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“Guilt by association” 
is not competitive with genetic 
association for identifying autism 
risk genes
Margot Gunning1,2,3 & Paul Pavlidis1,2,4*

Discovering genes involved in complex human genetic disorders is a major challenge. Many have 
suggested that machine learning (ML) algorithms using gene networks can be used to supplement 
traditional genetic association-based approaches to predict or prioritize disease genes. However, 
questions have been raised about the utility of ML methods for this type of task due to biases within 
the data, and poor real-world performance. Using autism spectrum disorder (ASD) as a test case, 
we sought to investigate the question: can machine learning aid in the discovery of disease genes? 
We collected 13 published ASD gene prioritization studies and evaluated their performance using 
known and novel high-confidence ASD genes. We also investigated their biases towards generic 
gene annotations, like number of association publications. We found that ML methods which do not 
incorporate genetics information have limited utility for prioritization of ASD risk genes. These studies 
perform at a comparable level to generic measures of likelihood for the involvement of genes in any 
condition, and do not out-perform genetic association studies. Future efforts to discover disease genes 
should be focused on developing and validating statistical models for genetic association, specifically 
for association between rare variants and disease, rather than developing complex machine learning 
methods using complex heterogeneous biological data with unknown reliability.

Elucidating the genetic architecture of complex human disorders and diseases is currently a major challenge 
in medical research. Identifying genes involved in disease is often a time consuming and expensive process, 
so many researchers have been attracted to the idea of using predictions generated by machine learning (ML) 
algorithms1–4. However, the effectiveness of ML approaches, in contrast to traditional genetic association, is 
unclear.

Algorithms used in gene function or disease prioritization tasks generally operate on a principle called guilt 
by association (GBA) (Gillis and Pavlidis6;  Lanckriet et al. 7), which postulates that genes with “associations” 
are more likely to be “guilty” of sharing functions. Associations can be sourced from multiple data types, such 
as gene expression, physical or genetic interactions, and protein sequence similarity. There are many ways these 
data types can be integrated into a machine learning method, and depending on the data types and algorithm, 
the associations among genes may be implicitly or explicitly represented as a network in which both direct and 
indirect associations can be used for inference.

Previous work from our group has shown that applications of ML to gene function prediction are highly influ-
enced by biases in the underlying data5,6,8. For example, protein interactions are often biased toward well studied 
genes, which often have high numbers of associated functional annotations (“multifunctional”). Furthermore, 
annotations and number of associations can be correlated, and this turns out to be a driver of GBA behavior: 
GBA tends to ascribe new functions to genes which are highly connected within the network rather than learning 
additional, novel information from the connection patterns6,8. The implication of this “multifunctionality bias” 
is that GBA can seem to work in cross-validation settings, while providing predictions with little specific value. 
As an extreme illustration of this phenomenon, a million-edge network of gene associations can be reduced to 
23 associations while not substantially impacting GBA performance5. For these and other reasons, the real-life 
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performance of GBA methods can be questioned. Focusing on the disease gene identification case, we are not 
aware of any instances where GBA has been responsible for a bona fide disease gene identification.

Recently there has been interest in a specific use case for GBA-based ML: predicting genes responsible for 
genetic risk of autism spectrum disorder (ASD). Multiple GBA-based ML studies have been produced with claims 
of providing greater insight into the genetic etiology of ASD1,4,9–11. ASD is a neurodevelopmental disorder with 
a genetically heterogenous etiology12. Currently, much ASD research is aimed at identifying very rare, highly 
penetrant de novo variants in ASD probands because this class of variation has been found to impart a large 
proportion of risk13–16. While statistical methods for evaluating rare variants are still a topic of active research, 
genetic association underpins all ASD risk gene identification to date. In this context, ML methods have a 
challenge for acceptance by geneticists. Assessing the quality of ML-based ASD gene predictions is essential to 
provide realistic estimates of performance or complementarity to genetic approaches. However, we are unaware 
of attempts to compare them directly to genetic association studies, and assess their real-world applicability. In 
this paper we aimed to assess the reliability and usability of guilt by association machine learning approaches 
for ASD gene prioritization.

Methods
ASD gene sets.  We compiled two ASD genes sets for algorithm evaluation (Table 1). We used the SFARI-
Gene 2.017 database as a source of well known, high-confidence ASD genes. SFARIGene collects information on 
ASD genetic risk factors and genes, and is manually curated by MindSpec, Incorporated. Genes are categorized 
by amount and quality of evidence for associated with ASD, and assigned a score ranging from 1 (high confi-
dence) to 3 (suggestive evidence), or S (syndromic). We used the 144 genes from SFARI category 1 currently 
considered to be high-confidence ASD genes (Feb 2020) as our SFARI-HC gene set. Many of SFARI-HC genes 
were initially identified by the genetic association studies of De Rubeis et al.18 and Sanders et al.17. Different sub-
sets of these high-confidence genes had been used for training of the GBA ML algorithms discussed below. We 
complied a second high-confidence ASD risk gene set recently identified in three large-scale Transmission and 
De Novo Association Analysis (TADA) studies: Ruzzo et al.19  (iHart), Feliciano et al.20 (Spark), and Satterstrom 
et al.21. These three studies were built based on the background of the original TADA genetic association stud-
ies, De Rubeis et al.18 and Sanders et al.17. We refer to this set as “novel-HC” to reflect that most of the genes on 
this list were not used in the training of the GBA ML algorithms, largely because they were identified after the 
publication of the ML methods. We considered evaluation using the novel-HC genes a “testing scenario” because 
the ultimate use case of the machine learning algorithms is to highly prioritize and predict novel ASD genes.

ASD gene prioritization studies and generic measures of disease gene likelihood.  We consid-
ered 13 ASD gene prioritization studies (Table 1). Each study scored genes based on the authors’ assessment 
of their probability of contributing to ASD risk. All studies also provided lists of genes they considered to be 
high-confidence ASD risk gene candidates based on a thresholding of their rankings. We obtained these scores 
from the supplemental tables of the publications. We also evaluated three measures of constraint against loss-
of-function (LoF) variation because they can be thought of as generic measures of disease gene likelihood (see 
below for descriptions).

Table 1.   Summary of the ASD gene prioritization studies and generic methods for disease gene prioritization 
we used.

