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ABSTRACT The rice-crayfish (RC) integrated breeding model is an important and
special agricultural ecosystem that provides a unique ecological environment for
exploring the microbial diversity, composition, and functional capacity. To date, little
is known about the effect of the breeding model on microbiome assembly and
breeding model-specific microbiome composition and the association of the micro-
biome with water quality and crayfish growth. In the present study, we assessed the
taxonomic shifts in gut and water microbiomes and their associations with water
quality and crayfish growth in the RC and crayfish monoculture (CM) breeding mod-
els across six time points of rice growth, including seedling (a), tillering and jointing
(b), blooming (c), filling (d), fruiting (e), and rotting of rice residues (f). Dominant
bacterial phyla, such as Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes,
were detected in both gut and water microbiomes across breeding models. Notably,
the diversity and structure of the gut and water microbiomes significantly (P ,

0.001) differed between the RC and CM models, with higher microbial diversity
being noted in the RC model than in the CM model. The taxa enriched in the RC
model included Bacillus sp., Streptomyces sp., Lactobacillus sp., Prevotella sp.,
Rhodobacter sp., Bifidobacterium sp., Akkermansia sp., and Lactococcus sp., some of
which are potentially beneficial to animals. However, opportunistic pathogens, such
as Citrobacter sp. and Aeromonas sp., were depleted in the RC model. Furthermore,
in the RC model, the enriched taxa that formed complex cooccurrence networks
showed a significant positive correlation with water quality and crayfish growth,
whereas the depleted taxa showed a significant negative correlation with water
quality and crayfish growth. These results suggest that the RC model has a better
microbiome composition and that RC model-specific microbes could play important
roles in improving crayfish growth and water quality.

IMPORTANCE The present study comprehensively compared two different breeding
models in terms of their microbiome composition and the associations of the
microbiomes with crayfish growth and water quality. RC model-specific micro-
biome composition was identified; these microbes were found to have a positive
association with water quality and crayfish growth. These results provide valuable
information for guiding microbial isolation and culture and for potentially harness-
ing the power of the microbiome to improve crayfish production and health and
water quality.
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Rice-aquatic animal (RAA) integrated breeding models, which combine agriculture
and aquaculture, have been practiced in Asian areas for over 2,000 years (1).

Compared with aquatic animal monoculture models, RAA models can comprehensively
utilize water, land, biological resources, and nutritional resources, with reduced usage
of fertilizers and pesticides (2). Previous studies and diverse practices have suggested
that RAA models can improve the environmental quality of the ecosystem (3), in addi-
tion to improving the biodiversity (4) and yield (5, 6). The rice-crayfish (RC) integrated
breeding model is a type of RAA model that originated in Louisiana, USA, several deca-
des ago (7). It has become a primary cultivation model for crayfish in the waterlogged
areas of China (8). According to the Crayfish Industry Report 2020 (http://www.moa
.gov.cn/), the RC model has been practiced in China on a 1.1-million-ha area and the
production of crayfish has been more than 1.78 million tons, accounting for 47.71% of
the total RAA model area and 85.96% of the total crayfish culture, respectively.

There are complex interactions among the crayfish, plants, microbiome, and envi-
ronment in the RC model. Of these, the microbiome plays indispensable roles in nutri-
ent cycling, biogeochemical processes, and the maintenance of host growth and
health, among others (9–11). For example, aquatic microbes play important roles in
matter and energy recycling, and some of these microbes may contribute to the reduc-
tion of eutrophication pollution (12). The gut microbiota of animals is closely related to
their health status (13–15), nutrient metabolism (14), and immune system functioning
(15). Completely understanding the microbiome composition, microbiome function,
and roles of the microbiome in host growth and environmental quality in the RC model
could help improve productivity and environmental quality during crayfish cultivation.
So far, only limited studies have focused on the microbiome in the RC model. The 16S
rRNA high-throughput sequencing approach has been used to assess the composition
and diversity of bacterial communities in crayfish gut, water, or sediment in the RC
model (16–20). Two previous studies have suggested that there was no significant dif-
ference in gut, water, and sediment microbiomes between the RC and crayfish mono-
culture (CM) models (18, 19). Zhang et al. suggested that overutilizing the RC model
can lead to the destruction of soil microbial ecology (20). However, the effect of the
breeding model on microbiome assembly and composition and the association of the
microbiome with water quality and crayfish growth remain largely unknown.

In the present study, we hypothesized that the breeding model is one of the most
important driving factors for microbiome assembly and that breeding model-specific
microbes are closely related to water quality and crayfish growth. Therefore, we used
16S rRNA gene high-throughput sequencing to comprehensively assess the response
of the microbiome of crayfish gut and associated water to breeding models. We col-
lected crayfish and water samples between two breeding models across six time points
of rice growth, including seedling (a), tillering and jointing (b), blooming (c), filling (d),
fruiting (e), and rotting of rice residues (f) (Fig. 1; see also Fig. S1 in the supplemental
material). We aimed to explore the following: (i) the diversity and structure of water
and crayfish gut microbiomes in two breeding models, (ii) the impact of the breeding
model on the water and gut microbiome assembly and functional capacity, and (iii)
the RC-specific microbes and their associations with water quality and crayfish growth.

