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Unrelated toxin – antitoxin systems
cooperate to induce persistence

Rick A. Fasani and Michael A. Savageau

Department of Biomedical Engineering and Microbiology Graduate Group, University of California, Davis,
One Shields Avenue, Davis, CA 95616, USA

Persisters are drug-tolerant bacteria that account for the majority of bacterial

infections. They are not mutants, rather, they are slow-growing cells in an

otherwise normally growing population. It is known that the frequency of

persisters in a population is correlated with the number of toxin–antitoxin sys-

tems in the organism. Our previous work provided a mechanistic link between

the two by showing how multiple toxin–antitoxin systems, which are present

in nearly all bacteria, can cooperate to induce bistable toxin concentrations that

result in a heterogeneous population of slow- and fast-growing cells. As such,

the slow-growing persisters are a bet-hedging subpopulation maintained

under normal conditions. For technical reasons, the model assumed that the

kinetic parameters of the various toxin–antitoxin systems in the cell are iden-

tical, but experimental data indicate that they differ, sometimes dramatically.

Thus, a critical question remains: whether toxin–antitoxin systems from the

diverse families, often found together in a cell, with significantly different

kinetics, can cooperate in a similar manner. Here, we characterize the inter-

action of toxin–antitoxin systems from many families that are unrelated

and kinetically diverse, and identify the essential determinant for their

cooperation. The generic architecture of toxin–antitoxin systems provides the

potential for bistability, and our results show that even when they do not exhibit

bistability alone, unrelated systems can be coupled by the growth rate to create a

strongly bistable, hysteretic switch between normal (fast-growing) and persist-

ent (slow-growing) states. Different combinations of kinetic parameters can

produce similar toxic switching thresholds, and the proximity of the thresholds

is the primary determinant of bistability. Stochastic fluctuations can spon-

taneously switch all of the toxin–antitoxin systems in a cell at once. The

spontaneous switch creates a heterogeneous population of growing and non-

growing cells, typical of persisters, that exist under normal conditions, rather

than only as an induced response. The frequency of persisters in the population

can be tuned for a particular environmental niche by mixing and matching

unrelated systems via mutation, horizontal gene transfer and selection.
1. Introduction
Persisters have traditionally been identified as subpopulations of cells that survive

antibiotic treatment via epigenetic means. They were first recognized while treating

Staphylococcus with penicillin [1] and were later identified as the source of multidrug

tolerance in biofilms [2], making them responsible for 65% to 80% of bacterial infec-

tions [3,4]. Persisters have been implicated in the stubborn Pseudomonas aeruginosa
infections to which most cystic fibrosis patients eventually succumb [5], as well as

the oral Candida albicans infections common in cancer patients [6]. They may

also explain the recurrence of Mycobacterium tuberculosis infections, responsible

for 1.6 million deaths each year [7].

Persistence is not the result of a genetic mutation, but rather of a heterogeneous

population. Modern single-cell studies have confirmed that persisters are rare,

slowly growing cells [8], and that slowly growing cells are less susceptible to anti-

biotics [9]. More recent evidence suggests that slow growth is not necessary for nor

a guarantee of persistence, but still increases the likelihood [10]. The mechanisms
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that provide the antibiotic tolerance are not fully understood,

but one common path to persistence appears to be through

the pervasive and varied toxin–antitoxin systems [11]. Toxin–

antitoxin systems are genetic modules, commonly found in

free-living bacteria, that generally consist of two co-produced

and co-regulated components: a relatively stable toxin that inhi-

bits cell growth and a more labile antitoxin that specifically

neutralizes the toxin. Stress can upregulate the proteases that

degrade the antitoxin, thereby freeing the toxin [12]. The over-

expression of toxin can slow growth [13–19] and confer

multidrug tolerance [18,20–22]. Conversely, multiple toxin–

antitoxin systems are upregulated in persister-enriched samples

[21,23]. In fact, the first gene tied to persistence was hipA [24],

later identified as the toxic half of a toxin–antitoxin pair.