Name Genetic GBA ML Generic Method and citation

Princeton ✓ Evidence-weighted support vector machine classifier1

FRN ✓ Evidence-weighted random forest classifier9

DAMAGES ✓ Logistic regression classifier22

RF_Lin ✓ Random forest classifier. Does not provide scores for training labels10

PANDA ✓ Graph neural network classifier4

forecASD ✓ ✓ Ensemble stacked random forest classifier11

DAWN ✓ ✓ Cluster analysis with co-expression and TADA data. Does not provide scores for all 
protein-coding genes in genome23

DeRubeis ✓ TADA on de novo, inherited, and case–control LoF and missense variants18

Sanders ✓ TADA on de novo, inherited, and case–control LoF and missense variants, and small 
deletions21

iHart ✓ TADA on de novo, inherited, and case–control LoF and missense variants, and small 
deletions19

Satterstrom ✓ TADA on de novo and case–control LoF and missense variants with pLI and “missense 
badness score” in framework24

Spark ✓ TADA on de novo LoF and missense variants. Does not provide genome-wide scores20

Iossifov ✓ ASD-specific likely gene disruptive score25

ExAC pLI ✓ Probability loss of function intolerance score based on approximately 60,000 exomes26

gnomAD pLI ✓ Probability loss of function intolerance score based on approximately 120,000 exomes27

o/e LoF ✓ Observed/expected loss of function score from gnomAD26
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We mapped gene symbols and Entrez gene identification numbers provided by each study to NCBI official 
gene symbols and Entrez gene identification numbers, and kept only protein-coding genes28. We used the mean 
score when a gene was listed more than once in a study. We ranked the scores from each study so that 1.0 was 
the highest possible score, indicating higher assessed likelihood of being involved in ASD, and 0.0 was the low-
est possible score. The probability loss of function scores (pLI) from ExAC and gnomAD were already in the 
proper scale, with higher scores indicating genes likely to have high constraint against loss of function (LoF) 
variation. The scale of the observed/expected LoF score is opposite to the pLI scale and does not range from 0 to 
1. We ranked genes based on o/e LoF score from lowest to highest. Lastly, for protein-coding genes not assessed 
in each GBA ML and GA study, we set the prediction or association score to be 0.0, or in the case of the o/e LoF 
score, the highest observed value of 2.0. Studies are organized into four categories based on the approach they 
used. Below we provide a brief description of each data source; see Supplemental Materials for more information.

Genetic association studies.  The studies described below are among the most important in terms of 
identifying what are generally considered high-confidence ASD genes18–20,29. We included them in this study 
primarily to help establish a baseline to which the GBA ML approaches described in subsequent sections can be 
compared. Many of these studies are based on the TADA approach.

DeRubeis18 used whole-exome sequencing (WES) data from approximately 13,000 samples from trios and 
case-controls to identify de novo and inherited LoF variants, and de novo likely damaging missense variants 
(Mis3 by PolyPhen2). They used a TADA analysis to identify 33 ASD risk genes at FDR < 0.1. Samples from the 
Autism Sequencing Consortium (ASC), from Simons Simplex Consortium (SSC) (O’Roak et al.15; Sanders et al.16; 
Iossifov et al.13), and other cohorts were used. Association scores were provided for 18,735 genes.

Sanders21 used WES data from approximately 17,000 samples from trios and case-controls to identify de novo 
and inherited LoF variants, de novo likely damaging missense variants (Mis3 by PolyPhen2), and small de novo 
deletions. They employed a TADA analysis to identify 65 ASD risk genes at FDR < 0.1. They sequenced roughly 
2,500 SSC families in addition to using SSC samples from Levy et al.30, Iossifov et al.31 and  Dong et al.32, and 
ASC samples from De Rubeis et al.18, and samples from  Pinto et al.33, among others. Association scores were 
provided for 18,665 genes.

iHart19 used whole-genome sequencing (WGS) data from 2,308 individuals from 493 multiplex Autism 
Genetic Resource Exchange (AGRE) families to identify de novo and inherited LoF variants and de novo likely 
damaging missense variants (Mis3 by PolyPhen2). They used their data and the Sanders data, and the Sanders 
TADA model to identify 69 ASD risk genes with FDR < 0.1, including 16 novel findings. Association scores were 
provided for 18,472 genes.

Spark20 was the pilot study for the Simons Powering Autism Research for Knowledge (SPARK) project. They 
identified inherited and de novo likely damaging missense mutations (CADD ≥ 25) in 465 SPARK trios. They 
combined their de novo variants with de novo variants from 4,773 other simplex ASD trios from the ASC (De 
Rubeis et al.18) and SSC (Iossifov et al.31; Krumm et al.34), among other sources, for a TADA analysis. They iden-
tified 67 genes with FDR < 0.1, with 13 novel findings. They provided scores for the 2,249 genes found to have 
additional variation in SPARK families20.

Satterstrom (Satterstrom et al.21) is the most recent and largest-scale genetic association study, with over 
30,000 samples. They used samples from the SSC (Iossifov et al.13; Iossifov et al.31; O’Roak et al.15; Sanders 
et al.16), the ASC (De Rubeis et al.18 and others), others from the AGRE and many other cohorts around the 
world. They used WES to identify de novo and case–control LoF, and de novo missense mutations (predicted 
by MPC, the “missense, PolyPhen-2, constraint score”), and employed TADA analysis to identify 102 ASD risk 
genes at FDR < 0.1. They considered 31 significant genes to be novel findings. Association scores were provided 
for 17,484 genes. Importantly, Satterstrom et al. modified the TADA method from the studies mentioned above 
by using the pLI score from ExAC and the MPC score to estimate the priors for the relative risk of LoF and 
missense variant classes.

Iossifov25 computed a “Likely Gene-Disruptive” (LGD) score based on recurrence of LGD variants, the differ-
ence in frequency of LGD variants between ASD probands and unaffected siblings (ascertainment differential), 
and the load of LGD variation in ASD probands. They used data from WES of 2,471 families from the SSC 
(Iossifov et al.31), and exome variants from approximately 6,000 controls from the Exome Variant Server25. The 
theory behind the LGD score is similar to the TADA test and to generic measures of constraint against LoF and 
missense variation because they use recurrence of variants across multiple samples and models of expected LGD 
variation in a typical gene to increase power to find disease genes25,26,29. They provided scores for 23,953 genes, 
and identified their top 239 genes as likely ASD risk gene candidates25.

