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Abstract

Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in South East

Asia. It has been suggested that, as a consequence of the inflammatory process during JEV

infection, there is disruption of the blood-brain barrier (BBB) tight junctions that in turn allows

the virus access to the central nervous system (CNS). However, what happens at early

times of JEV contact with the BBB is poorly understood. In the present work, we evaluated

the ability of both a virulent and a vaccine strain of JEV (JEV RP9 and SA14-14-2, respec-

tively) to cross an in vitro human BBB model. Using this system, we demonstrated that both

JEV RP9 and SA14-14-2 are able to cross the BBB without disrupting it at early times post

viral addition. Furthermore, we find that almost 10 times more RP9 infectious particles than

SA14-14 cross the model BBB, indicating this BBB model discriminates between the virulent

RP9 and the vaccine SA14-14-2 strains of JEV. Beyond contributing to the understanding of

early events in JEV neuroinvasion, we demonstrate this in vitro BBB model can be used as

a system to study the viral determinants of JEV neuroinvasiveness and the molecular mech-

anisms by which this flavivirus crosses the BBB during early times of neuroinvasion.

Introduction

Flaviviruses such as Japanese encephalitis virus (JEV) are arthropod-borne viruses (arbovirus)

that are transmitted through the bite of an infected mosquito and may cause serious human

diseases [1]. JEV is the main causative agent of viral encephalitis in South East Asia, with an
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annual incidence of around 68 000 cases [2]. About 30% of those are fatal, and half of the survivors

present neurological sequelae [3]. Although no specific treatment against JEV exists [3], vaccines

have been developed: the live-attenuated JEV SA14-14-2 strain, obtained empirically after several

passages of the JEV SA14 virulent strain in primary hamster kidney cells [4], as well as a recombi-

nant and an inactivated vaccines, both based on the JEV SA14-14-2 strain [5, 6]. Although highly

efficient, rare cases of post-vaccine encephalitis have been reported [7], suggesting that the vaccine

strain JEV SA14-14-2 can, in isolated cases, be neurovirulent in humans.

JEV has a positive-sense RNA genome encoding a single polyprotein flanked by two

untranslated regions (UTR) at the 5’ and 3’ ends. This polyprotein is co- and post-translation-

ally cleaved into three structural proteins (capsid C, membrane prM and envelope E) involved

in viral particle assembly and antigenicity and seven non-structural proteins (NS1, NS2A,

NS2B, NS3, NS4A, NS4B and NS5) involved in genome replication, viral particle assembly and

evasion of innate immunity [1]. Due to an error-prone NS5 polymerase that frequently intro-

duces mutations in the viral genome during replication, a Flavivirus population is not clonal,

but rather a mix of multiple viral genomic species (aka quasispecies) [8, 9].

JEV is a neuroinvasive and neurovirulent virus. It is associated with neuroinflammation of

the central nervous system (CNS) [10], and disruption of the blood-brain barrier (BBB), as

shown in vivo in murine and simian models. Expression levels of tight junction proteins

involved in maintaining BBB functions such as occludin, claudin-5 and zonula occludens 1

(ZO-1) are significantly decreased in symptomatic JEV-infected mice, suggesting physical dis-

ruption of the BBB [11]. It seems, however, that BBB disruption occurs after infection of the

CNS cells in a mouse model of JEV-induced encephalitis [11] and that inflammatory response of

infected astrocytes and pericytes plays a key role in BBB leakage [11–13], which taken together

suggest that JEV can cross the BBB before disrupting it. Indeed early studies of JEV-infected

mouse brains demonstrated that the virus was transported across the cerebral endothelium by

endocytosis [14]. Vesicular transport of cellular cargoes through endothelial cells is known as

transcytosis [15], but it is unclear whether this mechanism also applies to the transport of JEV.

In contrast to virulent JEV strains such as RP9, the vaccine strain SA14-14-2 was shown to

be essentially non-neuroinvasive and non-neurovirulent in weanling ICR mice, but is still

highly neurovirulent in neonates. The JEV SA14-14-2 genome contains 57 nucleotide differ-

ences positioned along the genome when compared to the parental strain SA14, leading to 25

amino-acid substitutions [16]. Mutations in the E and M proteins seem to attenuate JEV neu-

rovirulence [17–19], while mutations in the 5’ UTR, capsid C and NS1-NS2A protein coding

regions have been found to attenuate JEV neuroinvasiveness in a mouse model [18, 20, 21].

Despite the identification of these attenuating mutations, the specific amino-acids contributing

to the attenuation of JEV SA14-14-2 are unknown.

Although encephalitis incidents have occurred after vaccination with the SA14-14-2 JEV

strain, no virus could be recovered from them [7]. Whether these neurological adverse events

originated from virus reversion to a virulent phenotype, a specific viral neuroinvasive and neu-

rovirulent sub-population or from host determinants is also unknown [7]. In any case, the JEV

vaccine strain, although much less neurovirulent and neuroinvasive than its parental counter-

part, must have crossed the BBB in order to reach the CNS and initiate encephalitis.