Toxin–antitoxin systems are found on the chromosomes and

plasmids of most bacterial species and strains—the Escherichia
coli K-12 genome boasts at least 36 [25] and the M. tuberculosis
genome contains 88, more than any other human pathogen

[26]. Yet, despite a growing understanding of the mechanisms

underlying toxin–antitoxin systems, several important ques-

tions remain unanswered. What are their functions and how

does each contribute to different cellular phenotypes or fates

[27]? Why are there multiple types and apparently redundant

systems in a single cell [28]? What is their coordinating signal

[29]? Our previous work [30] answered some of these questions

by forming a general model of the common type II toxin–

antitoxin systems that target protein synthesis, and comparing

the model behaviour to existing experimental results. Previous

treatments addressed various aspects of toxin–antitoxin

systems or persistent populations [8,31–36], whereas our

analysis was the first to encompass them all, including molecu-

lar mechanisms of regulation, stochastic fluctuations, variable

growth, and population dynamics, and to do so over a broad

range of parameter values. We were able to describe a connec-

tion between the molecular mechanisms of toxin–antitoxin

systems, the cooperation among systems to produce bistable

expression, and the slow growth that is commonly associated

with the persistent phenotype.

Our previous results [30] confirmed and explained genetic

experiments [29] that revealed a characteristic and important

relationship between the number of toxin–antitoxin genetic cas-

settes and the frequency of persisters that survive antibiotic

treatment. Furthermore, these results suggested that although

the specifics may vary, toxin–antitoxin systems are potentially

bistable and can create a hysteretic switch between normal

and persistent states. A bistable system can exhibit one of two

stable behaviours under the same conditions, and it has

become apparent that bistable genetic regulatory networks,

when operating in noisy, fluctuating environments, can lead to

heterogenous populations of cells. This can be seen in Bacillus
subtilis genetic competence, spore formation, and swimming

or chaining, as well as the persistent phenotype studied here

[37]. We previously showed [29] how toxin–antitoxin systems

that do not exhibit bistability alone can be coupled to produce

the same effect. Moreover, the total number of toxin–antitoxin

systems in a cell tunes the frequency of persisters, using the

growth rate as the coordinating signal.

For tractability in treating the large numbers of toxin–

antitoxin systems, our previous analysis considered the

systems kinetically identical, even if their specific mechan-

isms differed. Indeed, the fact that the toxins inhibit protein

production via diverse molecular methods and targets creates

a multihit mechanism that is necessary for cooperativity, but
not always sufficient—it can be readily shown that two sys-

tems with randomly chosen, differing kinetics do not always

cooperate. Therefore, critical questions remain: whether or

not toxin–antitoxin systems from different families—with

similar motifs but dramatically different kinetics—cooperate,

and if so, what the essential factors are that determine

their cooperation.

Here, we remove the key restriction that provided tractabil-

ity in the original model and account for multiple distinct

toxin–antitoxin systems. We mix and match systems with kin-

etic parameters that vary over an order of magnitude, reflecting

the parameter ranges that have been measured across several

well-studied toxin–antitoxin families. The results extend our

past findings, as well as offer new insight. In particular,

multiple unrelated toxin–antitoxin systems cooperate via the

growth rate, particularly in the presence of stochastic fluctu-

ations, to robustly increase the size of the bistable region and

the frequency of persisters. Furthermore, the size of the bistable

region not only depends on the parameters of each system, but

critically on their relative switching thresholds—the value of

the stimulus at the inflection point of the toxin induction

characteristic. As such, different toxin–antitoxin systems

can be mixed and matched to provide the variation on which

selection can act to tune the persister frequency for a given

environmental niche.
2. Methods
2.1. Single-system model
Toxin–antitoxin systems use different protein structures and

mechanisms, yet are consistent in overall architecture. Here, we

describe a generic model for a large class of toxin–antitoxin

systems: type II systems that target protein synthesis. Figure 1a
depicts the common species and their interactions, and figure 1b
represents a generic model for toxin–antitoxin systems, where A
and T are the concentrations of free antitoxin and toxin, respect-

ively. T can represent either monomeric or dimeric toxin,

provided the toxin completely folds and dimerizes at physiological

concentrations. We assume that the synthesis and degradation

of the polycistronic message, M, as well as the formation and dis-

sociation of the toxin–antitoxin complexes, C and D, are relatively

fast compared with the rest of the system. As such, the dynamics of

a single toxin–antitoxin system can be described by the following

system of conventional differential equations:

dA
dt
¼ b

1

1þ Tn=Kn
T

samax

1þ (A2=K2
P1)þ (2A2T=K2

P2KH)
p þ A2T2=K2

P1K2
H

� b
mmax

1þ Tn=Kn
T

A� lAAþ jA

(2:1)

and

dT
dt
¼ b

1

1þ Tn=Kn
T

amax

1þ (A2=K2
P1)þ (2A2T=K2

P2KH)
p þ A2T2=K2

P1K2
H

� b
mmax

1þ Tn=Kn
T

T � lTT þ jT ,

(2:2)