GBA ML studies.  Studies in this class do not use information from ASD genetic association studies, but 
they use machine learning algorithms to distinguish ASD from non-ASD risk genes using other types of non-
genetics data.

Princeton1 is an evidence weighted support vector machine (SVM) built on a functional interaction network 
made from human gene expression, protein–protein interaction, regulatory, and genetic and chemical perturba-
tion data. For training they used 594 ASD genes, and 1,189 manually curated non-mental health associated genes 
as positives and negatives, respectively. The positive ASD genes were given one of three weights (1.0, 0.5, 0.25) 
based on strength of evidence of association with ASD. Krishnan et al. provided likelihood rankings for 25,825 
genes, and identified their top decile as likely ASD risk gene candidates.

FRN9 is a random forest classifier built on an evidence-weighted functional interaction network of human, 
mouse and rat brain gene expression, protein–protein interaction, protein docking and phenotype annotation 
data. They used 143 high-confidence ASD genes from SFARI and the Sanders publication above as positive 
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training genes, and 1,176 of the of the 1,189 Princeton non-mental health associated genes as negative training 
genes. They provided likelihood rankings for 21,114 genes, and identified their top decile as likely ASD risk 
gene candidates.

DAMAGES22 used a combination of regularized and logistic regression using cell-type specific gene expression 
data and measures of constraint against LoF and missense variation from ExAC. First, they created a DAMAGES 
(D) score using principal component analysis (PCA) and regression analysis on gene-expression profiles of 24 
mouse central nervous system cell types in 6 regions. They created profiles of 145 genes found to have de novo 
LoF variants in ASD probands and unaffected siblings from multiple cohorts as training samples. Next, using 
logistic regression, they combined the D score with ExAC measures to create an ensemble (E) score. They used 
36 genes with 2 or more de novo LoF variants in ASD probands, and 156 genes with 1 or more de novo LoF vari-
ants in sibling controls from multiple cohorts as positive and negative training genes, respectively. They provided 
likelihood rankings for 15,881 human genes, and identified their top 117 genes as likely ASD risk gene candidates.

RF_Lin10 is a random forest classifier. They built an evidence-weighted network of BrainSpan co-expression 
and protein–protein interaction data, and extracted network features such as hubness and centrality35. The 
features of their classifier included their network association matrix, selected network features, and gene-level 
constraint measures from ExAC. They used the positive and negative training labels employed by FRN described 
above. They provided likelihood rankings for 17,099 genes, and identified their top decile as likely ASD risk gene 
candidates. They did not provide scores for their training genes.

PANDA4 used a network-based deep-learning approach to prioritize autism genes. They built a human molec-
ular interaction network from protein–protein interaction data from multiple sources, and used a training set 
of 760 ASD genes from SFARI Gene 2.0 and OMIM weighted by confidence of association with ASD (1.0, 0.75, 
0.5). They provided likelihood rankings for 23,472 genes, and defined an “autism subnetwork” made up of 2,346 
genes (approximately top decile).

Genetics‑GBA Hybrid ML studies.  The studies in this section used a combination of ASD-specific 
genetic association information (e.g., from the studies listed above) along with other features to build their mod-
els. Information from the two classes of features are integrated prior to training a machine learning algorithm to 
distinguish ASD from non-ASD risk genes, using high-confidence ASD genes from genetic association studies 
as their positive training set.

DAWN23 built a co-expression network from BrainSpan data of the prefrontal and motor-somatosensory 
neocortex at 10–24 weeks post-conception, and overlaid association statistics from a TADA analysis35. Using 
unsupervised model-based clustering (Weighted Gene Co-expression Network Analysis) and a hidden Markov 
random field, they modeled the correlation of genetic association scores across the co-expression network to 
identify highly correlated nodes, or “network ASD genes.” Following a false discovery rate estimation procedure, 
they identified 127 likely ASD risk gene candidates from 10,233 genes.

forecASD11 is a stacked random forest ensemble classifier using BrainSpan35 gene expression data, STRING36 
protein–protein interaction data, and genome-wide results from Princeton, DAWN, DAMAGES, Sanders and 
DeRubeis studies described above. They used 76 SFARI high-confidence genes and 1,000 randomly selected 
non-SFARI genes as positive and negative training examples, respectively. They provided likelihood rankings 
for 17,957 genes, and identified their top decile of genes as likely ASD risk gene candidates.

Generic measures of disease gene likelihood.  The scores in this section were developed without any 
disease specificity, and measure the depletion of LoF variation within a gene. Therefore, these scores act as 
generic proxies for the likelihood of a gene to be involved in any genetic disease. We downloaded these scores 
from the gnomADv.2.1.1 database on 2019-07-1827.

ExAC_pLI measures the probability of a gene to be extremely intolerant of LoF variation. It’s scale is ranges 
from 0 to 1, with genes over 0.9 representing those extremely intolerant to LoF variation and under higher 
constraint. It was developed based on data from approximately 60,000 exomes. GnomAD_pLI is similar but 
computed from an expanded data set of roughly 120,000 exomes.

oe_LoF measures the deviation of the number of observed LoF variants within a gene to the expected number. 
This score differs from the above two because its scale is reversed, with scores below 0.35 indicating extreme 
depletion of LoF variation and higher constraint27. This measure was recommended for identifying genes likely 
to be depleted of LoF variation because it is more interpretable than the pLI (i.e., a score of 0.4 indicates that 
40% of the expected LoF variants within a gene have been observed), and better captures intermediate levels of 
haploinsufficiency. In addition, unlike the pLI, the o/e LoF score reports a confidence interval; the upper 95% 
confidence bound is recommended as the criterion to be compared to 0.3527.

Evaluation.  We plotted receiver operating characteristic (ROC) curves and precision-recall curves to assess 
recovery of the novel high-confidence (novel-HC) and SFARI high-confidence (SFARI-HC) ASD gene sets. 
When evaluating the ability of the scores to rank the novel-HCASD gene set, we removed the SFARI high-
confidence ASD genes and other ASD genes used in the training of the ML algorithms from their gene rankings. 
This was done to ensure that the algorithms were not penalized for performance on ASD genes. The top ranks 
provided by the studies are their predictions as to the most likely ASD risk candidates. Therefore, the PR curves 
are the preferred evaluation metric because they are more sensitive to classification errors in the top ranks.