RESULTS
Overview of gut and water microbiomes in the RC and CM models. Through 16S

rRNA gene amplicon sequencing, we conducted microbial community profiling using
29 and 28 water samples from the RC and CM models, respectively, and 28 and 25 cray-
fish gut samples from the RC and CM models, respectively (see Table S1 in the supple-
mental material). We obtained a total of 4,498,664 high-quality sequences of the 16S
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rRNA gene V3-V4 region (range 20,309 to 59,191, Table S1). These sequences were clus-
tered into 4,819 operational taxonomic units (OTUs), which were assigned to 46 bacte-
rial phyla (Table S2). Rarefaction analysis of the OTU number revealed that the
detected OTUs for both gut and water microbiomes reached a plateau, suggesting
that we had captured most of the observed OTU richness (Fig. S2). In the water sam-
ples, the dominant bacterial phyla identified between two breeding models included
Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, and Verrucomicrobia
(Fig. 2A). In the gut samples, the dominant bacterial phyla identified between two breed-
ing models across multiple time points included Firmicutes, Bacteroidetes, Tenericutes,
Proteobacteria, RsaHF231, and Actinobacteria (Fig. 2B).

Differences in microbiome structure and function between the RC and CMmodels.
The alpha diversity of water and gut microbiomes significantly differed between the RC
and CM models across multiple time points. Both water and gut microbiomes showed
significantly higher diversity in the RC model than in the CM model (P , 0.001, Fig. 3A
and B). Nonmetric multidimensional scaling (NMDS) with analysis of similarities (ANOSIM)
also revealed that the structure of water and gut microbiomes significantly differed
between the RC and CM models across multiple time points (P, 0.001, Fig. 3C and D). In
this study, the type of breeding model contributed to a higher variation in the gut micro-
biome (R = 0.423) than in the water microbiome (R = 0.200) (Fig. 3C and D). Notably, the
water samples from time point f (rotting of rice residues) were very different from others
in the RC model (Fig. 3C).

To identify the major differential taxa of water and gut microbiomes between two
breeding models, we compared the relative abundances of microbes in water and gut
samples between the RC and CM models at the phylum and OTU levels (corrected
P , 0.05, Fig. 4; see also Fig. S3 and Tables S3 to S6). In the water samples, the abun-
dances of Bacteroidetes and Verrucomicrobia were significantly lower in the RC model
than in the CM model (corrected P , 0.05, Table S3). At the OTU level, 239 OTUs of the
water microbiome were enriched in the RC model. On the other hand, 56 OTUs were
depleted in the RC model. The RC-enriched OTUs mainly belonged to the phyla
Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Chloroflexi, while the
RC-depleted OTUs mainly belonged to Proteobacteria and Bacteroidetes (Table S5). In

FIG 1 Two different breeding models for crayfish. (A) The rice-crayfish integrated breeding model (RC). (B) The crayfish monoculture breeding model (CM).
The RC model combined agriculture and aquaculture in the paddy field. In this model, mid-rice was grown with crayfish during June to October generally.
There are six developmental stages of rice, which are as follows: a, seedling of rice (generally last 2 weeks after transplant to fields from June to July); b,
tillering and jointing of rice (from July to August); c, blooming of rice (September); d, filling of rice (from September to October); e, fruiting of rice
(October); and f, rotting of rice residues (the rice residues were returned into paddy fields after harvest until the next year). During this period, crayfish
mainly lived in the ditch that surrounded the paddy field. The depth of water was regulated to satisfy the needs of rice. In the CM model, only crayfish
were cultured all year and the water depth was kept stable.
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the gut samples, the abundance of Actinobacteria was significantly higher while the
abundances of Firmicutes, Bacteroidetes, Tenericutes, and Proteobacteria were signifi-
cantly lower in the RC model than in the CM model (corrected P , 0.05, Table S4). At
the OTU level, 59 OTUs of the gut microbiome were enriched, while 31 OTUs were
depleted in the RC model. The RC-enriched OTUs mainly belonged to the phyla
Proteobacteria, Actinobacteria, Firmicutes, and Chloroflexi, while the RC-depleted OTUs
mainly belonged to Proteobacteria and Firmicutes (Fig. 4; see also Fig. S3 and Table S6).
Remarkably, several RC-enriched OTUs of the water or gut microbiome were affiliated
with microbes potentially beneficial to aquaculture (21), such as Bacillus sp.,
Streptomyces sp., Lactobacillus sp., and Lactococcus sp., while several RC-depleted OTUs
were affiliated with opportunistic crayfish pathogens (22), such as Citrobacter sp. and
Aeromonas sp. Furthermore, we constructed cooccurrence networks of both gut and
water microbiomes to explore the relationship among the RC-enriched/depleted OTUs.
The results indicated that the RC-enriched OTUs formed a much more complex net-
work with strong Spearman’s correlations than the RC-depleted OTUs (Fig. S4). One
OTU of the gut microbiome assigned to Streptomyces sp. positively correlated with
other OTUs assigned to genera belonging to Actinobacteria, such as Conexibacter sp.
One OTU of the gut microbiome assigned to Citrobacter sp. negatively correlated with
OTUs assigned to Sphingomonas sp. and uncultured Chthoniobacterales LD29 (Fig. S4
and S5).

