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Hemorrhage stroke is a severe vascular disease of the brain with a high mortality rate in
humans. Salvia miltiorrhiza Bunge (Danshen) is a well-known Chinese Materia Medica for
treating cerebral vascular and cardiovascular diseases in traditional Chinese medicine.
Sodium tanshinone IIA sulfonate (STS) is a water-soluble derivative of tanshinone IIA,
which is the main active ingredient of Danshen. In our previous study, we established a
zebrafish model of cerebral hemorrhage and found that STS dramatically decreased both
the hemorrhage rate and hemorrhage area, although the underlying mechanism was not
fully elucidated. We conducted a transcriptome analysis of the protective effect of STS
against atorvastatin (Ator)-induced cerebral hemorrhage in zebrafish using RNA-seq
technology. RNA-seq revealed 207 DEGs between the Ator-treated group and control
group; the expression levels of 53 DEGs between the Ator-treated group and control
group were reversed between the STS + Ator-treated group and Ator-treated group. GO
enrichment analysis indicated that these 53 DEGs encode proteins with roles in
hemoglobin complexes, oxygen carrier activity and oxygen binding, etc. KEGG analysis
suggested that these 53 DEGs were most enriched in three items, namely, porphyrin and
chlorophyll metabolism, ferroptosis, and the HIF-1 signaling pathway. The PPI network
analysis identified 12 hub genes, and we further verified that Ator elevated the mRNA
expression levels of hemoglobin (hbae1.3, hbae3, hbae5, hbbe2, and hbbe3), carbonic
anhydrase (cahz), HIF-1 (hif1al2) and Na+/H+ exchanger (slc4a1a and slc9a1) genes,
while STS significantly suppressed these genes. In addition, we found that
pharmacological inhibition of PI3K/Akt, MAPKs, and mTOR signaling pathways by
specific inhibitors partially attenuated the protective effect of STS against Ator-induced
cerebral hemorrhage in zebrafish, regardless of mTOR inhibition. We concluded that
hemoglobin, carbonic anhydrase, Na+/H+ exchanger and HIF-1 genes might be potential
biomarkers of Ator-induced cerebral hemorrhage in zebrafish, as well as pharmacological
in.org October 2020 | Volume 11 | Article 5517451
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targets of STS. Moreover, HIF-1 and its regulators, i.e., the PI3K/Akt and MAPK signaling
pathways, were involved in the protective effect of STS against Ator-induced cerebral
hemorrhage. This study also provided evidence of biomarkers involved in hemorrhage
stroke and improved understanding of the effects of HMG-COA reductase inhibition on
vascular permeability and cerebral hemorrhage.
Keywords: sodium tanshinone IIA sulfonate, cerebral hemorrhage, atorvastatin, hypoxia-inducible factor 1,
hemoglobin, carbonic anhydrase, Na+/H+ exchanger, traditional Chinese medicine
INTRODUCTION

Hemorrhage stroke, which is one of the most severe vascular
diseases of the brain, is the second most common type of stroke
after ischemic stroke and has a high mortality (Leclerc et al.,
or, atorvastatin; CAM, cell adhesion
Drug Administration; cGMP, cyclic
salvia miltiorrhiza Bunge; DMSO,
essed gene; FDR, false discovery rate;
ible factor-1; HMG-COA, 3-hydroxy-
Kyoto Encyclopedia of Genes and
in kinase; mTOR, mammalian target
l 3-kinase; PKG, cGMP-dependent
raction; RNA-seq, RNA sequencing;
hinone IIA sulfonate.
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2015). Hypertension is the most important risk factor of
hemorrhage stroke (Garg and Biller, 2019), although current
smoking, as well as other conditions including atherosclerosis
and hyperlipidemia, severely damage vascular function and
integrity and also increase the morbidity of hemorrhage stroke
(An et al., 2017). Disruption of vascular integrity and function is
the essential pathological feature of hemorrhage stroke (Yan
et al., 2013; Keep et al., 2014). Blood leaked from ruptured vessel
causes inflammation, perihematomal edema and neuronal in
brain tissue (Aronowski and Zhao, 2011). Hemorrhagic stroke
leads to poor functional outcomes in patients who survive, and
mortality and brain injury are significantly correlated with the
location and volume of the blood bleeding into the brain and the
subsequent hematoma growth (Gioia et al., 2015). Drugs with
satisfactory therapeutic effects for hemorrhage stroke have not
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yet been developed. Maintaining vascular function and
preventing injury might be important for hemorrhage stroke
treatment and prevention.