We calculated area under the ROC curve (AUROC) using the “auc” function with the “trapezoid” method 
from the DescTools R package37 to account for ties in the rankings. We calculated precision at 20% recall (P20R) 
of total genes in the ASD gene sets, and precision at 43% recall (P43R) of total genes in the ASD gene sets. Preci-
sion at 20% recall was selected as a ‘midrange’ for display purposes, and has previously been used as a reported 
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point statistic in function prediction algorithm assessments38. The exception is for the pLI scores; as more than 
20% of the high-confidence ASD genes have the maximum pLI score of 1.0, we report precision at 43% recall to 
have a consistent comparison for precision-recall across all studies.

We used 2,500 bootstrapped samples (gene-level) to calculate 95% confidence intervals for AUROC and 
precision-recall statistics. The bootstrapped samples were stratified, and done with replacement. This means 
that we sampled from the ASD gene sets and the rest of the scored protein coding genes separately in each of the 
2,500 iterations to ensure balanced coverage, and that the same gene could be sampled more than once in each 
iteration. Therefore, in each bootstrapped sample, we kept only unique genes for evaluation. Studies whose per-
formance measures confidence intervals did not overlap were considered significantly different from each other.

We measured the correlation between the ASD gene likelihood rankings provided by each study, and other 
metrics of interest using the Spearman correlation coefficient. The other metrics of interest included a multi-
functionality rank, node degree of a BioGrid protein–protein interaction network, number of publications, and 
the SFARI numeric gene score. If a gene did not have a score for other metrics of interest, it was given a value of 
0.0 for consistency with ASD gene prioritization studies.

Each method provided a cut off for their set of likely ASD genes, and we calculated the overlap in their top 
gene sets as their shared number of genes.

forecASD analysis.  We obtained code for the forecASD classifier from https://​github.​com/​LeoBm​an/​forec​
ASD, and re-ran it locally11. A minor difference from the preprint is the GitHub code uses a different version 
of the randomForest R package (version 4.6-14 vs 4.6-12 in the preprint)11,39. We refit the final ensemble model 
(03_ensemble_model.R) with different sets of the input features used in final ensemble model: the noClass (noC) 
model removed features from other classifiers listed above; the noClassPPI (noCP) model eliminated the other 
classifiers, and the STRING score; noClassPPIBS (noCPB) model eliminated the other classifiers, the STRING 
score, and the BrainSpan score; the PPIOnly (PPI) model only used the STRING score; and the BrainSpanOnly 
(BS) model only used the BrainSpan score. Feature importance was measured by mean decrease in accuracy 
and mean decrease in Gini node impurity. Mean decrease in accuracy is measured by randomly permuting 
each feature, and measuring the out-of-bag (cross-validation) accuracy of the resulting trees. Mean decrease in 
Gini measures how well the features can split the data from mixed labelled nodes into pure single class nodes. 
Brueggeman et al. did not provide code for their feature importance plots; we used “varImpPlot” from the ran-
domForest package11,39. When rerunning their provided code, we found that two columns in their metadata had 
been mislabelled, D (DAMAGES) and D_ens (DAMAGES ensemble), necessitating re-labelling for plotting of 
feature importance. As for the other methods, we evaluated each model using the two ASD gene sets and with 
the same metrics described above.

Results
Method outline.  We considered 13 ASD gene prioritization studies, and three measures of generic disease 
gene likelihood for evaluation. Each study provided scores for genes based on the author’s assessment of their 
probability of contributing to ASD risk. We evaluated their ability to prioritize novel high-confidence and known 
high-confidence ASD genes using ROC and Precision-Recall curves, and 95% confidence intervals of AUROC 
and precision at 20% recall. Additionally, we looked at how the scores correlated with one another, and with 
other generic network features such as number of physical interaction partners to assess potential biases.

Systems‑based GBA ML methods do not prioritize novel high‑confidence ASD genes well 
compared to other disease gene prioritization methods.  The first test we performed was investigat-
ing how well the GBA ML studies prioritized novel high-confidence ASD genes which were not used to build 
their predictions, and comparing their performance to genetics-based and generic approaches for disease gene 
prioritization (Fig. 1). Because genetic association remains the gold standard method for identifying genetic risk 
factors, our operating assumption was that in order to be considered a successful method, an ASD-specific GBA 
ML study should have comparable performance to the genetic association studies alone, and should outperform 
generic measures of disease gene likelihood. Lastly, the more recent genetic association studies (iHart and Sat-
terstrom) were built up from the DeRubeis and Sanders studies in that they are using overlapping samples, and 
similar model parameters and variant classes in their TADA analyses. Therefore, we expected that the DeRubeis 
and Sanders studies would rank the novel-HC ASD genes at lower or borderline significant levels, and that the 
iHart and Satterstrom studies would show higher rankings of each other’s hits.

We found that GBA ML studies had comparable performance to the generic measures of disease 
gene likelihood, as is shown by their overlapping 95% confidence intervals for precision at 20% recall (i.e., 
P20RFRN = 0.69–4.61%; P20RExAC_pLI = 0.69–1.92%) (Fig. 1D,H, Table 2). While the studies had high AUROC 
statistics with overlapping 95% confidence intervals, these metrics are somewhat misleading because they are 
not sensitive to false positive predictions in top rankings, which are most relevant for prioritization studies 
(Fig. 1B,F; Table 2). This finding suggests limited utility of GBA ML studies for ASD gene prioritization: use of 
a simple non-ASD specific measure constraint against LoF variation has comparable performance to complex 
ML approaches (Fig. 1A–H; Table 2).

The best performing GBA ML method was the hybrid genetics-GBA method forecASD 
(P20RforecASD = 4.63–11.21%), which had similar levels of performance to the genetic association studies devel-
oped before the iHart, Spark and Satterstrom studies (i.e., P20RSanders = 3.49–10.54%) (Fig. 1C,D,K,L; Table 2). 
The other hybrid method, DAWN, has similar performance to other GBA ML studies, but this may be in part 
because they only provide predictions scores for roughly 10,000 genes in the genome (Fig. 1A–D, Table 2).

https://github.com/LeoBman/forecASD
https://github.com/LeoBman/forecASD
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It is important to note that the Satterstrom and iHart studies do not have particularly high performance 
by these benchmarks, despite being, in effect, a comparison of genetics findings to updated genetics find-
ings (Fig. 1I–L; Table 2). In other words, the two recent TADA-based studies do not agree on what genes are 
significantly associated with ASD. Additionally, the previous TADA studies have some performance (i.e., 
P20RSanders = 3.49–10.54%), which would suggest that they were able to identify some of the novel genes at 
marginal levels of significance, and with the accumulation of more data, these genes became significant in the 
newer studies (Fig. 1I–L; Table 2).