Furthermore, we identified the indicator OTUs and keystone OTUs of water and gut
microbiomes in the RC and CM models (Fig. 5; see also Tables S7, S8, and S9). In

FIG 2 Taxonomic comparisons of gut and water microbiomes between the RC and CM models across multiple time points. (A) Phylum-level comparisons
of water microbiomes between the RC and CM models across multiple time points. (B) Phylum-level comparisons of gut microbiomes between the RC and
CM models across multiple time points.
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addition, keystone taxa of water and crayfish gut microbiomes were identified as well
(Table S9). In the water microbiome, 26 and 34 indicator OTUs were identified for the
RC and CM models, respectively. The RC-indicator OTUs of the water microbiome
mainly belonged to Proteobacteria and Firmicutes, while CM-indicator OTUs of the
water microbiome mainly belonged to Proteobacteria and Bacteroidetes (Fig. 5A; see

FIG 3 Diversity comparisons of gut and water microbiomes between the RC and CM models across multiple time points. (A) Alpha diversity comparisons
of water microbiomes between the RC and CM models across multiple time points; *, P , 0.05; **, P , 0.01; ***, P , 0.001; paired Wilcoxon rank sum test;
center value represents the median of Shannon index. (B) Alpha diversity comparisons of gut microbiome between the RC and CM models across multiple
time points; *, P , 0.05; **, P , 0.01; ***, P , 0.001; paired Wilcoxon rank sum test; center value represents the median of Shannon index. (C) Beta diversity
comparisons of water microbiome between the RC and CM models. (D) Beta diversity comparisons of gut microbiomes between the RC and CM models.
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also Table S7). In the gut microbiome, 45 and 6 indicator OTUs were identified for the
RC and CM models, respectively. The RC-indicator OTUs of the gut microbiome mainly
belonged to Proteobacteria, Actinobacteria, and Chloroflexi, while CM-indicator OTUs of
the gut microbiome mainly belonged to Firmicutes (Fig. 5B and also Table S8).

FIG 4 Relative abundances of the RC-enriched gut microbiomes at OTU level. Scale, the relative abundance of OTU at row normalization by removing
the mean (centering) and dividing by the standard deviation (scaling). The color from blue to yellow represents a relative abundance of each taxon
from low to high.
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Particularly, we found that several RC-indicator OTUs of the gut microbiome were affili-
ated with bacteria potentially beneficial to the animals (21), such as Bacillus sp.,
Streptomyces sp., Prevotella sp., Rhodobacter sp., Bifidobacterium sp., and Akkermansia
sp. At the same time, several CM-indicator OTUs were affiliated with opportunistic cray-
fish pathogens (22), such as Citrobacter sp. and Aeromonas sp. Through cooccurrence
network analysis, 6 and 23 keystone OTUs were identified from the water and gut
microbiomes, respectively. The keystone OTUs of both water and gut microbiomes did
not overlap the indicator OTUs and showed higher abundances in the RC model than
in the CM model. The keystone OTUs of the water microbiome mainly belonged to
Gammaproteobacteria, while those of the gut microbiome mainly belonged to several
classes, including Bacilli, Clostridia, and Bacteroidia (Table S9).

Across breeding models, the predicted KEGG orthologs (KOs) of gut and water
microbiomes were mainly involved in 24 KEGG level 2 pathways. Some pathways of
the gut microbiome significantly differed in abundance between the RC and CM mod-
els. For example, the abundance of pathways involved in terpenoid and polyketide me-
tabolism in the gut microbiome was significantly higher in the RC model than in the
CM model (corrected P , 0.05, Fig. 6). In both water and gut microbiomes, the abun-
dances of antibiotic synthesis-related pathways, such as those related to the synthesis
of enediyne antibiotics, tetracycline, prodigiosin, staurosporine, and ansamycins, were
significantly higher in the RC model than in the CM model. Furthermore, the abundan-
ces of antimicrobial resistance-related pathways, such as those related to cationic anti-
microbial peptide and beta-lactam resistance, were significantly lower in the RC model
than in the CM model (corrected P, 0.05, Fig. S6).