or by differential algebraic equations in the generalized mass

action form [38]:

dA
dt
¼ samaxbX�1Y�1 � mmaxbX�1A� lAAþ jA, (2:3)

dT
dt
¼ amaxbX�1Y�1 � mmaxbX�1T � lTT þ jT , (2:4)
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Figure 1. Model of coupled toxin – antitoxin systems. (a) The toxin and antitoxin are translationally coupled. The antitoxin binds and neutralizes the toxin, and can
optionally bind a second toxin. The antitoxin dimer, either alone or in complex, autorepresses transcription by binding to one or more operators in the promoter
region. The toxin enhances repression, in some cases via a bridging mechanism. Free antitoxin is relatively labile and degraded by various proteases (not shown).
Free toxin usually inhibits some aspect of global translation. (b) M, mRNA; A, antitoxin; T, toxin; C, antitoxin bound to one toxin; D, antitoxin bound to two toxins.
A and T are both translated from the polycistronic message M. Antitoxin alone or in complex—A, C or D—autorepresses transcription. Free toxin T inhibits trans-
lation, including its own. All species are degraded, and diluted by cellular growth. The degradation of A increases with proteolytic activity (not shown), and dilution
is slowed when T inhibits global translation and growth (not shown). Either toxin—T1 or T2—can inhibit translation in both systems as well as the overall growth
rate, which slows the dilution of all species.
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X ¼ 1þ Tn

Kn
T

(2:5)

and Y ¼ 1þ A2

K2
P1

þ 2A2T
K2

P2KH

� �p

þ A2T2

K2
P1K2

H
: (2:6)

Equations (2.3)–(2.6) comprise a simplified model that retains the

essential features of the version used in our previous work [30].

In both equations (2.3) and (2.4), the first and only positive term

on the right-hand side represents protein synthesis. The multiplica-

tive factor s represents the translational coupling between toxin

and antitoxin, and amax is the maximum rate of protein synthesis.

The second term represents protein loss due to dilution, where

mmax is the maximum growth rate constant. The third term in

each equation represents protein loss due to active degradation,

where lA is the degradation rate constant of antitoxin and lT is

the degradation rate constant of toxin. Both protein synthesis

and cellular growth are slowed by the toxic inhibition of trans-

lation X21 [14,17], which is defined by equation (2.5). The impact

of the free toxin X21 follows a Hill equation with Hill number n
and a concentration for half-maximal activity KT. Similarly, the

independent, unitless parameter b reflects an external change

that simultaneously lowers protein synthesis and cellular

growth, or amax and mmax. Protein synthesis is also proportional
to the fraction of unbound promoter, Y21, defined by equation

(2.6). In most well-studied toxin–antitoxin systems, the operators

are dissimilar, with one dominant, high-affinity site [39–44]. In

this model, we ignore the weaker sites or, for the cooperatively

binding complex, treat the sites in aggregate. The second term

represents the dimerization of the antitoxin on the surface of the

promoter, with a concentration of half-maximal binding at KP1.

The third term represents the cooperative binding of the complex

C to the promoter, with Hill number p and a dissociation constant

KP2 that represents increased affinity. The complex C forms when a

toxin binds the antitoxin dimer at one of two independent sites

with a dissociation constant KH. The single toxin can bind to

either site, and hence binds with twice the affinity, or 2/KH.

The fourth term assumes that the complex D binds the operator

with the same affinity as the bare dimer, or KP1. The complex D
forms when two toxins bind the antitoxin dimer with overall

affinity 1=K2
H :

Studies over the past decade have confirmed the importance

of stochastic fluctuations, or noise, in gene expression and gen-

etic networks [45]. Noise is added to the model by augmenting

equations (2.3) and (2.4) with additive noise terms, producing

stochastic differential equations in Langevin form. ji is a white

noise term with zero mean, kji(t)l ¼ 0, and d-autocorrelation,

kji(t)ji(s)l ¼ dd(t 2 s), where d is proportional the strength of



Table 1. Parameter estimates and alternative designs. Values listed under S1 were originally estimated in our previous work [30], based on the published
literature for six well-studied toxin – antitoxin systems. Alternative designs S2 – S7 include multiple twofold, fourfold or 10-fold changes—marked in bold—to
the estimated parameters. The toxin and antitoxin half-lives, tT and tA, as well as the maximum cellular doubling time, tm, are shown here rather than their
corresponding rate constants, which are trivially related by lT ¼ ln 2/tT, lA ¼ ln 2/tA and mmax ¼ ln 2/tm. In every design, p ¼ 2, n ¼ 2 and tm ¼ 30 min.