Figure 1.   ROC, Precision-recall and summary statistics on novel-HC genes. Novel-HC genes were discovered 
by new TADA studies (iHart, Spark and Satterstrom), and most were not used in training of GBA ML studies. 
GBA ML studies have comparable performance to generic measures of disease gene likelihood (LoF constraint 
measures), with high AUROC (A,B,E,F), but low precision at 20% recall (C,D,G,H). GBA ML methods 
incorporating genetics information, particularly forecASD, have significantly better performance. Note that 
DAWN does not provide likelihood estimates for all protein-coding genes in the genome. Genetic association 
studies also show high AUROC (I,J). Previous TADA studies (DER, SAN) show moderate performance while 
the newer TADA studies are not performing at 100% precision (L). 95% confidence intervals were created from 
2500 stratified bootstrap samples (B,D,F,H,J,L). TPR true positive rate,FPR false positive rate,AUROC area 
under the receiver operator curve, P20R precision at 20% recall.
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GBA ML methods do not predict high‑confidence ASD genes.  We analyzed how well the GBA ML 
studies recovered SFARI high-confidence genes, many of which were used in the training of the ML algorithms, 
and compared the results to other methods for disease gene prioritization (Fig. 2). The genes in the SFARI-HC 
set were discovered by different genetic association studies, many of which were first identified by the DeRubeis 
and Sanders studies. Given the relationship between all the TADA studies, we expected the original and newer 
genetic association studies to highly prioritize SFARI high-confidence genes. The systems-based GBA ML stud-
ies used different subsets of SFARI high-confidence genes, and other ASD associated genes, during training. 
Therefore, we would expect that these studies should also highly prioritize SFARI-HC genes. We note that this 
is not a pure test of training performance because not all SFARI-HC genes were used during the training step. 
However, because the methods were developed at different times using different training gene sets, we opted for 
a consistent evaluation gene set across methods.

Our findings from this set of analyses parallel what we found for the novel-HC gene set. Mainly, we 
found that the GBA ML studies have comparable performance to the generic measures of disease gene like-
lihood with overlapping 95% confidence intervals for precision at 20% recall (i.e., P20RFRN = 5.33–12.06%; 
P20RExAC_pLI = 9.68–14.08%) (Fig. 2C,D,G,H; Table 3). RF_Lin did not provide predictions for their training 
genes, which partially explains its poorer performance relative to other studies (AUROCRF_Lin = 0.44–0.55; 
P20RRF_Lin = 3.49–7.08%) (Fig. 2A–D; Table 3). Again we found that the genetics-GBA method forecASD had 
the best performance of the GBA ML studies with similar performance to genetic association studies (i.e., 
P20RforecASD = 38.23–77.32%; P20RSanders = 53.74–95.00%; P20RSatterstrom = 65.48–100.00%) (Fig.  2C,D,K,L; 
Table 3). As per our expectations, the genetic association studies performed well in this training performance 
test (Fig. 2I–L; Table 3). These results show that systems-based GBA ML studies are providing little ASD-specific 
information above that provided by the generic measures of constraint against LoF variation (Fig. 2A–H; Table 3). 
Once again, these findings highlight the limited utility of the systems-based GBA ML studies for prioritizing 
ASD risk genes.

Low agreement between ML and genetic association.  As previously discussed, GBA postulates that 
genes with shared associations are more likely to have shared functions or be involved in the same diseases. 
However, predictions can be driven by underlying multifunctionality bias whereby new functions are ascribed 
to genes that are well characterized because they are highly studied, and have a high number of association 
annotations6,8. In other words, we hypothesized that GBA methods using heterogeneous biological networks 
biased towards well-studied genes would tend to rank generically “disease-related” genes highly simply because 
they are well studied. Furthermore, because this ranking is not ASD-specific, it cannot readily identify novel 
and specific relationships. On the other hand, methods which do not recapitulate these generic rankings may 
perform badly because the main source of apparent performance of GBA methods is their ability to prioritize 
well studied genes (“multifunctionality bias” as per Gillis and Pavlidis).

We compared the genetic association and GBA ML scores to generic network features and generic gene 
annotations (Fig. 3). Our results show that some of the GBA ML studies are indeed biased. For example, the 
genetics-GBA study, forecASD, has moderate correlation with physical node degree (RSpearman = 0.34) and num-
ber of publications (RSpearman = 0.34), as do DAMAGES, RF_Lin and PANDA (Fig. 3). In the work of Gillis and 
Pavlidis, correlations of this magnitude were sufficient to explain a large fraction of predictive performance. In 
contrast, Princeton and FRN did not appear to show bias (i.e. RS:FRN,pnd = 0.16, RS:FRN,numPubs = − 0.03). Further-
more, as expected the TADA analyses show little to no agreement with these generic features (i.e. RS:iHart,pnd = 0.05, 

Table 2.   Summary statistics on novel-HC genes. AUROC area under the receiver operator characteristic curve, 
P20R precision at 20% recall, P43R precision at 43% recall. Values in parentheses are the upper and lower 95% 
confidence interval bounds. aFor P43R indicates a tie at recall of 20/43% of gene set.