Correlation of microbes with water quality and crayfish growth. In this study,
the water physicochemical data significantly differed at different degrees between the
RC and CM models across six time points of rice growth, including seedling (a), tillering
and jointing (b), blooming (c), filling (d), fruiting (e), and rotting of rice residues (f) (the
details of water physicochemical data are given in Table S10). For example, compared
to the CM model, the concentrations of total nitrogen (TN), total phosphorus (TP), am-
monia (NH4

1-N), and nitrite (NO2
2-N) in the RC model were significantly higher at time

point a (seedling of rice) but lower at other time points (b, c, d, e, and f) (P , 0.05, Fig.
S7). Similarly, the crayfish growth data significantly differed at different degrees
between the RC and CM models across six time points of rice growth (the details of
growth data are given in Table S11). For example, the total length (TL) and total weight

FIG 5 Cooccurrence patterns of indicator OTUs for water (A) and gut (B) microbiomes. Cooccurrence networks visualizing
significant correlations (r . 0.7, P , 0.001; indicated with gray lines) between OTUs. OTUs are colored by their association with
the different breeding models (red and blue OTUs are indicator OTUs for the RC and CM models, respectively; gray OTUs are
nonindicator OTUs for breeding models).
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(TW) of crayfish were significantly higher in the RC model than in the CM model at all
time points, except for time point a (seedling of rice) (P, 0.05, Fig. 7).

Next, we assessed the associations of water physicochemical data and crayfish
growth data with their respective microbiomes. Both types of data were significantly cor-
related with their respective microbiomes, suggesting that these factors affected the
water and gut microbiome assembly (P , 0.05, Tables S12 and S13). Furthermore, we
assessed the associations of water physicochemical data and of crayfish growth data
with RC-enriched/depleted OTUs. In the water microbiome, RC-enriched OTUs showed a
significant negative correlation with the TN concentration, TP concentration, and pH,
while most RC-depleted OTUs showed a significant positive correlation with the TN con-
centration and negative correlation with the TP concentration. Specifically, RC-enriched
OTUs belonging to Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria
showed a significant negative correlation with the TN concentration, while RC-depleted
OTUs belonging to Bacteroidetes, Proteobacteria, and Verrucomicrobia showed a signifi-
cant positive correlation with the TN concentration (P , 0.05, Fig. S8). In the gut micro-
biome, most RC-enriched OTUs showed a significant positive correlation with crayfish
growth, while most RC-depleted OTUs showed a significant negative correlation with cray-
fish growth. Specifically, RC-enriched OTUs belonging to Streptomyces sp., Conexibacter
sp., Clostridium sp., and Lactococcus sp. showed a significant positive correlation with cray-
fish growth, while the RC-depleted OTU belonging to Citrobacter sp. showed a significant
negative correlation with crayfish growth (P, 0.05, Fig. 8).

In addition, indicator and keystone OTUs of the water microbiome showed a signifi-
cant association with the water physicochemical data, and those of the gut micro-
biome showed a significant association with the crayfish growth data (P , 0.05, Fig.
S9). For example, keystone OTUs of the water microbiome that had higher abundances
in the RC model than in the CM model showed a significant negative correlation with
the TN concentration, TP concentration, and pH. Indicator OTUs of the water micro-
biome showed a significant negative correlation with the NO2

2-N concentration in the

FIG 6 Comparison of the functional KEGG level 2 pathways of gut microbiomes between the RC and CM models. The center value
represents the median of the relative abundance. *, P , 0.05; **, P , 0.01; ***, P , 0.001. P value was generated using paired DESeq2.
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RC model but a significant positive correlation with the NO2
2-N concentration in the

CM model (Fig. S9A). Moreover, RC-indicator OTUs of the gut microbiome showed a
significant positive correlation with crayfish growth. Specifically, RC-indicator OTUs
belonging to Streptomyces sp., Prevotella sp., and Bifidobacterium sp. showed a signifi-
cant positive correlation with crayfish growth (Fig. S9B).

DISCUSSION

In the present study, we found that several bacterial phyla, such as Proteobacteria,
Actinobacteria, Bacteroidetes, and Firmicutes, were dominant in both gut and water
microbiomes of two breeding models. These findings are similar to previous findings
in microbiomes of rearing water and guts of other crustaceans (16–20). Compared to
the CM model, the diversity and community structure of both gut and water micro-
biomes were significantly different in the RC model, suggesting that the breeding
model may affect the microbiome assembly of crayfish gut and water. However, these
findings were not consistent with the previous study, in which water, sediment, and
crayfish samples from a single time point were collected, and no statistically significant
differences of microbiome diversity and structure between the RC and CM models
were found (19). Due to the different environment status of the RC model at different
times, we supposed that the sampling time could be a reasonable factor causing the
different results. Numbers of studies have reported a variable microbiome structure at
different sampling times (21–23). Also, our results showed a fluctuating diversity and
structure of both water and gut microbiomes across six sampling times. Therefore, we
used a multiple-time-point sampling strategy to comprehensively capture the micro-
biome for the RC and CM models.