The BBB is the physical and physiological barrier between the brain and the blood compart-

ments in vertebrates, and it is comprised of a network of different cell types including the

brain microvascular endothelium along with pericytes, astrocytes, microglia and the basement

membrane [22]. Several BBB models have been developed in order to facilitate studies on the

biology and pathophysiology of its diverse components, as well as to evaluate drug transport to

the brain [23]. The brain microvascular endothelial cell line hCMEC/D3 exhibits a stable

growth and endothelial marker characteristics that makes it suitable to form a reproducible
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and easy-to-grow BBB in vitro. hCMEC/D3 monolayers displays good restricted permeability

to paracellular tracers and retains most of the transporters and receptors present on in vivo
BBB [24]. Accordingly, hCMEC/D3 cells have been used to investigate host-pathogen interac-

tions with human pathogens that affect the CNS [25, 26].

In the present study, we used an in vitro human BBB model consisting of hCMEC/D3

human endothelial cells cultivated on permeable supports above SK-N-SH human neuroblas-

toma cells to evaluate and compare the ability of both a virulent and a vaccine strain of JEV

(JEV RP9 and SA14-14-2, respectively) to cross this BBB model.

Material and methods

Cell lines and JEV strains

Human endothelial cells hCMEC/D3 [24], were maintained at 37˚C on rat collagen diluted at

100μg/mL in water (Cultrex; catalog no. 3443-100-01) in EndoGro medium (Merck Millipore;

catalog no. SCME004) supplemented with 5% heat-inactivated fetal bovine serum (FBS) and

10mM HEPES buffer (Sigma-Aldrich; catalog no. 83264). hCMEC/D3 cells can form tight

junctions when cultured for 6 days at 37˚C. Human neuroblastoma cells SK-N-SH (ATCC

HTB-11) were maintained at 37˚C in Dulbecco modified Eagle medium (DMEM) supple-

mented with 10% FBS. Cercopithecus aethiops monkey kidney Vero cells were maintained at

37˚C in DMEM supplemented with 5% FBS. Aedes albopictus mosquito cells C6/36 were main-

tained at 28˚C in Leibovitz medium (L15) supplemented with 10% FBS.

A molecular cDNA clone of JEV genotype 3 strain RP9 was kindly provided by Dr. Yi-Ling

Lin [27]. This plasmid was modified in our laboratory as previously described [28], generating

pBR322(CMV)-JEV-RP9, and used by transfecting C6/36 cells with Lipofectamine 2000 (Life

Technologies; catalog no. 11668–019) to produce infectious virus. Once a cytopathic effect was

visible, viral supernatant was collected and used to infect C6/36 cells. Because we found

hCMEC/D3 monolayers very sensitive to any change of medium, we ensured that viruses were

produced from cells grown in the same medium as the one used to grow endothelial cells

(EndoGro medium). CD.JEVAX1 (JEV SA14-14-2) vaccine was kindly provided by Dr. Phi-

lippe Dussart (Institut Pasteur of Phnom Penh, Cambodia), and reconstituted with 500μL of

DMEM. Two hundred and fifty μL of reconstituted vaccine were used to infect Vero cells for 7

days. Viral supernatants were collected and used to infect C6/36 cells cultivated in EndoGro

medium supplemented with 2% FBS. Both JEV RP9 and SA14-14-2 viral supernatant stocks

were collected 3 days after infection and the infectious titer was determined in Vero cells by

focus-forming assay (see below).

Antibodies

Mouse hybridomas producing the monoclonal antibody 4G2 anti-Flavivirus E protein were

purchased from the ATCC (catalog no. HB-112), and a highly-purified antibody preparation

was produced by RD Biotech (Besançon, France). Mouse monoclonal anti-JEV NS5 antibody

was kindly provided by Dr. Yoshiharu Matsura [29]. Horseradish peroxidase (HRP)-conju-

gated goat anti-mouse IgG antibody was obtained from Bio-Rad Laboratories (catalog no.

170–6516). Alexa Fluor 488-conjugated goat anti-mouse IgG antibody was obtained from

Jackson ImmunoResearch (catalog no. 115-545-003).

Evaluation of JEV neuroinvasive capacity

hCMEC/D3 cells (5.104/well) were seeded on 12-well Transwell1 permeable inserts (Corning;

catalog no. 3460) in EndoGro medium supplemented with 5% FBS and placed at 37˚C for 5 days.
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SK-N-SH cells (2.105/well) were seeded in 12-well tissue culture plates in EndoGro supplemented

with 2% FBS. Permeable inserts containing hCMEC/D3 cells were then transferred in these cul-

ture plates and medium was replaced by EndoGro medium supplemented with 2% FBS. Aliquots

of virus were diluted the next day in 50μL of EndoGro medium supplemented with 2% FBS,

heated at 37˚C and then added to the cells. Cells were incubated at 37˚C until collection.