Paper AUROC P20R (%) P43R (%)

Princeton 0.67 (0.60, 0.74) 0.88 (0.56, 1.00) 0.85 (0.47, 1.16)

FRN 0.73 (0.67, 0.79) 1.28 (0.69, 4.61) 0.87 (0.55, 1.33)

DAMAGES 0.80 (0.75, 0.85) 1.25 (0.87, 1.79) 1.40 (0.76, 1.90)

RF_Lin 0.77 (0.71, 0.83) 2.12 (0.96, 3.94) 1.49 (0.84, 1.87)

PANDA 0.72 (0.66, 0.79) 1.08 (0.44, 3.69) 0.68 (0.43, 0.96)

forecASD 0.89 (0.84, 0.94) 7.13 (4.63, 11.21) 5.56 (3.24, 9.38)

DAWN 0.58 (0.53, 0.63) 0.69 (0.37, 1.37) 0.53 (0.35, 0.72)a

ExAC_pLI 0.77 (0.72, 0.83) 1.14 (0.69, 1.92) 1.11 (0.78, 1.46)

gnomAD_pLI 0.75 (0.7, 0.81) 1.05 (0.70, 2.08) 1.15 (0.72, 1.39)

oe_LoF 0.79 (0.74, 0.84) 0.96 (0.64, 1.45) 1.10 (0.81, 1.37)

DeRubeis 0.72 (0.65, 0.79) 4.73 (2.08, 5.60) 2.37 (1.44, 3.77)

Sanders 0.76 (0.69, 0.84) 6.20 (3.49, 10.54) 2.80 (1.68, 6.33)

iHart 0.78 (0.71, 0.85) 42.35 (5.00, 58.33) 4.07 (1.69, 7.61)

Satterstrom 0.85 (0.79, 0.91) 50.00 (37.57, 75.79) 54.13 (24.41, 69.91)

Iossifov 0.76 (0.70, 0.82) 1.82 (1.24, 3.65) 1.83 (1.10, 2.68)
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RS:iHart,numPubs = 0.05). These findings offer some explanation for the poor performance of the systems-based 
GBA ML studies when tested on novel genes. Methods which are not biased towards well studied genes, such as 
Princeton and FRN, may be performing poorly because there is no bias to drive apparent performance6,8. On the 
other hand, studies which are biased towards well studied genes, such as RF_Lin and PANDA, may be perform-
ing poorly because GBA is assigning new functions to highly connected genes in the network, and not learning 
ASD-specific information6,8. However, further work is required to delineate how multifunctionality is affecting 

Figure 2.   ROC, precision-recall and summary statistics for SFARI-HC genes. Many SFARI-HC genes were 
initially discovered by early TADA studies (DER, SAN), and used in training of GBA ML studies. Thus, this 
evaluation acts as a control experiment. Systems-based GBA ML studies have comparable performance to 
generic measures of disease gene likelihood (LoF constraint measures), with high AUROC (A,B,E,F), but 
low precision at 20% recall (C,D,G,H) on SFARI-HC genes. The GBA ML method with genetics information, 
forecASD, had significantly better performance compared to other GBA ML methods. Note that DAWN does 
not provide estimates for all protein-coding genes in the genome, and RF_Lin does not provide estimates for 
their training genes, which partially explain their poorer performance. Genetic association studies show high 
AUROC (I,J) and high precision at 20% recall (K,L). 95% confidence intervals were created from 2500 stratified 
bootstrap samples (B,D,F,H,J,L). TPR true positive rate, FPR false positive rate, AUROC area under the receiver 
operator curve, P20R precision at 20% recall.
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Table 3.   Summary statistics on SFARI-HC genes. Headings are per Table 2, and ameans a tie at recall of 
20/43% of gene set.

Study AUROC P20R (%) P43R (%)

Princeton 0.81 (0.78, 0.84) 6.14 (4.79, 7.58) 4.36 (3.49, 6.02)

FRN 0.88 (0.86, 0.90) 8.00 (5.33, 12.06)a 5.79 (4.53, 6.37)

DAMAGES 0.87 (0.85, 0.90) 7.36 (5.70, 8.90) 7.13 (5.78, 8.78)

RF_Lin 0.50 (0.44, 0.55) 5.59 (3.49, 7.08) 2.58 (0.53, 3.82)

PANDA 0.87 (0.84, 0.89) 7.67 (5.76, 11.99) 5.78 (4.79, 6.80)

forecASD 0.94 (0.92, 0.95) 53.56 (38.23, 77.32) 31.80 (23.85, 40.22)

DAWN 0.62 (0.59, 0.65) 3.00 (2.07, 7.62) 1.70 (1.39, 2.02)a

ExAC_pLI 0.88 (0.85, 0.91) 12.06 (9.68, 14.08)a 9.57 (8.31, 12.07)a

gnomAD_pLI 0.88 (0.85, 0.91) 11.42 (9.59, 12.96)a 11.42 (9.29, 12.96)a

oe_LoF 0.91 (0.89, 0.93) 23.02 (13.80, 32.05) 16.30 (12.29, 18.80)a

DeRubeis 0.68 (0.63, 0.72) 29.00 (11.89, 77.38) 4.42 (1.68, 6.34)

Sanders 0.73 (0.68, 0.77) 85.29 (53.74, 95.00) 12.45 (6.68, 20.99)

iHart 0.73 (0.68, 0.77) 74.36 (41.06, 97.22) 14.28 (5.68, 28.05)

Satterstrom 0.75 (0.70, 0.80) 85.29 (65.48, 100.00) 31.51 (16.37, 55.71)

Iossifov 0.88 (0.86, 0.91) 56.85 (43.99, 68.00)a 31.00 (18.04, 44.85)

Figure 3.   Correlations among gene rankings. Values are Spearman correlations. Notable patterns include 
low correlations between genetic association methods, ML methods and other network features such as node 
degree and publication number; increased correlation between select ML methods and other network features; 
low correlation between Satterstrom score and pLI despite its incorporation in the statistical framework; low 
correlation between SFARI gene score and generic gene annotations.
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each study. Lastly, high agreement between generic measures of constraint and systems-based GBA ML studies 
further suggests that their predictions are generic, and not specific to ASD (i.e. RS:forecASD,ExAC_pLI = 0.37) (Fig. 3).

The lack of agreement between Satterstrom and the other TADA analyses further highlights the 
non-equivalence between the genetic association studies and the need for TADA model validation (i.e. 
RS:Satterstrom, DeRubeis = 0.12) (Fig. 3). Satterstrom directly incorporates ExAC pLI into its TADA model, however, 
it displays little correlation with pLI (RS:ExAC_pLI = − 0.09), and low to moderate agreement with other generic 
network features (i.e. RS:Satterstrom,numPubs = 0.14). While it is possible that using pLI incorporated some generic 
disease gene bias into Satterstrom, the direct effects of pLI on the score are likely complex and non-linear due 
to TADA’s approach of collapsing multiple pieces of information to derive the per-gene association scores24,29. 
Therefore, Spearman correlation may not adequately capture the relationship.