Many factors may contribute to the microbial differences between these two breed-
ing models. Nutrients are one of the most important factors that shape microbiome

FIG 7 Phenotype comparisons of crayfish between the RC and CM models. (A) Total length (TL); (B) total weight (TW); (C) abdomen length (AbL); (D)
abdomen weight (AbW); (E) carapace length (CL). *, P , 0.05; **, P , 0.01; ***, P , 0.001. P value was generated using paired ANOVA and Tukey HSD
method; center value represents the median of data for each phenotype.
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FIG 8 The correlation between phenotypes and gut microbiome. Orange denotes positive Spearman correlation, while blue
denotes negative Spearman correlation. An asterisk denotes P , 0.01; a plus sign denotes P , 0.05. TL, total length; TW, total
weight; AbL, abdomen length; AbW, abdomen weight; CL, carapace length.
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structure (24). More plant-derived nutrients for microbes, such as fibers, have been
reported in the RC model than in the CM model (23, 24). Fiber is a good source of
microbiota-accessible carbohydrates, which can be utilized by microbes and can
increase microbial diversity (25). Thus, the higher diversity of both water and gut
microbiomes in the RC model may partially be explained by the higher fiber content.
Consistent with this finding, the structure of both gut and water microbiomes in the
RC model at time point f significantly differed from that at other time points because
of the organic fertilizer from the rice residues (24). Some members of Actinobacteria
that contribute significantly to the turnover of complex biopolymers and decomposi-
tion of organic matter (25, 26) had higher abundance in the RC model than in the CM
model. Moreover, gut microbes positively correlated with fiber intake (27), such as
Ruminococcaceae sp., Bifidobacteria sp., and lactic acid bacteria (28), were more abun-
dant in the RC model than in the CM model. Consistent with the finding that plant-
derived nutrients contain diverse terpenoids (29), the functional traits of gut microbes
involved in terpenoid metabolism were found to be enriched in the RC model. In the
RC model, more nitrogen sources are required for rice growth. Besides artificial nitro-
gen sources, microbes can help plants to generate nitrogen sources from the environ-
ment (30). Accordingly, some members of Cyanobacteria involved in nitrogen fixation
(31) were found to be enriched in the water microbiome in the RC model. In addition,
some members of Chloroflexi involved in nitrification (32) and Bacillus sp. involved in
ammonification (33) had a higher abundance in the water microbiome in the RC model
than in the CM model. Sediment that contained organic matter and nitrogen has been
suggested as another important factor that may affect microbiome composition (34,
35). In the future, we need to collect the physicochemical factors and microbiome of
sediment across multiple times to further study the effect of sediment on the micro-
biome assembly of the RC model.