Sodium tanshinone IIA sulfonate (STS) is a water-soluble
derivative of tanshinone IIA (Tan IIA), which is the main active
component isolated from Chinese Materia Medica Salvia
miltiorrhiza Bunge (Wang, 2010) (Figures 1A, B). STS
injection has been approved by the China State Food and
Drug Administration (CFDA) for the treatment of
cardiovascular diseases, including coronary heart disease,
myocardial infarction, and angina (Yang et al., 2009). Recent
studies indicated that STS exerts multiple pharmacological
activities and could also have the potential for management of
ischemia stroke, cardiac hypertrophy, and pulmonary
hypertension (Takahashi et al., 2002; Wang et al., 2013; Ji
et al., 2017; Zhou et al., 2019c). In our previous study (Zhou
et al., 2018), STS significantly decreased both the hemorrhage
rate and area in zebrafish in a dose-dependent manner, while
STS did not cause toxicity up in zebrafish to 300 µM (Figure
1C). STS ameliorated locomotion dysfunction in cerebral
hemorrhage zebrafish. The underlying mechanism of action of
STS was associated with the maintenance of vascular integrity
and cytoskeleton remolding. However, potential biomarkers of
Ator-induced cerebral hemorrhage, and the underlying
mechanisms of the hemorrhage stroke-protective effect of STS,
were not well elucidated.

Thus, in the present study, we investigated the potential
biomarkers and underlying mechanisms of STS against Ator-
induced cerebral hemorrhage in zebrafish via transcriptome
profile analysis and RNA-seq technology.
Frontiers in Pharmacology | www.frontiersin.org 3
MATERIALS AND METHODS

Chemicals and Reagents
Atorvastatin (Ator) and 3-aminobenzoate methanesulfonate salt
(MS-222) were supplied by Sigma (St Louis, MO, USA). Sodium
tanshinone IIA sulfonate (STS) was purchased from Chengdu
MUST Biotechnology (Chengdu, China), and the purity is HPLC
≥ 92%. The real-time PCR kits were from Roche Life Science
(Mannheim, Germany). LY294002, Wortmannin, U0126,
Rapamycin, FR 180204, SP600125, and SB239063 were purchased
from Beyotime Technology (Shanghai, China). Akt inhibitor IV
was obtained from Calbiochem (Darmstadt, Germany). All the
chemicals were dissolved in dimethylsulfoxide (DMSO).

Zebrafish Maintenance and
Embryos Collection
Zebrafish were maintained as described in the 4th edition of The
Zebrafish Book: A guide for the laboratory use of zebrafish Danio
(Brachydanio) rerio by Monte Westerfield, Institute of
Neuroscience, University of Oregon. In brief, the zebrafish were
maintained under a 14-h/10-h light dark cycle and standard
conditions. The fishes were fed twice a day with brine shrimp
and, occasionally, normal tropical fish food. Zebrafish embryos
were generated by natural pairwise mating and collected within 1 h.
Embryos were raised in culture media and incubated in a petri dish
at 28.5°C. The zebrafish embryos were anaesthetized by MS-222.

Drug Treatment
After 24-h incubation, the embryos were dechorionated with a pair
of sharp forceps, and any dead, unfertilized, or abnormal embryos
were discarded. Embryos were distributed into six-well plates with
A B