Iossifov is the genetic association study with the highest agreement with generic gene annotations. Notably, it 
has high correlation with pLI (RS:ExAC_pLI = 0.60). Iossifov is the most similar to pLI in its construction: both scores 
attempt to quantity the deviation of the observed number of LoF variants from an expectation of LoF variation 
derived from complex models incorporating rates synonymous variation, among many other factors25–27. The 
Iossifov score is ASD-specific because they incorporate an estimate of the number of causal ASD genes, and the 
observed load of LoF variation in ASD probands, whereas the LoF constraint scores were developed without 
any disease specificity25.

Lastly, the presence of some agreement between the SFARI gene score and generic measures of constraint 
and generic network features further demonstrate that high-confidence ASD genes have a relationship with 
constraint scores in that many confirmed ASD genes are constrained against LoF variation (pLI > 0.9), and that 
they are likely well-studied genes (Fig. 3). As genes are associated with disease, they become more studied, and 
they usually collect a high number of functional and physical annotations. While these annotations may be 
biologically relevant, they can impact GBA ML studies in a negative way by increasing the effects of multifunc-
tionality, as discussed below.

Overlap in the subset of genes identified as likely ASD candidate risk genes.  We next exam-
ined whether overlap among top ranked genes may still exist despite low overall correlation (Table 4; Fig. 3). 
For example, while forecASD and Princeton share 831 genes in their top rankings, forecASD is able to recover 
118/144 SFARI high-confidence genes from a potential 1,803 compared to the 83/144 recovered from a potential 
2,467 by Princeton (Table 4, bold italics highlights). Likewise, Princeton and ExAC pLI share 1,045 genes in 
their top rankings, but ExAC pLI captures 121/144 from a potential 3,220 (Table 4, bold italics highlights). This 
again shows that the systems-based ML studies are not performing as well as those with ASD-specific genetics 
information, and that they are providing little ASD-specificity above that provided by the generic measures of 
constraint.

We noted that multiple genes identified in previous TADA analyses are no longer statistically significantly 
associated with ASD in Satterstrom (i.e., only 36 of iHart’s significant findings are in Satterstrom’s 102) (Table 4, 
Supplementary Table S1), and that the TADA analyses only share 17 genes in their top findings (Supplementary 
Table S2). There are seven genes found by recent TADA studies, which at the time of their publications, were 
considered novel findings; however, they are now considered to be SFARI-HC genes (Supplementary Table S3). 
The differences in overlap of top findings between the TADA analyses further highlights that the differences 
between the underlying models need to be investigated more closely.

Table 4.   Overlap of top ranked ASD genes from each study. Numbers on the diagonal represent the number of 
ASD genes predicted. Values highlighted in bold italics are discussed in the main text.

Princeton FRN DAMAGES
RF_
Lin forecASD DAWN DeRubeis Sanders iHart Satterstrom Iossifov

exac_
pLI

gnomad_
pLI

oe_
LoF SFARI-HC NOVEL-HC

Princeton 2467 1014 70 842 831 38 16 28 34 55 108 1045 1026 997 83 29

FRN 2111 74 985 842 42 20 35 36 62 121 1093 1023 1031 99 27

DAMAGES 117 89 90 9 4 7 7 12 25 116 115 116 16 0

RF_Lin 2089 854 30 6 5 8 43 129 1436 1335 1378 59 33

forecASD 1803 63 33 65 65 89 187 1109 1044 1052 118 43

DAWN 127 11 17 16 19 27 50 53 55 20 2

DeRubeis 33 26 23 21 24 26 24 25 23 0

Sanders 65 52 39 45 46 44 44 39 0

iHart 69 36 40 45 41 42 35 16

Satterstrom 102 53 89 81 83 52 32

Iossifov 239 204 198 203 66 6

exac_pLI 3220 2475 2477 121 37

gnomad_
pLI 3046 2838 125 35

oe_LoF 2957 124 37

SFARIHC 144 7

NOVELHC 60
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Feature importance in forecASD algorithm.  While forecASD had significantly better performance 
with SFARI and novel high-confidence ASD risk genes compared to other systems-based GBA ML studies, it 
is performing with low precision (P20RforecASD = 4.63–11.21%) (Tables 2, 3). If a GBA ML method is to be con-
sidered successful, it must be able to generalize to new data, and highly rank true positives. To understand the 
driving force behind forecASD performance, we examined its performance using training feature sets made up 
of different combinations of the original features used in the model (Table 5).

Other classifiers included as features in this analysis were DAWN, Princeton and DAMAGES. The features 
from the DAWN algorithm were their list of risk ASD genes (rASD), and network score and minimum FDR. 
The features from the DAMAGES algorithm were the D and Ensemble scores. There were four FDR values from 
Sanders: tada_asc + ssc + del (most thorough with exome data and small de novo dels), tada_asc + ssc (both 
sources of exome data), tada_asc (ASC exome only), and tada_ssc (SSC exome only). The per-gene Bayes Factor 
from DeRubeis was also included (TADA_BF).

We evaluated the forecASD models on both novel-HC and SFARI-HC gene sets (Fig. 4). In both evaluations, 
we found that forecASD versions incorporating genetics information had significantly better performance than 
the versions using only protein–protein interaction or BrainSpan gene-expression data (Fig. 4; Supplementary 
Tables S4, S5). Notably, we found that the forecASD version incorporating only genetics data (noClassPPIBS) 
had overlapping 95% confidence intervals for precision at 20% recall of novel and SFARI-HC genes with the full 
forecASD version (i.e. P20RnovelHC:forecASD = 4.63–11.21%; P20RnovelHC:noClassPPIBS = 2.88–9.73% ) (Fig. 4; Supple-
mentary Tables S4, S5). These results further show that forecASD performance is driven by genetic association 
data (Fig. 5; we note that in the forecASD preprint, STRING was considered the most informative feature, but 
we were unable to reproduce this result with their code despite reproducing their classification results; we believe 
it is an error). Taken with our other findings, the implication is that supplementing ASD-specific genetics data 
with heterogeneous biological data is likely not useful for disease gene discovery, especially when considering 
the unknown reliability and biases within the data.