Focus-forming assay (FFA)

Vero cells were seeded in 24-well plates (105/well). Ten-fold dilutions of virus samples were

prepared in DMEM and 200μL of each dilution was added to the cells. The plates were incu-

bated for 1h at 37˚C. Unabsorbed virus was removed and 800μL of DMEM supplemented

with 0.8% carboxymethyl cellulose (CMC), 5 mM HEPES buffer, 36 mM sodium bicarbonate,

and 2% FBS were added to each well, followed by incubation at 37˚C for 48h for JEV RP9 or

for 72h for JEV SA14-14-2. The CMC overlay was aspirated, and the cells were washed with

PBS and fixed with 4% paraformaldehyde for 20 min, followed by permeabilization with 0.1%

Triton X-100 for 5 min. After permeabilization, the cells were washed with PBS and incubated

for 1h at room temperature with anti-E antibody (4G2), followed by incubation with HRP-

conjugated anti-mouse IgG antibody. The assays were developed with the Vector VIP peroxi-

dase substrate kit (Vector Laboratories; catalog no. SK-4600) according to the manufacturer’s

instructions. The foci were then counted in each well manually. The viral titers were expressed

in focus-forming units (FFU) per milliliter.

Lucifer Yellow (LY) permeability assays

LY dye migration through the BBB monolayers was performed as previously described [25,

26]. Briefly, Transwell1 inserts containing hCMEC/D3 monolayers were transferred in culture

wells containing 1.5 mL of Hanks’ Buffered Salt Solution (HBSS) supplemented with 10 mM

of HEPES buffer, 1 mM of sodium pyruvate and 50μM of LY (Sigma-Aldrich; catalog no.

L0144). The culture medium inside the Transwell1 inserts was replaced with 500μL of HBSS

buffer containing 50μM of LY. Cells were incubated at 37˚C for 10 min. Permeable inserts

were then transferred in culture well containing 1.5 mL of HBSS buffer and incubated at 37˚C

for 15 min. They were then transferred in culture well containing 1.5 mL of HBSS buffer and

incubated at 37˚C for 20 min. Concentrations of LY in the wells were determined using a fluo-

rescent spectrophotometer (Berthold, TriStar2 LB 942). The emission at 535 nm was measured

with an excitation light at 485 nm. The endothelial permeability coefficient of LY was calcu-

lated in centimeters/min (cm/min), as previously described [30].

Virus infections

hCMEC/D3 cells (105) were seeded on coverslips in 24-well tissue culture plates in EndoGro

medium supplemented with 5% FBS. After 5 days, cell medium was replaced with 1 mL of

EndoGro medium supplemented with 2% FBS. SK-N-SH cells (105) were seeded on coverslips

in 24-well tissue culture plates in DMEM supplemented with 2% FBS. Aliquots of virus were

diluted in 200μL of medium and added to the cells. Plates were incubated for 1h at 37˚C.

Unabsorbed virus was removed and 1mL of EndoGro or DMEM supplemented with 2% FBS

was added to the cells, followed by incubation at 37˚C until collection.

Immunofluorescence analysis (IFA)

All the following steps were performed at room temperature. Cells were fixed with 4% parafor-

maldehyde for 20 min followed by permeabilization with 0.1% Triton X-100 for 5 min. After
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permeabilization, the cells were washed with PBS and incubated for 5 min with PBS containing

1% BSA. The cells were then washed with PBS and incubated for 1h with anti-JEV NS5 anti-

body diluted at 1:200 in PBS, followed by incubation with Alexa Fluor 488-conjugated anti-

mouse IgG antibody diluted at 1:500 in PBS. The coverslips were mounted with ProLong gold

antifade reagent with DAPI (Life Technologies; catalog no. P36931). The slides were examined

using a fluorescence microscope (EVOS FL Cell Imaging System).

Gene expression studies

hCMEC/D3 cells (5.104/well) were seeded on 12-well Transwell1 insert filters in EndoGro

medium supplemented with 5% FBS for 5 days. SK-N-SH cells (2.105/well) were seeded in 12-well

tissue culture plates in EndoGro supplemented with 2% FBS. Transwell1 containing hCMEC/D3

cells were then transferred in these culture plates and medium was replaced by EndoGro medium

supplemented with 2% FBS. Cells were incubated at 37˚C. At 24h post-contact, total RNA of

hCMEC/D3 cells were extracted using NucleoSpin RNA kit (Macherey-Nagel; catalog no.

740955.50) following the manufacturer’s instructions. Two hundred ng of total RNA were used to

produce cDNA using the SuperScript II Reverse Transcriptase (Thermo Fisher; catalog no.

18064014) according to the manufacturer’s instructions. Quantitative PCR were performed on

2μL of cDNA using SYBR Green PCR Master Mix (Thermo Fisher; catalog no. 4309155) accord-

ing to the manufacturer’s instructions. The CFX96 real-time PCR system (Bio-Rad) was used to

measure SYBR green fluorescence with the following program: an initial PCR activation at 95˚C

(10 min), 40 cycles of denaturation at 95˚C (15s) and annealing-extension at 60˚C (1 min). Results

were analyzed using the CFX Manager Software (Bio-Rad) gene expression analysis tool. GAPDH

was used as the reference gene. Primers used in gene expression studies are listed in Table 1.

