoskeleton stability, stellate cell acti-

vation [226], cancer cell survival and angiogenesis [59]

and most recently, production of tumour-promoting

cytokines and chemokines [227]. With each integrin

comprising an a and b transmembrane subunit, most

studies have focused on testing avb1, avb3, avb5 inte-

grin antagonists, the most promising of which is cilen-

gitide. Cilengitide is an RGD (arginine-glycine-aspartic

acid) peptide which is selective against avb3, avb5 inte-

grins [228]. Cilengitide was shown to have antitumour

activity in recurrent and newly diagnosed glioblastoma

[229–232]; however, further phase III studies showed

no significant differences in median overall survival

[231], with similar negative findings in PDAC when

examined in all-comers [233]. In contrast, results from

a phase I study suggest promising early signals of

activity with cilengitide and chemoradiotherapy combi-

nation in advanced nonsmall cell lung cancer [234].

Clinical trials of further integrin antagonists, including

intetumumab, volociximab, ATN-161 (Ac-PHSCN-

NH2 peptide), abituzumab and etaracizumab, all of

which are antibodies or peptide mimetics, have largely

yielded no improvements in patient progression-free or

overall survival (Table 2) [235,236]; however, specific

studies in colon cancer suggest that their antitumour

activity may be linked to the presence of a biomarker

[237], and, alternatively, may specifically inhibit the

progression of bone-associated metastases in prostate

cancer [238]. Adding to the complexity, anti-integrin
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compounds may increase intratumoural hypoxia, lead-

ing to increased tumour growth, metastasis and

chemoresistance in certain settings [239,240], process

that is dose- and/or tumour type-dependent [65,241].

Reynolds et al. [241] showed that in fact, low

(nanomolar) concentrations of avb3, avb5 inhibitors

can paradoxically promote VEGF-mediated angiogen-

esis by altering avb3 integrin and VEGFR-2 traffick-

ing, stimulating cancer growth.

Hence, more recent research efforts have focussed

on utilising these agents as part of ‘vascular normalisa-

tion’, whereby improved tumour blood flow increases

drug delivery [242]. However as this approach is highly

time- and dose-dependent, its clinical implementation

may be challenging [243]. Specifically, in pancreatic

cancer, cilengitide has been effectively applied in com-

bination with chemotherapy using a strategy called

‘vascular promotion’, aimed at improving delivery of

chemotherapy to the tumour [244]. Although the com-

bination has yet to be trialled in the clinic, preclinical

evidence is positive. Co-administration of low-dose

therapy regimen of cilengitide and verapamil increased

tumour blood flow and perfusion, promoted gemc-

itabine delivery inside growing pancreatic tumours,

ultimately leading to reduced primary tumour growth,

metastasis and significantly improved survival in multi-

ple models of PDAC with minimal side effects [244].

This dual therapy also increased levels of proteins

involved in active transport of gemcitabine into cells,

and production of active metabolites, further enhanc-

ing gemcitabine potency. Vascular promotion is also

associated with reduced hypoxia and desmoplasia, sali-

ent features of PDAC [244]. In addition, volociximab,

an integrin a5b1 blocking antibody, has completed

phase II trials in combination with gemcitabine in

metastatic pancreatic cancer, with results pending

(NCT00401570). Of note, mutant P53 has been shown

to regulate a5b1 signalling and EGFR, which suggests

there may also be potential for molecular stratification

[245].

Another major advance in ECM-targeting is the

development of agents that break down hyaluronic

acid (HA). HA is a large, linear, glycosaminoglycan

that plays an important structural role in the ECM,

and accumulates in conditions involving rapid and

invasive cell division, including cancer. HA regulates

interstitial gel fluid pressure within tumours, often

impacting on drug delivery. Pegylated recombinant

human hyaluronidase (PEGPH20) and 4-methylumbel-

liferone are two key examples of compounds that inhi-

bit and/or break down HA. Of note, PEGPH20 has

already shown significant promise in PDAC. HA

degradation following PEGPH20 treatment has been

shown to normalise interstitial fluid pressures and re-ex-

pand the microvasculature by increasing the diameter

but not the total number of blood vessels within PDAC

tumours [246]. This in turn significantly improved

chemotherapeutic response in the KPC murine model of

PDAC, resulting in a near doubling of overall survival

[246,247]. Clinical studies of PEGPH20 are also promis-

ing with phase II data already demonstrating significant

efficacy of this agent when combined with chemother-

apy, effect particularly prominent in patients with HA-

high tumours [248], highlighting the potential utility of

intratumoural HA as a predictive biomarker of response

[248–250]. Favourable results are particularly observed

when PEGPH20 is combined with Gemcitabine and

Abraxane [248,251,252], whereas FOLFIRINOX in

contrast may be better utilised in other settings [253].

Development of a liquid biopsy-based companion diag-

nostic for selecting potential PEGPH20 responders is

also underway [254]. Consequently several phase II/III

clinical trials are now investigating further the clinical

efficacy of PEGPH20, in combination with standard

of care chemotherapies (Table 2) (NCT02487277,

NCT02715804), or immune checkpoint inhibition

(NCT03481920; NCT03634332, NCT03193190) in HA-

high molecular subgroups of PDAC [248,255]. These

encouraging early clinical findings highlight the poten-

tial of stromal components as viable therapeutic targets,

supporting further clinical development of PEGPH20 as

well as detailed exploration of new biomarker-driven

therapeutic combinations utilising this agent.

Future perspectives for inhibition of
Src signalling in pancreatic cancer

The extraordinary and constantly expanding under-

standing of the role of Src signalling in pancreatic can-

cer biology and treatment supports the foundation for

the specific inhibition of this complex network in

PDAC. However, the presumption that a single-tar-

geted therapy will improve survival in such an aggres-

sive disease is unrealistic. Unfortunately, most targeted

therapies are at best only transiently effective, with

cancer cells rapidly acquiring resistance, often leading

to more rapid disease progression. This is supported

by the numerous unsuccessful nonbiomarker-driven

clinical trials that have been summarised in this

review.

Further understanding of the intricacies in integrin/

Src/FAK and downstream signalling in the various

tumour compartments will determine whether the inhi-

bitors of this complex network may serve as effective

treatments for newly diagnosed or recurrent tumours

and will establish optimal combinations with radiation,
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cytotoxic chemotherapy and other targeted molecular

compounds. Given the need for co-targeting of multi-

ple cancer capabilities to overcome the high therapeu-

tic resistance of pancreatic tumours, future clinical

applications of multiagent therapies will likely require

a more innovative approach to dosing, including use

of biologically effective doses of targeted agents (inte-

grin/Src/FAK), and alternative dosing schedules such

as ‘priming’ or ‘maintenance therapy’ to ensure maxi-

mal benefit to the patient [152]. Finally, the emerging

efficacy of Src pathway inhibitors in combination with

other targeted and/or cytotoxic therapies, when exam-

ined in a molecular subtype-specific context [248,249],

and with longitudinal tracking of long-term therapeu-

tic responsiveness, reveals significant potential as a

personalised medicine strategy for pancreatic cancer,

and provides real hope for patients in the future.
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