parameter S1 S2 S3 S4 S5 S6 S7

tA (min) 60 120 240 60 120 240 120

tT (h) 48 96 192 48 96 192 96

s 10 10 2.5 2.5 10 10 10

amax (nM min21) 1 1 1 4 1 0.25 1

KH (nM) 100 100 100 400 100 25 100

KP1 (mM) 1 1 1 1 10 1 0.1

KP2 (nM) 10 10 2.5 10 10 2.5 10

KT (nM) 10 10 10 40 10 2.5 10
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the perturbation. Together, equations (2.3)–(2.6) form a tractable,

generic model of toxin–antitoxin regulation.
2.2. Coupled-systems model
Experimental evidence indicates that one toxin–antitoxin system can

trigger another, unrelated toxin–antitoxin system [46–48]. Our

previous work suggested an indirect method of accomplishing

such coupling [30]. If one system alone increases its own toxin

concentration in response to a specific stress, and consequently

slows protein production and growth, then another identical

system may respond to the change in growth just as it would respond

to a decrease in b. In this work, we extended the model to include

a second, unrelated toxin–antitoxin system, as illustrated in figure

1. The extended model is described by equations (2.7)–(2.13), in

which equations (2.7)–(2.9) describe the first system and

equations (2.10)–(2.12) describe the second. Both subsets of

equations mirror equations (2.3), (2.4) and (2.6) of the single-

system model. The maximum growth rate constant mmax and

the parameter b are the same for both systems, whereas the

other parameters can take on separate values. The systems are

coupled by equation (2.13), where either toxin can affect both

systems by attenuating global protein production and growth.

dA1

dt
¼ s1amax,1bX�1Y1

�1 � mmaxbX�1A1 � lA,1A1 þ jA,1, (2:7)

dT1

dt
¼ amax,1bX�1Y�1

1 � mmaxbX�1T1 � lT,1T1 þ jT,1, (2:8)

Y1 ¼ 1þ A2
1

K2
P1,1

þ 2A2
1T1

K2
P2,1KH,1

 ! p,1

þ A2
1T2

1

K2
P1,1K2

H,1

, (2:9)

dA2

dt
¼ s2amax,2bX�1Y�1

2 � mmaxbX�1A2 � lA,2A2 þ jA,2, (2:10)

dT2

dt
¼ amax,2bX�1Y�1

2 � mmaxbX�1T2 � lT,2T2 þ jT,2, (2:11)

Y2 ¼ 1þ A2
2

K2
P1,2

þ 2A2
2T2

K2
P2,2KH,2

 !p,2

þ A2
2T2

2

K2
P1,2K2

H,2

(2:12)

and X ¼ 1þ Tn,1
1

Kn,1
T,1

Tn,2
2

Kn,2
T,2

: (2:13)

The known toxins target their own unique steps in translation [49]

and it can be shown that their combined impact on translation is

often multiplicative. For example, RatA blocks the association

of the ribosomal subunits [50], whereas MazF cleaves mRNA

[51]—decreasing both the concentration of functional ribosomes

by half and the concentration of mRNA by half would reduce trans-

lation initiation fourfold. The coupled model nearly doubles the
number of variables and parameters, but the same computational

methods can be applied.

2.3. Parameter values
Apart from noise, the single-system model contains 11 parameters,

which we estimated in previous work, based on the published data

for six of the best-studied toxin–antitoxin systems: kis-kid ( pemIK),

ccdAB, mazEF, phd-doc, relBE and yefM-yoeB [30]. Table 1 includes

the previously estimated parameter values. For technical reasons,

in our previous work, we treated the kinetics of all toxin–antitoxin

systems as identical. However, the published data indicate that

toxin–antitoxin kinetics vary between families, sometimes over

multiple orders of magnitude. Here, in addition to the original

parameter estimates, we consider alternative sets of parameters,

or alternative designs, that include various fold changes to the esti-

mated values. The additional parameters are listed in table 1. The

alternative sets of parameters vary over a broad range, but are not

random. They were deliberately chosen for reasons we will make

clear later in the text.

2.4. Computational procedures
We constructed and analysed the system design space using the

Design Space Toolbox for Matlab v. 1.0 [52]. We simulated the

deterministic model with the Matlab stiff solver, ode15 s.