Quantification of JEV RNA copy number

Total RNA from JEV BBB-crossing samples was extracted using NucleoSpin1RNA kit

(Macherey-Nagel; 740955.50) according to the manufacturer’s instructions. The number of

JEV RNA copies present in BBB-crossing samples was determined by RT-qPCR using Taq-

Man1 Fast Virus 1-Step Master Mix kit (Applied Biosystems1, 4444432) according to the

manufacturer’s instructions. The forward and reverse primers (Sigma-Aldrich1) were

5’GAAGATGTCAACCTAGGGAGC3’ and 5’TGGCGAATTCTTCTTTAAGC3’ respectively,

while [6FAM]AAGAGCCGTGGGAAAGGGAGA[BHQ1] was the probe for the assay. JEV RNA

copies were calculated from a standard curve generated by amplifying known amounts of in
vitro-transcribed RP9 NS5 gene region cloned and under SP6 promotor control. The in vitro
transcription was performed using mMESSAGE mMACHINE™ SP6 kit (Invitrogen, Thermo

Fisher Scientific, AM1340) following the manufacturer’s instructions.

Statistical analysis

Unpaired two-tailed t test, Mann-Whitney test and ANOVA test corrected with Tukey method

for multiple comparisons were used to compare experimental data. GraphPad Prism 7 was used

for these statistical analyses. The significance level for our data was set to 5% or less (P�0.05).

Results

hCMEC/D3 cell monolayers grown on permeable inserts form a BBB whose

properties are not affected by SK-N-SH cell presence

A basic in vitro model to study JEV neuroinvasion should consist of two main components: 1)

a cell monolayer mimicking the BBB, and 2) a brain tissue-derived cell line permissive to JEV.
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Based on our previous work [26], we chose to use hCMEC/D3 human endothelial cells mono-

layers cultivated on permeable inserts and place these inserts in wells in which human neuro-

blastoma SK-N-SH cells were grown, in order to partly mimick the brain parenchyma.

Relevant parameters of a functional BBB model, such as permeability and presence of cell

transporters and receptors specific of hCMEC/D3 cells were evaluated when the endothelial

cells were grown or not above SK-N-SH monolayers (Fig 1). Permeability measurement of

hCMEC/D3 monolayers through evaluation of Lucifer Yellow (LY) passage showed no signifi-

cant difference whether SK-N-SH cells were present or not (Fig 1A, + or—respectively). More-

over, the relative levels of mRNA for genes encoding cell receptors (Fig 1B) and transporters

(Fig 1C) characteristic of endothelial barriers were similar in the two conditions. Together,

this suggests that the culture of neuroblastoma cells under the inserts on which hCMEC/D3

were grown did not disturb the intrinsic BBB endothelial cell properties and affirms that this

in vitro BBB model can be used as a tool to study the neuroinvasiveness of JEV.

JEV SA14-14-2 is less replication efficient than JEV RP9 in SK-N-SH cells

Independent reports have found that neuroblastoma-derived SK-N-SH cells are susceptible to

both the virulent JEV RP9 strain and the SA14-14-2 attenuated strain [28, 35]. To directly

compare replication of these two JEV strains in SK-N-SH cells, however, we evaluated replica-

tion of each JEV strain in these cells at 24 and 48 hpi (Fig 2). As demonstrated by the detection

of a viral antigen (NS5 protein) through immunofluorescence assays, both JEV strains infected

Table 1. Primers used for quantification of receptor, transporter and cytokine encoding genes.

Gene Forward primer Reverse primer Reference

TFRC 5’-ATG CTG ACA ATA ACA CAA-3’ 5’-CCA AGT AGC CAA TCA TAA-3’ [31]

AGER 5’-CTC GAA TGG AAA CTG AAC AC-3’ 5’-CTG GTA GTT AGA CTT GGT CTC-3’ [31]

LRP1 5’-GCA TCC TGA TCG AGC ACC TG-3’ 5’-GCC AAT GAG GTA GCT GGT GG-3’ [31]

INSR 5’-TGT TCA TCC TCT GAT TCT CTG-3’ 5’-GCT TAG ATG TTC CCA AAG TC-3’ [32]

LEPR 5’-GGA AAT CAC ACG AAA TTC AC-3’ 5’-GCA CGA TAT TTA CTT TGC TC-3’ [32]

BCAM 5’-GCT TTC CTT ACC TCT AAA CAG-3’ 5’-GAA GGT GAT AGA ACT GAG CG-3’ [32]

SLC6A8 5’-TGA GAG AAT GAG ATT TCT GCT TGT-3’ 5’-TAG GGC TCA CAG GGA TGG-3’ [31]

SLC3A2 5’-TTG GCT CCA AGG AAG ATT-3’ 5’-GAG TAA GGT CCA GAA TGA CA-3’ [31]