As a typical rice-aquatic animal breeding model, the RC model can increase the
environmental quality of the ecosystem (36), in addition to improving the biodiver-
sity (37) and productivity (38). In the present study, we found that crayfish growth
and water quality were better in the RC model than in the CM model. The micro-
biome is considered to play very important roles in sustainable aquatic breeding
models, e.g., nutrient transformation and the promotion of animal growth and
health (9–11). The diversity in both water and gut microbiomes was higher in the RC
model than in the CM model. In addition, more complex species interactions of
water and gut microbiomes were found in the RC model. RC-enriched microbes
showed a significant correlation with each other and formed a much more complex
network than RC-depleted microbes. According to the insurance hypothesis, biodi-
versity insures ecosystems against declines in their functioning because more spe-
cies provide greater guarantees that some will maintain functioning even if others
fail (39). Species interactions may affect community structure and drive the stability
in microbial ecology (40). Thus, these results indicate that the RC model had a more
stable microbiome structure, which could enhance biodiversity and stability of the
agroecosystem (41–43). Several microbes potentially beneficial to animals (44), such
as Bacillus sp., Streptomyces sp., Lactobacillus sp., Prevotella sp., Rhodobacter sp.,
Bifidobacterium sp., Akkermansia sp., and Lactococcus sp., were enriched in the RC
model and positively correlated with other enriched microbes, such as those
belonging to Actinobacteria. In contrast, several opportunistic crayfish pathogens
(45), such as Citrobacter sp. and Aeromonas sp., were depleted in the RC model and
negatively correlated with other enriched microbes. Importantly, microbes enriched
in the RC model, including those potentially beneficial to animals, showed a signifi-
cant positive correlation with crayfish growth, suggesting that these microbes can
promote the growth and health of crayfish. At the same time, microbes depleted in
the RC model, including opportunistic pathogens, showed a significant negative
association with crayfish growth, further suggesting that the RC model shaped a
much more stable and healthier microbial community.
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In aquatic animal monoculture systems, water quality eventually decreases. For
example, the concentrations of ammonia, nitrite, and phosphorus increase and the
oxygen level decreases, becoming toxic to aquatic animals (46, 47). Although artificial
nitrogen and phosphorus fertilizers were added for rice growth in the RC model, we
found that the ammonia, nitrite, and phosphorus concentrations were lower in the
water samples of the RC model than in those of the CM model, suggesting that the
water quality in the RC model was better. Microbes may play important roles in the trans-
formation of nitrogen and phosphorus, which were used for rice growth in the RC model
(48). Consistent with this, we found that members of Cyanobacteria involved in nitrogen
fixation and oxygen synthesis and those of Chloroflexi involved in nitrification were
enriched in the RC model. Furthermore, in the RC model, enriched microbes in water
samples showed a significant negative correlation with the TN and TP concentra-
tions, while most depleted microbes showed a significant positive correlation with
the TN concentration. In addition, Streptomyces sp. (49) and Bacillus sp. (33) can
modulate a wide range of water quality parameters in aquaculture systems, includ-
ing transparency, total dissolved solids, pH, conductivity, chemical oxygen demand,
dissolved oxygen, biological oxygen demand, alkalinity, phosphates, nitrogenous spe-
cies, and hardness, and these were enriched in the RC model. Antibiotics have been over-
used and have caused antibiotic resistance in aquatic animal monoculture systems (50).
Compared with the CM model, antibiotic synthesis-related genes were enriched and anti-
biotic resistance-related genes were depleted in the RC model, implying that the RC
model bears a lower burden of antibiotic resistance. These results suggest that the RC
model can shape a better microbial ecosystem than the CM model and that RC model-
specific microbes can play important roles in improving crayfish growth and water qual-
ity. In the future, RC model-specific microbes can be used as targets for interventional
studies in order to assess their role in crayfish productivity and health and in maintaining
water quality.

In summary, we identified breeding model-specific microbiome composition and its
association with crayfish growth and water quality. The identification of RC model-spe-
cific gut and water microbiomes and their strong association with crayfish growth and
water quality suggest that these microbes could be used as targets for future micro-
biome engineering. However, we only unraveled the identity of these microbes and
their association with crayfish growth and water quality in two crayfish breeding mod-
els; this information is not sufficient to fully understand the microbial function and
mechanism for microbiome engineering. In future studies, we need to investigate the
potential of these microbes and the roles they play and to identify the causal relation-
ship among the microbiome, host, and environment using multi-omics approaches,
including metagenomic, metatranscriptomic, metaproteomic, and metametabolomic
analyses and the study of culturable members of the community. In the long run, syn-
thetic communities, as well as genome editing of specific host genes, can be used to
address critical issues in sustainable aquatic culture systems, e.g., for protecting hosts
against pathogens or biofertilization.

MATERIALS ANDMETHODS
Experimental design and model management. The experiment was conducted on the up-to-5-

year test ground in a waterlogged area during the periods from June to December of 2019 in Yangxin
County, Hubei Province (114°589E, 29°47'N). This region has a subtropical monsoon climate, with an av-
erage annual rainfall of 1,389.6 mm. To ensure consistency in the experimental conditions, we selected
three representative standardized RC and CM ponds/fields with an average area of 2.4 � 104 m2 within
the same station (see Fig. S1 in the supplemental material). All the irrigation and aquaculture water was
pumped from the same river.

The RC ponds/fields consist of a center paddy and a surrounding ditch. The ditch is 3.0 to 4.0 m
wide and 1.5 to 2.0 m deep. Nylon nets with heights of 0.3 to 0.5 m were placed around the outer banks
to prevent the escape of the crayfish. In the RC model, crayfish were mainly cultured in two seasons. In
the first season (March to June), about 300 kg/ha crayfish larvae (approximately 5 g of each) was added
in March, and commercial feeds were fed once a day. Mature crayfish were harvested over April to June.
Mid-rice (glutinous) was planted on 20 June 2019 and harvested on 25 October 2019. Before rice plant-
ing, 300 kg/ha chemical fertilizer (N:P:K, 17:13:15) was applied to the RC model without further
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application of pesticides and other fertilizers for rice growth. The water depth decreased in the center
field due to drainage of the paddy. Then, crayfish migrated to the ditch and mated in the ditch. During
the second season (June to October), no crayfish larvae were added at the beginning due to crayfish
self-propagation inside the paddies, and commercial feeds and soybean were added twice a week.
Mature crayfish were harvested at the beginning of August. Compared with the first season, fewer
mature crayfish were harvested in the second season. After rice harvesting, all the rice residues were
returned to the paddy fields and the center fields were flooded with about 30- to 50-cm-deep water.
Thereafter, crayfish returned to the paddy along with the irrigation water. Crayfish self-propagated
inside the paddies, so that soybean and corn were added as supplements once a week from November
to the following February.