We simulated the stochastic model with our own implementation

of the Euler–Maruyama method [53] in Matlab. All tests were

performed using Matlab v. 7.8 (R2009a).
3. Results
3.1. Coupled cooperativity
The interaction of unrelated systems can be modelled by setting

the parameters of equations (2.7)–(2.13) to represent two sys-

tems with different kinetics. Figure 2 shows the interaction of

nearly identical systems where the difference in a single par-

ameter value creates varying degrees of separation in their

switching thresholds, or the value of the stimulus at the inflec-

tion point of the toxin induction characteristic. Figure 2a
depicts the toxin profile of the first system, with the originally

estimated parameter values, in response to changing lA, which

is commonly correlated with changing proteolysis and

stress. Note that the system does not exhibit hysteretic bista-

bility, whereas a nearly identical system in our previous

work did. In our previous model, the toxin concentrations for



0.6

0.8

1.0

1.2

1.4

1.6

1.8

0 2–2–4–6–8 4 6 8
0.6

0.8

1.0

1.2

1.4

1.6

1.8

lo
g 10

 T
2 

(n
M

)
lo

g 10
 T

1 
(n

M
)

(a) (c)

(b) (d)

log2 lA,i/lA,i
0 log2 lA,i/lA,i

0
0 2–2–4–6–8 4 6 8

Figure 2. Toxin induction profiles for coupled and uncoupled systems. Steady-state toxin concentrations, T1 and T2, as a function of the changing rate constant for
antitoxin degradation in both systems lA,i. An increase in lA,i is commonly associated with an increase in stress. Changes in lA,i are measured as a fold change from
the normal values l0

A,i: The proteolytic activity changes lA,i in both systems simultaneously, i.e. lA,1=l
0
A,1 ¼ lA,2=l

0
A,2: (a) Uncoupled reference system, using the

originally estimated parameter values (dashed black). (b) Uncoupled additional systems using the same parameter values, except varying the normal rates of
antitoxin degradation: l0

A,2 ¼ 64l0
A,1 (blue), 8l0

A,1 (light blue), l0
A,1 (green), 1=8l0

A,1 ( pink) and 1=64l0
A,1 (red). The toxic thresholds, or the values of the stimulus

at the inflection points of the toxin induction characteristics, are evenly spaced at approximately – 3.7 (blue), – 0.7 (light blue), 2.3 (green) and 5.3 ( pink).
(c,d ) Steady-state toxin concentrations (dashed colour) when the reference system (a, dashed black) is coupled with each of the additional systems (b, solid
colour). (c) The coupled reference system and (d ) the coupled additional systems when l0

A,2 ¼ 64l0
A,1 (dashed blue), 8l0

A,1 (dashed light blue), l0
A,1 (dashed

green), 1=8l0
A,1 (dashed pink) and 1=64l0

A,1 (dashed red).
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half-maximal impact on growth (KT1) and protein produc-

tion (KT2) were allowed to differ; here the toxin has the same

impact (KT) on both, as defined by equation (2.5). This

change eliminates the hysteretic region evident in our previous

work and allows us to show here how systems that do not exhi-

bit hysteresis individually can still cooperate via changes in

growth rate to create hysteresis. Figure 2b shows the toxin pro-

files when a second, uncoupled system has the same, or nearly

the same, parameter values, differing only in the normal rate

constant for antitoxin degradation l0
A,2: When the antitoxin is

more stable (e.g. figure 2b, red), the proteolytic activity must

increase further to reach the toxic threshold. Again, there is

no bistability. Figure 2c,d illustrates the effect of coupling the

first and second systems and increasing their rate constants

for antitoxin degradation proportionally, as would be the case

when both systems respond to the same protease. When the

toxic thresholds are far apart, the system with the lowest

threshold switches as it would in isolation (e.g. figure 2d,

dotted blue) and the other system follows (e.g. figure 2c,

dotted blue). The overall behaviour of the coupled systems is

dominated by the most sensitive system. As their thresholds

approach one another, the systems switch in unison, cooperation

increases, and the switching becomes bistable and hysteretic

(e.g. figure 2c,d, dotted green). The cooperation is robust: the anti-

toxin stabilities must differ more than eightfold to eliminate the

hysteresis. However, these results describe the coupling of two

systems differing by only a single kinetic parameter. Coupling,
if any, between two completely unrelated toxin–antitoxin

systems requires a more comprehensive analysis.
3.2. Design spaces
The model described by equations (2.3)–(2.6) is capable of

exhibiting a rich phenotypic repertoire, and the individual

phenotypes can be effectively enumerated and analysed

within the system design space, as has been shown with other

biological systems [54–56]. In design space, the behaviour of

each phenotype is described by a dominant subsystem with a

single, analytically defined steady state [52]. Note that

equations (2.3) and (2.4) each have one positive term on the

right-hand side, excluding noise, and multiple negative terms,

while equations (2.5) and (2.6) each use multiple terms to

define X and Y. Biologically, each term represents a process.