SLC2A1 5’-GAG ACA CTT GCC TTC TTC-3’ 5’-GCT TTG TAG TTC ATA GTT CG-3’ [31]

SLC7A5 5’-TTG ACA CCA CTA AGA TGA T-3’ 5’-GTA GCA ATG AGG TTC CAA-3’ [31]

SLC7A1 5’-CCT CCT GAG ACA TCT TTG-3’ 5’-CTG GAA TAT GAC GGG AAG-3’ [31]

SLC16A1 5’-ACA CAA AGC CAA TAA GAC-3’ 5’-ACA GAA TCC AAC ATA GGT A-3’ [31]

ABCB1 5’-GCC TGG CAG CTG GAA GAC AAA TAC ACA AAA TT-3’ 5’-CAG ACA GCA GCT GAC AGT CCA AGA ACA GGA CT-3’ [31]

ABCG2 5’-TGG CTG TCA TGG CTT CAG TA-3’ 5’-GCC ACG TGA TTC TTC CAC AA-3’ [31]

ABCC1 5’-ACC AAG ACG TAT CAG GTG GCC-3’ 5’-CTG TCT GGG CAT CCA GGA T-3’ [31]

ABCC2 5’-CCA ATC TAC TCT CAC TTC AGC GAG A-3’ 5’-AGA TTC CAG CTC AGG TCG GTA CC-3’ [31]

ABCC4 5’-AAG TGA ACA ACC TCC AGT TCC A-3’ 5’-CCG GAG CTT TCA GAA TTG AC-3’ [31]

ABCC5 5’-AGT GGC ACT GTC AGA TCA AAT T-3’ 5’-TTG TTC TCT GCA GCA GCA AAC-3’ [31]

STRA6 5’-TTT GGA ATC GTG CTC TCC G-3’ 5’-AAG GTG AGT AAG CAG GAC AAG-3’ [32]

SLC38A5 5’-TGT CAG TGT TCA ACC TCA G-3’ 5’-GTG GAT GGA GTA GGA CGA-3’ [32]

SLC1A1 5’-GTT ATT CTA GGT ATT GTG CTG G-3’ 5’-CTG ATG AGA TCT AAC ATG GC-3’ [32]

PLVAP 5’-CAA TGC AGA GAT CAA TTC AAG G-3’ 5’-ACG CTT TCC TTA TCC TTA GTG-3’ [32]

CXCL8 5’-TCT TGG CAG CCT TCC TGA TT-3’ 5’-TTA GCA CTC CTT GGC AAA ACT G-3’ [33]

CXCL10 5’-TGG CAT TCA AGG AGT ACC TCT C-3’ 5’-CTT GAT GGC CTT CGA TTC TG-3’ [34]

GAPDH 5’-AGC CAC ATC GCT CAG ACA CC-3’ 5’-GTA CTC AGC GCC AGC ATC G-3’ [31]

https://doi.org/10.1371/journal.pone.0252595.t001
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the SK-N-SH cells but the viral progeny of JEV SA14-14-2 vaccine strain produced in

SK-N-SH cells at 24 and 48 hpi was significantly lower than that of JEV RP9 (1.7 and 1.2 log10

less at 24 and 48 hpi respectively, Fig 2B), suggesting that JEV SA14-14-2 is less neurovirulent

than JEV RP9 in human cell cultures.

Fig 1. SK-N-SH cells do not affect hCMEC/D3 BBB properties. hCMEC/D3 were cultivated on Transwell1 inserts. Five days after seeding, SK-N-SH (SK)

cells were cultivated or not in wells under the Transwell1 inserts (white and black bars respectively). A) Twenty-four hours after adding the SK-N-SH cells

(+) or not (-), BBB permeability to LY was measured. B) and C) hCMEC/D3 BBB total RNA was extracted and expression of receptor (B) and transporter

(C) genes typical of the BBB- encoding genes were quantified by RT followed by qPCR as described in Material and Methods. Graphs show the results from

two independent experiments performed in duplicates.

https://doi.org/10.1371/journal.pone.0252595.g001
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Neither JEV RP9 nor JEV SA14-14-2 infects hCMEC/D3 cells after they

form a BBB

In order to examine the susceptibility of our hCMEC/D3 BBB model to JEV infection, the cells

were grown 6 days on coverslips to allow the BBB to form, and then inoculated with either the

RP9 or SA14-14-2 JEV strain (Fig 3). As evidence of infection we assessed the expression of

Fig 2. JEV RP9 is more replication efficient than JEV SA14-14-2 in SK-N-SH cells. SK-N-SH cells were infected at MOI 0.1 for 24 or 48h by the indicated JEV

strain. A) The infected cells were analyzed at the indicated times post-infection by immunofluorescence staining for the presence of the NS5 protein (in green).