C

FIGURE 1 | Sodium tanshinone IIA sulfonate (STS) protected against atorvastatin (Ator)-induced cerebral hemorrhage in zebrafish. (A) STS, PubChem CID:
23669322. (B) Tan IIA, PubChem CID: 164676. (C) The transgenic zebrafish line Tg(gata1: dsRed) expressed red fluorescence in blood cells and was employed for
observation of Ator-induced cerebral hemorrhage, and the protective effect of STS. One day post-fertilization (1 dpf), zebrafish embryos were treated with STS (100
µM), with or without Ator (2 µM), for 24 h, followed by observation of cerebral hemorrhage under a fluorescence microscope. The white square indicates the region
of cerebral hemorrhage in the zebrafish head.
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40 embryos per group, depending on the assay. One day post-
fertilization embryos (1 dpf) were treated with STS (100 µM), with
or without Ator (2 µM), for 24 h. Zebrafish embryos treated with E3
buffer containing 1% DMSO was served as the control group. The
Tübingen (TU) strain zebrafish was used for transcriptome analysis,
while the transgenic zebrafish line Tg(gata1: dsRed) was used for
cerebral hemorrhage observation. For evaluation of the inhibition of
the PI3K/Akt, mTOR and MAPK signaling pathways, as a
protective effect of STS against cerebral hemorrhage, various
concentrations (0.3, 1, and 3 µM) of LY294002, rapamycin,
wortmannin, Akt inhibitor IV (Akti), U0126 (MEKi), FR 180204
(ERKi), SP600125 (JNKi), or SB239063 (P38i) were co-treated with
Ator (2 µM) and STS (100 µM) for 24 h in zebrafish. Cerebral
hemorrhage was observed under a fluorescence microscope and the
cerebral hemorrhage rate was calculated.
RNA Extraction, Library Construction
and Sequencing
After drug treatment, the heads of zebrafish embryos were
harvested (three samples per group). The total RNA of each
sample was extracted using TriPure isolation reagent (Roche).
The quality of the RNA was measured by the Agilent 2100
Bioanalyzer with the RNA 6000 Nano Kit (Agilent, Santa Clara,
CA, USA) the RNA concentration, RIN value, ratio of 28S to 18S,
and fragment length distribution were analyzed. Construction of
the sequencing library and RNA sequencing were performed by
BGI (Shenzhen, China) using the BGISEQ-500 Platform.

Reads Mapping and Identification of
Differentially Expressed Genes
The SOAPnuke analysis tool (v1.5.2; parameters: -l 15 -q 0.2 -n
0.05) was used to measure the sequence quality and filter low-
quality reads, i.e., those having quality scores lower than 20; finally,
clean reads were obtained in FASTQ format. HISAT2 (v2.0.4;
parameters: -p 8 –phred64 –sensitive -I 1 -X 1000) was employed
to map the clean reads to the zebrafish (Danio rerio) reference
genome NCBI_GRCz11. Then, clean reads were mapped to the
reference transcript using Bowtie2 (v2.2.5; parameters: -q –phred64
–sensitive –dpad 0 –gbar 99999999 –mp 1,1 –np 1 –score-min L,0,-
0.1 -p 16 -k 200) and the gene expression values were calculated by
RSEM (v1.2.12; parameters: default). The differentially expressed
genes (DEGs) were detected by DEGseq2 software according to the
parameters of fold change ≥ 2 and adjusted p value < 0.05.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analyses of DEGs
The Gene Ontology (GO) annotation results for the DEGS were
classified, including in terms of the molecular function, cellular
component and biological process. The GO enrichment analysis
of DEGs was conducted via the phyper R package. The false
discovery rate (FDR) was calculated for each GO item and an
FDR ≤ 0.01 was defined as significantly enriched. The same
method was used to annotate and enrich the Kyoto Encyclopedia
of Genes and Genomes (KEGG) metabolic pathways analysis
of DEGs.
Frontiers in Pharmacology | www.frontiersin.org 4
Protein-Protein Interaction Network
Analysis of DEGs
Cytoscape software and its applications, including DIAMOND
(v0.8.310) and STRING (v10), were used to analyze the protein-
protein interaction (PPI) network. Genes with scores ≥ 300
were graphed.

Total RNA Extraction and RT-PCR
Analysis
Total RNA was extracted from 40 zebrafish embryo heads in
each treatment group using the TriPure Isolation Reagent
(Roche). RNA was reverse-transcribed to single-strand cDNA
using the cDNA Synthesis System for RT-PCR (Roche), followed
by real-time PCR using SYBGREEN PCRMaster Mix (Roche) on
the Light Cycle 96 Real-Time PCR System (LC96; Roche). The
PCR conditions were as follows: 95°C for 30 s, followed by 45
cycles of 95°C for 5 s and 60°C for 10 s. The mRNA expression
level of each gene was normalized to the amount of GAPDH,
which served as internal control. The sequences of primers used
in real-time PCR are listed in Table S1. The 2-DDCt relative
quantification method was used for the data analysis.