For a given set of parameter values, one negative term or one

defining term in each equation may be larger than the others,

or dominate. If the smaller terms, or processes, are ignored,

the behaviour of the remaining subsystem can be analysed

using well-known techniques [57]. There are 32 possible cases,

or combinations of dominant terms, and each case represents

a potentially unique phenotype. In the figures that follow,

each case will be depicted as a region in design space. Table 2

lists all of the regions that are visible in this work, along with

a description of their dominant terms and some properties of

their resulting phenotypes.



Table 2. Summary of characteristics for the regions in design space. As described in the text, each of the numbered regions represents a distinct case in which
a different combination of terms creates a dominant subsystem that can be more effectively analysed. Here, the dominant terms, or processes, are described in
each region. Antitoxin loss and toxin loss are found in equations (2.3) and (2.4), respectively. When the first negative term in either equation dominates, the
principal form of loss is dilution, but when the second negative term dominates, the loss is primarily due to active degradation. Toxic inhibition hinges on
equation (2.5), and when the first term dominates, the toxic inhibition of protein production is considered low; when the second term dominates, or the toxin
concentration rises above KT, toxic inhibition is considered high. Transcriptional repression is described by equation (2.6), and when the first term dominates, the
promoter is unbound, but when the third term dominates, the toxin – antitoxin complex acts as a strong autorepressor by cooperatively binding the promoter.
Each region exhibits a distinct phenotypic behaviour, including the toxin concentration, growth rate and system stability, which are shown here. More detailed
descriptions of the relevant regions and their significance can be found in the text.

region

dominant terms system phenotype

antitoxin
loss toxin loss

toxic
inhibition repression

toxin
concentration

growth
rate

system
stability

1 dilution dilution low none low fast stable

3 dilution dilution low cooperative low fast stable

7 dilution dilution high cooperative medium moderate stable

17 degradation dilution low none low fast stable

19 degradation dilution low cooperative low fast stable

21 degradation dilution high none high slow stable

23 degradation dilution high cooperative medium moderate unstable

27 degradation degradation low cooperative medium moderate stable

29 degradation degradation high none high slow stable

31 degradation degradation high cooperative high slow stable

−4
−2−4 0 2 4

−2

0

2

4
3

19

21

29

31

19,21,23

19,23,29

19,23,31

log2 lA/lA
0

lo
g 2 

b/
b

0

Figure 3. System design space for a changing rate constant of antitoxin
degradation lA. Each coloured region represents a different dominant subsys-
tem, or phenotype. The axes represent a fold change in the parameters
relative to the normal operating point (black circle) in Region 3. Holding
the other parameters constant (dashed line) and increasing the rate constant
of antitoxin degradation eightfold tolA=l

0
A ¼ 8 moves the system to a new

operating point (white circle) in Region 21. See table 2 for additional information
regarding the regions.
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Figure 3 depicts the design space over a wide range of

parameter values. The normal operating point—defined by

the originally estimated parameters—resides within Region 3,

where dilution dominates in equations (2.3) and (2.4), free

toxin is below its Km in equation (2.5), and transcription is

mostly repressed by the cooperative complex, or the third

term, in equation (2.6). The result is a phenotype with normal,

or relatively fast, growth. Under stressful conditions, increased

proteolytic activity increases the active degradation of the anti-

toxin, which is represented by moving to the right in figure 3.

If the antitoxin half-life is reduced eightfold (lA=l
0
A ¼ 8), the

system moves from Region 3 to 21, where active degradation

dominates the first equation, dilution still dominates the

second equation, free toxin is above its Km in the third equation,

and transcription is completely derepressed in the fourth

equation. In other words, the toxin concentration rises and

the growth rate falls. Notably, the system passes through a

region of multiple phenotypes, or steady states. Our previous

work showed that the intermediate regions represent a hystere-

tic transition between two stable steady states—high and low

toxin levels—with an intermediate, unstable steady state [30].