The images were taken at a x200 magnification (white bars, 100μm), the cell nuclei were stained by DAPI (in blue). B) Supernatants of SK-N-SH cells infected by

JEV RP9 (black bar) or JEV SA14-14-2 (white bar) were titrated in Vero cells. The arithmetic means ± standard deviation of three independent experiments

performed in triplicate is shown. Asterisks indicate a significant difference between RP9 and SA14-14-2 in each one of the times post-infection evaluated (��,

P = 0.0023, ���, P< 0.001).

https://doi.org/10.1371/journal.pone.0252595.g002
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Fig 3. Infection of hCMEC/D3 cells by JEV strains. hCMEC/D3 were cultured on coverslips for either 6 days (A) or 1 day (B), so that they form

or do not form a BBB respectively. Cells were then inoculated with the indicated JEV strain at MOI = 0.1 and analyzed at 24 and 48 hpi by

immunofluorescence staining for the presence of the NS5 protein (in green). The images were taken at a x200 magnification, cells nuclei are
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NS5 viral protein by immunofluorescence microscopy (see Material and Methods) and

none was observed at either 24 or 48 hpi (Fig 3A). On the other hand, hCMEC/D3 cells

could be infected by either JEV strains when they were inoculated after only one day of culture

(ie not forming of a BBB), as detected through the same immunofluorescence approach

(Fig 3B). Moreover, in this condition, both JEV strains produced infectious viral progeny in

hCMEC/D3, although the RP9 viral titer was significant higher by around 2 log than that

observed for SA14-14-2 (Fig 3C). These results suggest that hCMEC/D3 cells are not suscepti-

ble to JEV infection when they already have formed a barrier, but they are JEV permissive

before tight junction formation.

Neither JEV RP9 nor JEV SA14-14-2 disrupt the BBB when added for 6h

It has been suggested that JEV infects brain tissue cells as a consequence of a preceding inflam-

matory process which in turn leads to disruption of the BBB and viral neuroinvasion [36, 37].

Our knowledge of the very early events of JEV crossing the BBB is, however, still scant. In

order to shed some light on these early times of viral exposure, we evaluated the neuroinvasive

ability of JEV in our BBB model at early times post viral addition. hCMEC/D3 cells were culti-

vated on permeable inserts to form a BBB above a SK-N-SH cell monolayer and exposed to

either JEV RP9 or SA14-14-2 viruses at MOIs of 1 or 10 (Fig 4). As assayed by Lucifer Yellow

permeability, we found the BBB integrity was not significantly compromised by either JEV

strain when compared to mock-infected conditions (Fig 4A), suggesting that the BBB model

was not disturbed either by the JEV strains or the MOIs used.

More JEV RP9 infectious particles may cross the in vitro BBB model than

JEV SA14-14-2

Since the BBB permeability was not affected by the addition of either virus, we quantitated the

viral crossing of each strain by assaying the quantity of viral RNA and infectious particles in

the supernatants under the inserts (Fig 4B and 4C). The number of viral RNA copies detected

for both viruses was 1.7 log10 higher when a MOI of 10 was used in comparison to a MOI of 1

(Fig 4B), suggesting that the higher the JEV viral load, the greater the number of viral particles

crossing the BBB. Of note, there was no significant difference in the viral RNA copy number

between the JEV strains for each MOI (MOI = 1 or = 10, Fig 4B). However, the infectious titers

of the JEV particles that crossed the BBB was notably different between the RP9 and SA14-14-

2 strains, as about 3 times more RP9 infectious particles compared to SA14-14-2 where found

in the supernatants under the inserts when an MOI of 1 was used, and close to 10 times more

for a MOI of 10 (Fig 4C). Calculation of the specific infectivity for JEV RP9 and SA14-14-2

strains as the ratio between the detected JEV RNA copy number per infectious focus-forming

unit did not show a significant difference between the 2 viral stocks (Fig 5A). Interestingly, the

specific infectivity for the RP9 BBB-crossing samples was significantly lower than that

observed for the vaccine strain SA14-14-2 with a 3 to 10 fold decrease for MOI of 1 and 10

respectively (Fig 5B). These results indicate that more JEV RP9 infectious particles may cross

our BBB model than SA14-14, and demonstrate that this in vitro barrier is capable of discrimi-

nating between 2 viruses with different neuroinvasive capabilities.

stained by DAPI (in blue). C) Supernatants from non-forming BBB hCMEC/D3 cells infected by JEV RP9 (black bar) or JEV SA14-14-2 (white

bar) were collected at 24 and 48 hours post-infection and their viral titer was determined as described in Material and Methods. The arithmetic

means ± standard deviation of three independent experiments performed in triplicate is shown. Asterisks indicate a significant difference

between RP9 and SA14-14-2 for each time post-infection evaluated (��, P = 0.0056, ���, P< 0.001).

https://doi.org/10.1371/journal.pone.0252595.g003
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Fig 4. JEV RP9 and JEV SA14-14-2 may cross the in vitro BBB model without disrupting it. A) hCMEC/D3 cells

were cultivated on Transwell1 inserts. Five days after seeding, SK-N-SH cells were added to the wells under the