Statistical Analysis
Data were expressed as mean ± S.E.M. with at least three
independent experiments and analyzed by Graph Pad Prism
software (version 5.0). Student’s t-test was used to evaluate the
significant difference between two groups, and p < 0.05 was
considered significant.
RESULTS

Transcriptome Profile of STS and Ator-
Treated Zebrafish Generated by RNA-Seq
The STS obviously prevented Ator-induced cerebral hemorrhage
in zebrafish (Figure 1C). To determine the underlying
mechanism of the protective effect of STS against Ator-induced
cerebral hemorrhage, we isolated mRNA from the control, Ator,
and Ator + STS treatment groups, followed by transcriptome
analysis using RNA-seq. Approximately 78.05% sequences
matched with annotated genes in the databases and 25,858
genes were detected in total; 207 DEGs were subsequently
identified between the Ator-treated group and control group
according to the criteria of fold change ≥ 2 and p value < 0.05.
Ator induced the up-regulation of 61 DEGs and down-regulation
of 146 DEGs. Consistent with this, 346 DEGs were identified
between the Ator + STS group and Ator group, where the
expression levels of 138 genes were upregulated and those of
208 genes were downregulated.

Identification of Potential Biomarkers of
Ator-Induced Cerebral Hemorrhage
in Zebrafish
The 207 DEGs between the Ator-treated group and control
group were enriched in 36 different GO terms. The 20 most
important terms were selected, several of which were associated
October 2020 | Volume 11 | Article 551745

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Zhou et al. Transcriptome Analysis of STS Protect
with erythrocyte homeostasis, oxygen transportation, and
metabolism, such as hemoglobin complex, oxygen carrier
activity, and oxygen binding, etc. (Figure 2A). In addition,
KEGG pathway analysis was used to match these DEGs to
physiological processes involved in Ator-induced zebrafish
cerebral hemorrhage. Ator treatment affected various signaling
pathways, cell metabolism and cell components, including
porphyrin and chlorophyll metabolism, ferroptosis, the HIF-1
signaling pathway, the citrate cycle, the cGMP-PKG signaling
pathway, cell adhesion molecules (CAMs), etc. (Figure 2B). PPI
network analysis of the DEGs was used to identify the hub genes
most related to Ator-induced zebrafish cerebral hemorrhage
(Figure 2C). We identified 19 hub genes encoding proteins
like hemoglobin and hypoxia-inducible factor 1 a (HIF-1a),
etc. based on the criteria of interaction with ≥3 other genes that
might be potential biomarkers of Ator-induced cerebral
hemorrhage in zebrafish (Table S2).

Identification of Potential Genes Involved
in the Protective Effect of STS Against
Ator-Induced Cerebral Hemorrhage in
Zebrafish
Regarding potential genes involved in the protective effect of STS
against cerebral hemorrhage, we found 64 overlapping genes in
the Ator-treated group vs. control group and Ator + STS-treated
group vs. Ator-treated group analysis (Figure 3A). Furthermore,
the expression levels of 53 DEGs, among which five genes were
upregulated and 48 genes were downregulated, in the Ator-
treated group vs. control group analysis were reversed in the Ator +
STS-treated group vs. Ator-treated group analysis (Figure 3B).
These genes were also subjected to GO and KEGG analysis, the
results of which indicated that the mechanisms underlying the
protective effect of STS against Ator-induced zebrafish cerebral
hemorrhage were involved in hemoglobin complex, oxygen carrier
activity, oxygen binding, iron ion binding, CAMs and tight
junctions, etc., and their related signaling pathways such as the
ferroptosis andHIF-1 signaling pathways, etc. (Figures 3C, D). PPI
network analysis also indicated that 12 hub genes, which encode
proteins like hemoglobin, carbonic anhydrase, Na+/H+ exchanger,
HIF-1a, etc., were involved in the protective effect of STS against
cerebral hemorrhage and its vascular integrity-promoting effect
(Figure 3E and Table S3). These results indicated that the HIF-1a
signaling pathway and physiological processes associated with
hemoglobin and oxygen function were most involved in the
protective effect of STS against cerebral hemorrhage.