Hysteresis, or bistability, is not evident in the toxin profile of

figure 2a, but we also noted in our previous work that design

space can overestimate the size of the hysteretic region, in

which systems that do not exhibit hysteresis can still exhibit a

supralinear, or ultrasensitive, profile. Indeed, figure 2a displays

such ultrasensitivity. Furthermore, figure 3 indicates that the

same behaviour should be expected over a wide range: if b is

increased or decreased by twofold, an increase in lA would

also move the system from Region 3 to Region 21, albeit at

a different value of lA. In fact, the boundaries are linear

functions of the multiplicative parameter values [52], and

therefore mathematically relate the changing threshold to the
change in b. Simple observation indicates that halving b

would halve the change required of lA to reach the threshold.

In the same fashion, design space analysis can be used to

explore the global behaviour of the nonlinear system over

wide ranges of every parameter value—the impact of the

other parameters is shown in the full set of design spaces

depicted in figure 4. In nearly every case, a twofold increase

or decrease in the parameter value does not change the system’s

hysteretic response to increasing lA. As for the threshold of

transition, increasing amax, KP2 or KH moves it closer to the
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normal operating point, whereas increasing b, mmax, s or KT

moves the threshold farther away. Decreasing any of those par-

ameters has the opposite effect. Changing lT or KP1 has little to

no effect.

Decreasing b—a concomitant decrease in protein syn-

thesis and growth—exhibits similar hysteretic behaviour, as

shown in figure 5a. An eightfold decrease in b moves the

system from Region 3 to Region 29, which is similar to

Region 21 save that active degradation dominates in equation

(2.4). In other words, the toxin concentration is high and the

growth rate is even lower than in Region 21. The transition is

hysteretic, similar to the transition induced by increasing pro-

teolytic activity [30]. Furthermore, figure 4b,d shows that it is

the decrease in maximum growth rate mmax, not the decrease

in maximum protein production amax, that induces the

change in phenotype. As in figure 4, the design spaces of

figure 5 indicate how each parameter affects the threshold

of hysteresis when lowering b. Increasing lA, amax, KP2 or

KH moves the threshold closer to the normal operating

point; increasing mmax, s or KT moves the threshold farther

away. Decreasing those parameters has the opposite effect.

Changing lT or KP1 has little to no effect.
3.3. Steady states
In each case, the dominant subsystem can be analytically

solved for a single steady state [52]. Of particular interest

are the steady-state concentrations at the endpoints of the

hysteretic switch, in Regions 3, 21 and 29. The concentrations,

in terms of the independent parameters, are described by

equations (3.1)–(3.6).

A ¼ K2
HK4

P2amaxs
3

4mmax

� �1=7

, (3:1)

T ¼ K2
HK4

P2amax

4mmaxs
4

� �1=7

, (3:2)

A ¼ bK2
Tm

2
maxs

amaxlA

� �
, (3:3)

T ¼ amax

mmax

� �
, (3:4)

A ¼ bK2
Tamaxsl

2
T

lA

� �1=3

(3:5)

and T ¼ bK2
Tamax

lT

� �1=3

: (3:6)
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Equations (3.1) and (3.2) indicate that the steady-state concen-

trations in Region 3 are not dependent on lA. However, as

previously shown, an eightfold increase in lA shifts the

system to Region 21, where equation (3.4) reveals that the

toxin concentration is higher, but again independent of lA.

Together, equations (3.2) and (3.4) define the low and high

toxin levels of a hysteretic switch that is sensitive to increased

proteolytic activity. Similarly, an eightfold decrease in b

shifts the system from Region 3 to Region 29, where the

steady-state solutions are described by equations (3.5) and

(3.6). Interestingly, the equations show that the concentrations

remain dependent on b, so a further decrease in b will continue

to decrease the toxin and antitoxin, albeit relatively slowly.

Regardless, equations (3.2) and (3.6) define the low and high

toxin concentrations of a hysteretic switch that is sensitive to

the rate of protein production, or growth.
3.4. Alternative designs
The characteristics of the hysteretic switch depend on the

parameter values, and the parameter values vary among

toxin–antitoxin systems. The normal operating point is a

representative estimate of measured parameter values in

several well-studied systems [30] and is listed as design S1
in table 1. The table also describes pseudo-random alternative