Transwell1 insert. JEV RP9 or SA-14-14-2 was added to the BBB as indicated 24h later, either at MOI = 1 or = 10.

hCMEC/D3 cell permeability to Lucifer Yellow was assayed 6 h post-addition as described in Material and Methods. B)

In vitro BBBs were generated as indicated above and either JEV strains were added at MOI = 1 or = 10. After 6 h, total

RNA was extracted from media under the inserts and the number of JEV RNA copies was determined by RT-qPCR as
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Discussion

Lines of research from both in vivo and in vitro systems have suggested JEV infects brain tissue

cells as a consequence of a preceding inflammatory process that in turn may facilitate BBB

described in Material and Methods. C) Samples were collected 6 h post-addition (JEV RP9, black bars or SA14-14-2,

white bars) and their viral titer was determined as described in Material and Methods. The arithmetic

means ± standard deviation of at least two independent experiments performed in triplicate is shown. Asterisks

indicate a significant difference between the RP9 and SA14-14-2 titers for each MOI evaluated in the BBB-crossing

experiments (����, P< 0.0001).

https://doi.org/10.1371/journal.pone.0252595.g004

Fig 5. The specific infectivity of JEV RP9 is decreased after BBB-crossing. A) Both the number of viral RNA copies

and the infectious titers for either JEV RP9 or JEV SA14-14-2 stock used for the JEV BBB-crossing experiments were

determined as described in Material and Methods. The specific infectivity of both stocks, calculated by dividing the

viral RNA copies number/ml by the FFU/ml of each viral stock, was evaluated after 6h incubation at 37˚C. B) The

specific infectivity of the JEV RP9 and SA14-14-2 BBB-crossing samples was calculated as indicated above using the

data from Fig 4B and 4C. The arithmetic means ± standard deviation of at least two independent experiments

performed in triplicate is shown. Asterisks indicate a significant difference between the specific infectivity of RP9 and

SA14-14-2 for each MOI evaluated in the BBB-crossing experiments (��, P = 0.0022; ����, P< 0.0001).

https://doi.org/10.1371/journal.pone.0252595.g005
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disruption and viral neuroinvasion [36, 37]. While in vivo approaches primarily give insights

to systemic viral disease, in vitro models tend to allow examination and manipulation of the

molecular mechanisms that govern viral pathogenesis. In this regard, previous approaches

have generally focused on characterizing JEV neuroinvasive properties at late times of infec-

tion, mainly 24 hpi or later [35, 38–40], leaving our knowledge of events at early times of JEV

contact with the BBB poor, if not null.

In this study, we have used an in vitro human BBB model to compare the ability of two JEV

strains (the virulent RP9 strain and the SA14-14-2 vaccine strain) to cross the BBB at early

times post-addition. We have shown that both JEV RP9 and SA14-14-2 are able to cross the

BBB without disrupting it at 6 hpi. Our finding corroborates in vivo studies that have demon-

strated that JEV is able to get access to the CNS and establish a primary infection without the

preceding need of BBB leakage [36, 37].

Moreover, the fact that both JEV RP9 and SA14-14-2 strains crossed the BBB without

infecting BBB endothelial cells, or disrupting the barrier, also suggests that the pathway JEV

uses to cross the BBB is either a transcellular one, through the endothelial cells, or paracellular,

between the endothelial cells. These observations are consistent with other studies conducted

in vivo in mice and monkeys [11, 16, 41]. Electron-microscopic studies of brains from JEV-

infected suckling mice have suggested that viruses cross the BBB endothelial cells by transcyto-

sis [14]. In spite of these observations, to date there are no published data from biochemical,

genetics or functional approaches to support or refute this hypothesis. The combination of

these approaches, together with the use of our in vitro BBB model and JEV strains with differ-

ent neuroinvasive capabilities(such as the ones used in this work) would be useful to identify

which cellular mechanisms might be "hijacked" by these pathogens to cross the BBB.

Interestingly, although our specific infectivity data suggest that JEV RP9 infectious particles

crossed the BBB more efficiently than those of the vaccine strain JEV SA14-14-2, comparison

of hCMEC/D3 cell transcriptomes from BBBs that were exposed for 6h to either JEV RP9,

SA14-14-2 or no virus showed no significant difference in the levels of gene expression (fold-

change threshold of 2, data not shown). This suggests that an immediate or early cellular

response is unlikely to be responsible for the differential BBB crossing of JEV RP9 versus JEV

SA-14-14-2 particles we observed. Instead, we suspect specific viral factors to be at play, for

example, interaction of the viral particle with a strain-specific cellular surface receptor for viral

entry. Other considerations to pursue such as full characterization of the viral particles that are

able to cross the BBB including, by deep-sequencing of their RNA genomes, and an electron

microscopic examination of the endothelial cells forming the BBB after contact with either

virus, could help to shed significant light on this intriguing difference.