STS Reduced the Ator-Induced Elevated
mRNA Expression Levels of Hemoglobin,
Carbonic Anhydrase, and Na+/H+
Exchanger Genes
As shown in Figure 3, the cellular processes related to oxygen
metabolism and exchange were most involved in the protective
effect of STS against cerebral hemorrhage. Hemoglobin and
carbonic anhydrase are essential for transportation and
exchange of CO2 and O2 in red blood cells (Nikinmaa et al.,
2019). Carbonic anhydrase accompanied by Na+/H+ exchange
Frontiers in Pharmacology | www.frontiersin.org 5
regulates intracellular PH (Parks et al., 2017). The mRNA
expression levels of these proteins were further verified by real-
time PCR. We demonstrated that the mRNA expression levels of
hemoglobin (hbae1.3, hbae3, hbae5, hbbe2, and hbbe3), carbonic
anhydrase (cahz), and Na+/H+ exchanger (slc4a1a and slc9a1)
genes were increased by Ator treatment, and co-treatment of
STS with Ator significant decreased the expression levels of
these genes (Figure 4). Thus, STS dramatically affected oxygen
metabolism and exchange in Ator-induced cerebral hemorrhage,
and the mRNA expression levels of hemoglobin, Na+/H+
exchanger, and carbonic anhydrase could serve as biomarkers
of the efficacy of STS for protecting against cerebral hemorrhage
in zebrafish.

STS Decreased the mRNA Expression
Levels of HIF-1, and Its Protective Effect
Against Cerebral Hemorrhage Was
Partially Blocked by Inhibition of the PI3K/
Akt and MAPKs Signaling Pathways
Regardless of mTOR Signaling Pathway
Inhibition
As the GO and KEGG analysis results in Figure 3D show, the HIF-
1 signaling pathway was the most involved in the protective effect
of STS against Ator-induced cerebral hemorrhage. The mRNA
expression level of the HIF-1 gene hif1al2 was elevated by Ator
treatment, which might indicate a hypoxia state of cerebral
hemorrhage, and co-treatment with STS and Ator decreased its
expression (Figure 5A). The KEGG pathway analysis revealed that
the PI3K/Akt, mTOR and MAPK signaling pathways also co-
regulated with the signaling transduction of HIF-1 (Figure S1).
Thus, we hypothesized that inhibition of the PI3K/Akt, mTOR,
and MAPKs signaling pathways might disrupt the protective effect
of STS against cerebral hemorrhage in zebrafish. Finally, we found
that co-treatment with the mTOR inhibitor rapamycin did not
affect the cerebral hemorrhage-protective effect of STS (Figure 5B),
while PI3K inhibitors (LY294002 and wortmannin), an Akt
inhibitor (Akt inhibitor IV), an MEK1/2 inhibitor (U0126), an
ERK1/2 inhibitor (FR 180204), a JNK inhibitor (SP600125), and a
P38 inhibitor (SB239063) increased the hemorrhage rate to varying
degrees (Figures 5C, D). These results indicated that inhibition of
the PI3K/Akt and MAPK signaling pathways attenuated the
protective effect of STS against Ator-induced cerebral
hemorrhage in zebrafish. Furthermore, PI3K, Akt, and JNK
inhibitors were most effective in suppressing the protective effect
of STS against cerebral hemorrhage (Figures 5C, D). Thus, these
results suggested that STS ameliorated hypoxia in cerebral
hemorrhage in zebrafish, and the protective effect of STS against
cerebral hemorrhage might also be mediated by HIF-1 and its
regulators, including the PI3K/Akt and MAPK signaling pathways.
DISCUSSION

Hemorrhage stroke is a severe vascular disease of the brain
characterized by disruption of blood-brain barrier (BBB)
function and of the permeability and integrity of the brain
October 2020 | Volume 11 | Article 551745
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FIGURE 4 | The expression levels of hemoglobin, Na+/H+ exchanger, and carbonic anhydrase genes according to STS and Ator treatment of zebrafish. 1 dpf
zebrafish embryos were treated with STS (100µM), with or without Ator (2 µM) for 24 h. The mRNA expression levels of hbae1.3 (A), hbae3 (B), hbbe3 (C), hbbe2
(D), hbae5 (E), cahz (F), slc4a1a (G) and slc9a1 (H) genes were detected by real-time PCR. Data are presented as fold changes relative to the control group.
#p < 0.05 and ##p < 0.01 vs. control group. *p < 0.05 vs. Ator-treated group.
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blood vessels required for the normal physiological function of
the BBB (Yao, 2019). The effect of HMG-COA reductase
inhibitors like Ator on vascular integrity and cerebral
hemorrhage still needs further study. STS showed efficacy
against cerebral hemorrhage in our previous study, although
the underlying mechanism has not been fully elucidated (Zhou
et al., 2018). In the present study, we explored the transcriptome
profile of Ator-induced cerebral hemorrhage, as well as the
protective effect of STS in zebrafish. We summarized DEGs
between the control group and Ator-treated group, as well as
between the Ator group and Ator + STS group. All of the DEGs
were analyzed by GO, KEGG, and PPI network analysis. The
mRNA expression levels of genes of interest were verified by real-
time PCR, and the possible mechanisms underlying the
protective effect of STS against cerebral hemorrhage were also
explored by pharmacological inhibition of signaling pathways.