Discussion
Our investigation has shown that GBA ML methods that do not use ASD genetics information have limited util-
ity. This appears to be because non-genetic association data provides little to no useful information above that 
provided by generic measures of disease gene likelihood. This finding likely has implications for other attempts 
to prioritize genes for complex human genetic diseases: using heterogeneous biological network data likely has 
diminishing returns due to poor real-world performance and biases.

Non‑equivalence of genetic association studies.  A complication of our study was that the ASD 
genetic association studies agree poorly, even when analyzing heavily overlapping sets of subjects. For example, 
the recent work of Satterstrom et al., fails to replicate many of the genes considered significant ASD risk genes 
reported by De Rubies et al., despite using essentially all the data from De Rubies et al. The reason for this is not 
clear. One possibility is that many of the genes reported by De Rubies et al. were false positives uncovered by 
Satterstrom having more data. Arguing against this, all of the genes identified by De Rubies et al. were considered 
high-confidence ASD genes by SFARI Gene at the time of our analysis. Another likely culprit is that the methods 
for detecting statistical association of very rare de novo variants with phenotypes were changed substantially in 
Satterstrom et al.21. We note that iHart uses the same TADA model as Sanders, but with an increased number of 
samples from multiplex families, and Satterstrom and iHart show the highest agreement in ranking (RS = 0.92) 
and overlap of significant genes (52/80). For this reason we consider it likely that the incorporation of pLI and 
MPC in Satterstrom et al. has a larger impact on the results than changes to the underlying data. Regardless, it is 
a caveat of our study that there is apparently no universally trustable gold standard set of ASD genes. The impact 
of this on the interpretation of our study is limited, because as we show, the set of genes used for evaluation does 
not change the performance outcomes substantially.

ML methods are comparable to generic measures of LoF constraint.  Proposed use cases of the 
GBA ML studies include prediction and/or prioritization of ASD risk genes, framing WES/WGS results for fur-
ther exploration in resequencing or mechanistic studies, and/or uncovering new and delineating possible path-
ways implicated in ASD etiology1,9–11,22,23. Overall, for GBA ML study to be considered successful in identifying 
novel ASD genes, it should highly prioritize known ASD genes and provide additional, specific and unbiased 

Table 5.   Features included in the different forecASD analyses.

Feature BrainSpan score STRING score Other classifiers De Rubeis Sanders

Version

forecASD/Redo ✓ ✓ ✓ ✓ ✓

noClass (NoC) ✓ ✓ ✓ ✓

noClassPPI (NoCP) ✓ ✓ ✓

noClassPPIBS (NoCPB) ✓ ✓

PPIOnly (PPI) ✓

BrainSpanOnly (BS) ✓
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predictions above that which could be obtained from generic measures of constraint. We have shown that the 
systems-based ML studies failed to do so.

As discussed previously, we expect that methods employing GBA would tend to rank generically “disease-
related” genes highly because they are well studied, highly annotated and highly connected within networks. Thus, 
methods biased towards generic rankings, such as PANDA and DAMAGES, likely struggle to identify novel and 
disease-specific relationships (Fig. 3). Conversely, GBA methods which are not biased towards generic rankings, 
such as Princeton and FRN, may perform badly because the main source of apparent performance of GBA meth-
ods is their ability to prioritize well studied genes (“multifunctionality bias” as per Gillis and Pavlidis)(Fig. 3). 
While we found that, overall, the system-based GBA studies perform with low precision, we also found that 
two studies, Princeton and FRN, are not biased towards well studied, highly annotated, highly connected genes 
(Tables 3, 4, Fig. 3). These two studies built complex functional interaction networks from multiple data types, 
including protein–protein interaction and gene expression data. They used Gene Ontology annotations to define 
“gold standards” of functional relationships and Bayesian frameworks for weighting and data integration1,9,40,41. 
Their poor performance could be due to their GO functional categorization not aligning well with the multiple 

Figure 4.   ROC, precision-recall and summary statistics for forecASD versions on novel-HC and SFARI-HC 
genes. Versions without genetics information, PPIOnly and BrainSpanOnly, show significantly worse 
performance in both tests. 95% confidence intervals were created from 2500 stratified bootstrap samples. TPR 
true positive rate, FPR false positive rate, AUROC area under the receiver operator curve, P20R precision at 20% 
recall.
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biological data types and/or not providing useful ASD-specific information. However, it is much more likely 
that these studies do not perform well because due to the effects, or lack thereof, of multifunctionality bias6,8.

While further investigation into each study is required to delineate how multifunctionality bias is affecting 
their performance, a consistent finding across the GBA ML studies was high agreement between the studies and 
generic measures of constraint against LoF variation (Fig. 3). We have confirmed that measures of constraint 
against LoF variation are able to identify ASD genes, albeit with low precision, and that they agree with generic 
network features and annotations (Tables 3, 4; Fig. 3). Many previous studies have found ASD genes, particularly 
those with high numbers of recurrent de novo variants, to be enriched for genes under high evolutionary con-
straint, and LoF constraint has previously been reported to be positively correlated with the number of physical 
interaction partners18,19,24,26,27. From this, we can confirm that measures of constraint against LoF variation 
measure generic susceptibility to disease, and that high constraint does not automatically guarantee a particular 
disease status, necessitating incorporation with data specific to the disease at hand to increase precision26,27,42. 
Furthermore, while these measures are also correlated with numbers of interaction partners, functions and pub-
lications, they may point towards more biologically relevant information, such as the ability of a gene to influence 
different phenotypic traits, rather than number of connection partners based on network structure (“hubness”)6,8.

The implication of this analysis is that supplementing ASD-specific genetics information with measures of 
constraint may provide a more fruitful avenue forward compared to creating GBA ML methods using biased 
biological networks. We can see this already being done by the Satterstrom TADA analysis by their incorpora-
tion of the pLI and MPC into the method in attempts to provide more detailed information about variant classes 
with higher burden in ASD probands24.

In summary, our results demonstrate that despite using complex data and sophisticated algorithms, ASD 
GBA ML methods fail to outperform generic measures of disease gene likelihood such as pLI. We suspect this 
is likely to generalize to the study of other genetic disorders.

Code availability
Code and publicly available raw data re-analyzed in this work are available at https://​github.​com/​margo​tgunn​
ing/​ASDMa​chine​Learn​ing.
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