In the CM model, crayfish were mainly cultured in two seasons as well. In the first season (March to
June), the management process, such as stocking density and feeding trial, was similar to the RC model. In
the second season (June to October), about 225 kg/ha crayfish larvae (approximately 5 g of each) was
added in June, and mature crayfish were harvested at the beginning of August. The stocking density of
crayfish was controlled by removing or adding crayfish in both the RC and CMmodels for all the seasons.

Water microbial collection and physicochemical parameter determination. Water samples were
collected from each pond/field across multiple time points. At each time point, 2 L of water was taken
from the surface (10 to 20 cm), middle (50 to 60 cm), and bottom (120 to 130 cm) at each sampling
spot (only surface water was taken from the spot at the center paddy in the RC model), mixed into
one sample (10 L), and then prefiltered with 100-mm nylon mesh to reduce impurities. Following this,
500 mL of mixed water was sequentially filtered through a 0.22-mm polycarbonate membrane
(Millipore, Merck) to collect the water microbes. Two technical replicates were designed for each
pond/field. The filters that contained water microbes were immediately placed in sterile 10-mL centri-
fuge tubes with labels for DNA extraction. All the samples were immediately stored at 280°C until
DNA extraction. In total, we obtained 36 water samples from 3 CM ponds and 36 water samples from
3 RC ponds.

In addition, we determined the physicochemical data for water samples according to the method of
Hou et al. (51), including water temperature (WT), pH, total nitrogen (TN), total phosphorus (TP), ammo-
nia nitrogen (NH4

1-N), and nitrite nitrogen (NO2-N) (see Table S6 in the supplemental material). Briefly,
WT and pH were measured using a portable logging multiparameter water quality meter (YSI
Professional Plus). TN was measured using the alkaline potassium persulfate digestion-UV spectrophoto-
metric method. TP was determined using the ammonium molybdate-UV spectrophotometry method.
NH4

1-N was determined using the Nessler reagent UV spectrophotometry method. NO2-N was deter-
mined using the N-(1-naphthyl)-ethylenediamine spectrophotometry method.

Crayfish gut microbial collection and phenotype recordation. Crayfish were randomly recaptured,
and eight healthy mature crayfish were selected and pooled into two technical replicates for each pond/
field across multiple time points. To assess crayfish growth, we determined and recorded the phenotype
of each crayfish, including the total length (TL), total weight (TW), abdominal length (AbL), abdominal
weight (AbW), and carapace length (CL) (Table S11).

After recording the phenotype of each crayfish, we collected the gut microbes according to the
method in reference 52. All crayfish dissections were performed under sterile conditions. Surgical tools
were sterilized using 75% ethanol and flamed prior to use and between incisions. The body surface of
each crayfish was sterilized with 75% ethanol 3 times. Then, the guts of these crayfish were collected
and pooled into sterile 10-mL centrifuge tubes with labels. Next, these gut samples were ground in a
sterile grinder to collect gut microbes. All the samples were immediately stored at 280°C until DNA
extraction. In total, we obtained 36 crayfish gut samples from 3 RC ponds and 30 crayfish gut samples
from 3 CM ponds (no gut samples were collected at time point f due to the small size of crayfish at this
time point in the CM ponds).

DNA extraction and amplicon sequencing. The total genomic DNA for each sample was extracted
using the Universal Genomic DNA kit (Omega, USA) according to the manufacturer’s instructions with
some modifications. The quality and quantity of isolated DNA were measured using a NanoDrop 2000
spectrophotometer (Thermo, USA). In total, 53 gut samples and 57 water samples were successful for
16S amplicon sequencing (Table S1). The V3-V4 hypervariable regions of the 16S rRNA genes were
PCR amplified from a DNA aliquot of the water and gut samples using the forward primer 338F (59-
ACTCCTACGGGAGGCAGCAG-39) and the reverse primer 806R (59-GGACTACNNGGGTATCTAAT-39) (53).
To minimize reaction-level PCR bias, 10 ng of the purified DNA template from each sample was ampli-
fied with a 20-mL reaction system. See the supplemental material (Table S15) for details of PCR cycling
conditions. 16S rRNA gene amplicon library preparation and sequencing were performed according to
the manufacturer’s protocol at Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China. After quality
control, quantification, and normalization of the DNA libraries, 250-bp paired-end (PE) reads were gen-
erated from the Illumina MiSeq PE300 platform according to the manufacturer’s instructions with
modifications. More than 20,000 clean reads were generated for each amplicon sample.