Mice and rat are commonly used in hemorrhage stroke studies.
Injection of bacterial collagenase or autologous blood into certain
sites in the brain, such as the cisterna magna and striatum, are two
main methods to mimic the processes of hemorrhage stroke attack
in rodent models (Yagi et al., 2015; Zhang et al., 2015). Zebrafish
disease models have the advantages of low cost, ease of
observation, and genetic similarity with humans, which
facilitates drug discovery (Dooley and Zon, 2000; Kari et al.,
2007; Delvecchio et al., 2011). In our group, we have established
various zebrafish disease models, including neuroprotection
(Chong et al., 2013; Chong et al., 2014), angiogenesis (Zhou
Frontiers in Pharmacology | www.frontiersin.org 9
et al., 2017; Zhou et al., 2019b; Zhou et al., 2020), cerebral
hemorrhage (Huang et al., 2018; Zhou et al., 2019c), etc., for
bioactive constitutes discovery from natural products and
underlying mechanisms studies. Thus, zebrafish-based cerebral
hemorrhage model attracted our attention for high-throughput
screening of drugs for hemorrhage stroke (Hung et al., 2012; Crilly
et al., 2018). In our previous studies, we established an Ator-
induced zebrafish cerebral hemorrhage model, which can also be
used to discover agents protecting against cerebral hemorrhage
stroke and promoting vascular integrity from traditional Chinese
medicine (Hung et al., 2012; Huang et al., 2018; Zhou et al., 2018).
STS is a water-soluble derivative of Tan IIA, which is a lipophilic
component of Chinese Materia Medica Salvia miltiorrhiza Bunge
(Figures 1A, B). In the present study, we observed a protective
effect of STS against Ator-induced cerebral hemorrhage in a
transgenic zebrafish line Tg(gata1: dsRed) that expressed red
fluorescence in blood cells. Experimental data revealed that STS
obviously reversed the Ator-induced cerebral hemorrhage (Figure
1C), consistent with our previous study (Zhou et al., 2018).

The hemoglobin and ferric ion released from blood cells
caused secondary brain injury by activation of inflammation
and oxidative stress in cerebral hemorrhage (Wang et al., 2018;
Macdonald and Katan, 2019). Free ferric irons also trigged
ferroptosis, which is a novel form of cell death, and caused
advanced neuron death (Zhang et al., 2018). Moreover, the
elevated ferric ions concentration in brain vascular endothelial
cells and pericytes contributed to BBB dysfunction (Imai et al.,
A B