Interestingly, we found that hCMEC/D3 were permissive to both RP9 and SA14-14-2

strains only when the BBB formation was not completed. BBB formation induces changes in

cell conformation, which can then lead to the relocation of cell receptors between BBB cells

[42]. Differences in hCMEC/D3 cells permissiveness could be due to differential accessibility

of cell receptors when BBB is formed. Based on our data, and considering the current model of

JEV neuroinvasion that suggests disruption of the BBB following CNS viral infection [11],

endothelial cells from a disrupted barrier might become permissive to JEV because of better

accessibility to cell entry receptor(s), and these cells, upon infection, could in turn become a

new source of viral production contributing to JEV infection of the CNS.

In conclusion, our study demonstrates that both a virulent and a vaccine strain of JEV are

able to cross a BBB model without disruption at early times post viral addition. This BBB

formed by human endothelial cells represents a useful discriminant in vitro model to charac-

terize viral determinants of JEV neuroinvasiveness as well as a tool to study the molecular

mechanisms by which these pathogens cross the BBB.
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37. Mustafá YM, Meuren LM, Coelho SVA, de Arruda LB. Pathways Exploited by Flaviviruses to Counteract

the Blood-Brain Barrier and Invade the Central Nervous System. Front Microbiol. 2019; 10:525. https://

doi.org/10.3389/fmicb.2019.00525 PMID: 30984122

38. Liu T-H, Liang L-C, Wang C-C, Liu H-C, Chen W-J. The blood-brain barrier in the cerebrum is the initial

site for the Japanese encephalitis virus entering the central nervous system. J Neurovirol. 2008 Jan; 14

(6):514–21. https://doi.org/10.1080/13550280802339643 PMID: 19023687

39. Agrawal T, Sharvani V, Nair D, Medigeshi GR. Japanese encephalitis virus disrupts cell-cell junctions

and affects the epithelial permeability barrier functions. PloS One. 2013; 8(7):e69465. https://doi.org/

10.1371/journal.pone.0069465 PMID: 23894488

40. Wang K, Wang H, Lou W, Ma L, Li Y, Zhang N, et al. IP-10 Promotes Blood-Brain Barrier Damage by

Inducing Tumor Necrosis Factor Alpha Production in Japanese Encephalitis. Front Immunol. 2018;

9:1148. https://doi.org/10.3389/fimmu.2018.01148 PMID: 29910805

41. Lai C-Y, Ou Y-C, Chang C-Y, Pan H-C, Chang C-J, Liao S-L, et al. Endothelial Japanese encephalitis

virus infection enhances migration and adhesion of leukocytes to brain microvascular endothelia via

MEK-dependent expression of ICAM1 and the CINC and RANTES chemokines. J Neurochem. 2012

Oct; 123(2):250–61. https://doi.org/10.1111/j.1471-4159.2012.07889.x PMID: 22845610

42. Mee CJ, Grove J, Harris HJ, Hu K, Balfe P, McKeating JA. Effect of cell polarization on hepatitis C virus

entry. J Virol. 2008 Jan; 82(1):461–70. https://doi.org/10.1128/JVI.01894-07 PMID: 17959672

PLOS ONE Neuroinvasion by Japanese encephalitis virulent and vaccine viral strains

PLOS ONE | https://doi.org/10.1371/journal.pone.0252595 June 4, 2021 16 / 16

https://doi.org/10.1002/jcp.1041320115
http://www.ncbi.nlm.nih.gov/pubmed/3597548
https://doi.org/10.1371/journal.pone.0099733
https://doi.org/10.1371/journal.pone.0099733
http://www.ncbi.nlm.nih.gov/pubmed/24936790
https://doi.org/10.1038/nbt.2247
http://www.ncbi.nlm.nih.gov/pubmed/22729031
http://www.ncbi.nlm.nih.gov/pubmed/27069129
https://doi.org/10.3390/v7052618
https://doi.org/10.3390/v7052618
http://www.ncbi.nlm.nih.gov/pubmed/26008703
https://doi.org/10.1038/s41467-019-08641-z
https://doi.org/10.1038/s41467-019-08641-z
http://www.ncbi.nlm.nih.gov/pubmed/30742008
https://doi.org/10.3389/fmicb.2019.00525
https://doi.org/10.3389/fmicb.2019.00525
http://www.ncbi.nlm.nih.gov/pubmed/30984122
https://doi.org/10.1080/13550280802339643
http://www.ncbi.nlm.nih.gov/pubmed/19023687
https://doi.org/10.1371/journal.pone.0069465
https://doi.org/10.1371/journal.pone.0069465
http://www.ncbi.nlm.nih.gov/pubmed/23894488
https://doi.org/10.3389/fimmu.2018.01148
http://www.ncbi.nlm.nih.gov/pubmed/29910805
https://doi.org/10.1111/j.1471-4159.2012.07889.x
http://www.ncbi.nlm.nih.gov/pubmed/22845610
https://doi.org/10.1128/JVI.01894-07
http://www.ncbi.nlm.nih.gov/pubmed/17959672
https://doi.org/10.1371/journal.pone.0252595