16S rRNA gene amplicon data analysis. The raw PE reads were quality controlled by removing
adaptor and primer sequences, trimming, and removing low-quality reads (reads with N bases and a
minimum quality threshold of 20). The high-quality PE reads were merged using FLASH software with
the default setting (54). The merged sequences were clustered into OTUs with at least 97% sequence
similarity using the UPARSE pipeline (55). Chimaeras sequences were removed by applying USEARCH
(56) against the SILVA database V132.0 database (57). To obtain the taxonomic information of the OTUs,
representative sequences of each OTU were generated and aligned against the SILVA V132.0 database
(57) using the RDP classifier (58). The OTUs and merged sequences which were defined as unknown,
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chloroplast, mitochondria, plants, or animals were removed. The relative abundance tables for taxa were
generated based on the read count for each taxon across samples by using the total-sum scaling (TSS)
method (59). To normalize the sequencing depth, the OTU table was rarefied with the least sequences
(the sequences with total number of .20, and .5 of 3 samples were held) in QIIME V1.9.1 (60) for fur-
ther analyses (61). After normalization, 15,756 reads were left per sample.

Microbial functional prediction. Microbial function prediction was performed using the PICRUSt2
(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, V2.1.0-b) software
(62). The obtained OTU abundance table was normalized by 16S rRNA copy numbers, and metagenomic
function prediction was executed by predict metagenomes.py using the KEGG (Kyoto Encyclopedia of
Genes and Genomes) database (63). The abundance table of KEGG orthologs (KOs) was generated based
on multiple normalized OTU abundance and their predicted functional traits. The abundance table of
KEGG level 2 and level 3 pathways was obtained based on the abundance of each KO and its pathway
annotation.

Comparison analysis across two breeding models. Alpha diversity was calculated for each sample
using the Shannon and Sobs index (59). The significant differences in alpha diversity between two
breeding models were determined using paired Wilcoxon rank sum test (64). The taxonomic dissimilarity
analysis between samples (beta diversity) was performed using the nonmetric multidimensional scaling
(NMDS) with analysis of similarities (ANOSIM) method (60) based on unweighted UniFrac distances (61).
The associations of crayfish phenotypes or water physicochemical features with their overall micro-
biomes were determined using permutational multivariate analysis of variance (PERMANOVA) with 999
permutations in the R package VEGAN (65). Based on the abundance profiles, the microbial features
(OTUs, phyla, and KEGG leve1 2 and level 3 pathways and KOs) with significantly differential abundances
between two breeding models were determined using paired DESeq2 (66) with a negative binomial
generalized linear model. The read count matrix for DESeq2 testing was normalized using the DESeqVS
method (59). The significant differences in water physicochemical features and crayfish phenotypes
between two breeding models were determined using paired ANOVA and Tukey honestly significant dif-
ference (HSD) method (67). P values for multiple testing were corrected using the Benjamini-Hochberg
(BH) method (68). The RC-enriched (abundance significantly higher than that in the CM model) or the
RC-depleted (abundance significantly lower than that in the CM model) microbes were determined
based on the corrected P , 0.05. The relative abundances of the RC-enriched or the RC-depleted taxa
and functional traits are shown using the Pheatmap package in R software (69). To demonstrate a clear
RC-enriched/depleted pattern, the relative abundance of each taxon or functional trait was normalized
by removing the mean (centering) and dividing by the standard deviation (scaling). Based on the log2

fold change of abundance for the enriched and depleted OTUs between the RC and CM samples, the
pairwise Spearman correlation coefficient (r ) values were calculated. Correlations between two items
were considered statistically robust only if jr j was $0.6 and P was ,0.05. The cooccurrence network
was visualized using Cytoscape 3.4.0 (70).

The indicator and keystone OTUs of gut and water microbiomes for the RC or CM model were
determined according to the methods described by Hartman et al. (71). Briefly, the indicator OTUs
were identified using both the indicspecies and edgeR methods from the R package (71). Then, we
constructed cooccurrence networks for indicator species based on Spearman rank correlations
between OTUs and visualized the positive, significant correlations (r . 0.7 and P , 0.001). The net-
works were visualized with the Fruchterman-Reingold layout with 100 permutations using the igraph
package in R software (69). We identified keystone OTUs separately for the water and gut microbiome
networks and defined them as those nodes within the top 1% of node degree values of each network.
The correlations of crayfish phenotypes or water physicochemical features with microbes (the RC-
enriched/depleted OTUs and indicator and keystone OTUs) were determined using Spearman’s rank
correlation and were shown with a color gradient denoting Spearman’s correlation coefficients using
a heatmap.

Data availability. The raw sequence data of 16S amplicon sequencing were deposited into the
Sequence Read Archive of NCBI (accession number PRJNA716552).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 2 MB.
SUPPLEMENTAL FILE 2, XLSX file, 1.8 MB.
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