DC

FIGURE 5 | HIF-1 and its related mTOR, PI3K/Akt and MAPK signaling pathways were associated with the protective effect of STS against cerebral hemorrhage.
(A) Zebrafish embryos (1 dpf) were with treated STS (100 µM), with or without Ator (2 µM), for 24 h. The relative mRNA expression level of the HIF-1 gene hif1al2
was detected by real-time PCR technology. The results are presented as the fold changes relative to the control group. (B) Co-treatment with various concentrations
(0.3, 1, and 3 µM) of rapamycin (Rapa) plus Ator (2 µM) and STS (100 µM) for 24 h in zebrafish. (C) Co-treatment with various concentrations (0.3, 1, and 3 µM) of
LY294002 (LY), wortmannin (Wort), and Akt inhibitor IV (Akti) plus Ator (2 µM) + STS (100 µM) for 24 h in zebrafish. (D) Co-treatment with various concentrations
(0.3, 1, and 3 µM) of U0126 (MEKi), FR 180204 (ERKi), SP600125 (JNKi), or SB239063 (P38i) plus Ator (2 µM) + STS (100 µM) for 24 h in zebrafish. The cerebral
hemorrhage rate was calculated. Data are represented as mean ± SEM. #p < 0.05 and ###p < 0.001 versus control group. ***p < 0.001 vs. Ator-treated group.
Dp < 0.05, DDp < 0.01, and DDDp < 0.01 vs. Ator +STS-treated group.
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2019). GO classification and enrichment analysis revealed that
Ator regulated various cellular components and processes
associated with erythrocyte homeostasis, oxygen transportation
and metabolism, such as hemoglobin complex, oxygen carrier
activity and oxygen binding, etc. (Figure 2A). In addition, KEGG
analysis indicated that Ator treatment affected various signaling
pathways, cell metabolism processes, and cell components,
including porphyrin and chlorophyll metabolism, ferroptosis,
the HIF-1 signaling pathway, the citrate cycle, the cGMP-PKG
signaling pathway, CAMs, etc. (Figure 2B). Porphyrin and
chlorophyll metabolism play vital roles in the formation of
hemoglobin, and the cofactor is a well-known porphyrins heme
(Senge, 1999). The HIF-1 and cGMP-PKG signaling pathways
regulated various physical processes including inflammation,
vascular relaxation, and anti-oxidant activity, where these
physiological processes are involved in both the development
and progression of hemorrhage stroke (Anfossi et al., 2009;
Qureshi et al., 2009). The change in citrate cycle-related genes
indicated abnormal energy metabolism in hemorrhage stroke.
Both CAMs and cell junction also played important roles in
vascular integrity and permeability (Zhou et al., 2018; Ziliotto
et al., 2019). In our previous study, we found that Ator impaired
vascular integrity by disruption of cell-cell adherens junctions
(AJs) and STS ameliorated this impairment in vascular endothelial
cells (Zhou et al., 2018), which were consistent with the results of
KEGG analysis in present study. Finally, PPI network analysis
showed that 12 hub genes were most related to Ator-induced
cerebral hemorrhage in zebrafish (Figure 2C and Table S2).
These genes encode hemoglobin and HIF-1a etc. and might be
potential biomarkers of hemorrhagic stroke.

Moreover, the mechanisms underlying the protective effect of
STS against cerebral hemorrhage involved ferroptosis, the HIF-1
signaling pathway, the cGMP-PKG signaling pathway, hemoglobin
complex, CAMs, and tight junctions, etc. (Figures 3A–D). Twelve
highly related DEGs, which encode hemoglobin, carbonic
anhydrase, Na+/H+ exchanger, HIF-1a etc. were also been
identified between the Ator group and Ator + STS group by PPI
network analysis (Figure 3E and Table S3). These genes might
reveal the key mechanisms underlying the protective effect of STS
against cerebral hemorrhage in zebrafish. The expression levels of
genes of interest, which encode hemoglobin, Na+/H+ exchanger,
and carbonic anhydrase, were verified by real-time PCR analysis.
Hemoglobin proteins caused dramatic neuronal toxicity in cerebral
hemorrhage and regulated the oxygen and carbon dioxide
exchange with carbonic anhydrase in blood cells (Hostettler
et al., 2019; Nikinmaa et al., 2019). We found that the mRNA
expression levels of hemoglobin (hbae1.3, hbae3, hbae5, hbbe2 and
hbbe3), Na+/H+ exchanger (slc4a1a and slc9a1), and carbonic
anhydrase (cahz) genes were significantly elevated after cerebral
hemorrhage, while STS alleviated the expression changes in of these
genes (Figure 4). Thus, the regulation of oxygen and carbon
dioxide metabolism by hemoglobin, Na+/H+ exchanger, and
carbonic anhydrase were involved in the mechanism underlying
the protective effect of STS against cerebral hemorrhage.

HIF-1a accumulated after cerebral hemorrhage (Jiang et al.,
2002; Zhu et al., 2004; Wang et al., 2012); whether HIF-1a is
Frontiers in Pharmacology | www.frontiersin.org 10
beneficial for cerebral hemorrhage is controversial. We also
identified elevated mRNA expression levels of HIF-1 (hif1al2) in
zebrafish with cerebral hemorrhage, and STS treatment significantly
reduced HIF-1 expression (Figure 5A). The upregulated expression
of HIF-1 indicated hypoxia and insufficient blood supply to the
brains of zebrafish, which caused cerebral hemorrhage and
neurological deficits. In our previous studies, STS ameliorated
cerebral hemorrhage-induced locomotion dysfunction in zebrafish
(Zhou et al., 2018). The expression of carbonic anhydrase, which
accompanies the Na+/H+ exchanger and contributes to intracellular
PH, is also regulated by HIF-1a (Parks et al., 2017). Furthermore,
KEGG pathway enrichment analysis suggested that the PI3K/Akt,
mTOR, and MAPK signaling pathways might regulate the HIF-1
signaling cascade involved in the protective effect of STS against
cerebral hemorrhage (Figure S1). PI3K/Akt, mTOR, and MAPK
signaling pathways could also trigger normoxic HIF activation
(Agani and Jiang, 2013) and regulate cell proliferation and
survival, which are essential for maintaining vascular relaxation,
angiogenesis, and vascular integrity (Zhou et al., 2017; Liang et al.,
2018; Zhou et al., 2019a). The previous study revealed that the
activation of Akt and ERK up-regulated the mRNA expression of
HIF-1a in brain microvascular endothelial cells (Liang et al., 2018).
In addition, the hypoxia-impairedBBB integrity could be reversed by
a HIF-a inhibitor (Chen et al., 2019). The PI3K/Akt and MAPK
signaling pathways, and HIF-1a, also play critical roles in the
prevention of BBB disruption, which is one of the main causes of
intracerebral hemorrhage (Zhu et al., 2018). Thus, we hypothesized
that the PI3K/Akt, mTOR, andMAPK signaling pathways might be
associated with the protective effect of STS against cerebral
hemorrhage. As the results in Figures 5B–D show, PI3K, Akt, and
MAPK inhibitors partially impaired the protective effect of STS
against Ator-induced cerebral hemorrhage in zebrafish, regardless of
mTOR inhibition. Moreover, PI3K, Akt, and JNK inhibitors were
most effective for suppressing the protective effect of STS against
cerebral hemorrhage (Figures 5C, D). However, the rescue effect of
STS along with downregulated hif1al2 expression was only partially
attenuated by Akt and ERK inhibitors (Figures 5C, D), in opposite
to what is expected based on the results in Liang et al. (2018). STS
promoted vascular endothelial function and cell survival through
Akt/eNOS and MAPKs signaling pathways (Zhou et al., 2019c).
Thus, the activation of Akt/MAPKs signaling pathways might be
important in the maintenance of vascular integrity and permeability
by STS in cerebral hemorrhage.

In line with these results, Liu et al. showed that the HIF-1 and
PI3K/Akt signaling pathways were involved in hemorrhage
stroke by in-depth analysis of the gene expression profile of
human cerebral hemorrhage brain samples (Liu et al., 2019).
Thus, HIF-1 and its regulators, including the PI3K/Akt and
MAPK signaling pathways, might be involved in the protective
effect of STS against Ator-induced cerebral hemorrhage in
zebrafish (Figure 6). In general, the genetic similarity between
zebrafish and human is higher than 80%. Due to the presence of
physiological difference between zebrafish and human in certain
conditions, the research data obtained from zebrafish experiments
should be further validated by other animal models. In this study,
we had identified the gene expression biomarkers of cerebral
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hemorrhage and potential pharmacological targets of STS using
transcriptome approach. Although the differential gene expression
had been verified by independent real-time PCR assay, one main
limitation of this approach is the presence of possible discrepancies
between mRNA and protein expression regulation. In addition, the
direct relationship of the candidate genes could be validated by
genetic silencing approaches in future.

In summary, we conclude that the mechanisms underlying
the protective effect of STS against Ator-induced cerebral
hemorrhage might be associated with HIF-1 and its regulators,
including the PI3K/Akt and MAPK signaling pathways.
Moreover, hemoglobin (hbae1.3, hbae3, hbae5, hbbe2, and
hbbe3) carbonic anhydrase (cahz), HIF-1 (hif1al2) and Na+/H+
exchanger (slc4a1a and slc9a1) genes might be potential
biomarkers of Ator-induced cerebral hemorrhage in zebrafish,
as well as pharmacological targets of STS.
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