designs, or parameter sets, where each set includes multiple

fold changes to the parameters of the normal operating

point. Although none of the alternative designs represents a

specific toxin–antitoxin system, the variations are typical of

those seen in experimentally characterized systems [30]. For

example, the antitoxin YefM has a measured half-life of

60 min [58], the value at the normal operating point, but

Phd has a half-life of 120 min [59], a value used in alternative

designs S2, S5 and S7. Furthermore, the promoter dis-

sociation constant KP1 of Phd [39,60,61] is at least an order

of magnitude lower than other well-studied systems

[31,41,43,44,62–65], similar to the 10-fold decrease in alterna-

tive design S7. The translational coupling factor in relBE is 10

[66], the normal operating value, but for kis-kid the measured

coupling factor is 2 [67], similar to alternative designs S3

and S4. The toxin and antitoxin typically bind tightly, but

measurements of the dissociation constant KH vary: some

estimates for ccdAB, mazEF and relBE are lower than the

normal operating value of 100 nM [66,68,69], as is the value

in S6, whereas the measured value for yefM-yoeB is 400 nM

[58], the same value used in S4. Thus, the variation among

the alternative designs is typical of the variation among

toxin–antitoxin systems.
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The panoply of design spaces in figures 4 and 5, together

with equations (3.2), (3.4) and (3.6), describe the influence of

each parameter on the relevant characteristics of the switch:

the low and high toxin concentrations and the threshold

of transition between them. The information can be used to

predict the behaviour of the alternative designs. In fact, the

alternative designs were chosen to exhibit specific variations in

the toxic profiles, as shown in figure 6. Alternative designs S1,

S2 and S3 were chosen to vary the threshold of toxic switching

while maintaining approximately the same low and high toxin

concentrations, which can be seen in figure 6a,c. Alternative

designs S4, S5 and S6 were chosen to change both the toxic

range and the toxic threshold, which can be seen in figure 6b,d.

Designs S2, S5 and S7 were chosen to exhibit identical toxic pro-

files, despite their kinetic differences. Furthermore, figure 6

shows that none of the toxic profiles exhibits bistability, or

more than one steady state along the curve, which is a result of

the relatively low toxic impact n. However, the systems exhibit

switch-like behaviour between two states and behave as

designed, illustrating the potential power of design space to

inform the forward engineering of biological systems.
3.5. Heterogeneous cooperativity
Figure 7 describes the effect of coupling the distinctly different

alternative designs. The first system is set to the values for

alternative design S7, and paired with each of the other alterna-

tive designs. lA,1 is increased with no corresponding change

in lA,2, which models an increase in proteolytic activity that

only affects the first system. The resulting steady-state toxin

concentrations are shown in figure 7a,b. In every case, the
stressed induction of the first system indirectly triggers

the second system. Furthermore, in several cases, the systems

together produce hysteretic behaviour, whereas none was

observed for either system alone (figure 6). Figure 7b indicates

that the cooperative effect depends on the relative toxic

thresholds, but not the relative toxic ranges. The results are

similar when lA,2 is increased alone, or when lA,1 and lA,2

are increased together, as if both systems respond to the

same protease (not shown). Figure 7c,d shows similar hysteretic

behaviour when global growth and protein production are

decreased via b. Decreasing mmax alone also exhibits hysteresis

(not shown). We showed in previous work that multiple iden-

tical toxin–antitoxin systems can cooperate to create hysteresis

and increase the size of the bistable region [30]. Here, we show

that extremely different toxin–antitoxin systems also cooperate

when their toxic thresholds are similar, regardless of their toxic

range. Similarly, the cooperation is robust to large changes in

several parameter values, although the effect varies based on

the relative toxic thresholds. As such, the mixing and matching

of diverse systems via mutation, horizontal gene transfer and

selection can generate a variety of switching profiles, of

which some are optimal for a particular environmental niche.
3.6. Stochastic switching
Any member of a population that operates within the bistable

region should tend towards either the low or high toxin

concentration, creating a distinctly bimodal population.

Furthermore, our previous work showed that stochastic fluc-

tuations can spontaneously switch cells from one state to the

other [30]. However, those simulations assumed identical



0.6

0.8

1.0

1.2

1.4

lo
g 10

 T
2

(n
M

)
lo

g 10
 T

2
(n

M
)

−1 0 1 2 3 4 5 6
0

0.5

1.0

1.5

2.0

−6−5−4−3−2−101

log2 lA,1/l0
A,1 log2 b/b0

(a) (c)

(b) (d)

Figure 7. Toxin profiles for coupled alternative designs. (a,b) Steady-state toxin concentration of the second system T2 as a function of the changing rate constant
for antitoxin degradation in the first system lA,1. The first system is set to alternative design S7 and is matched with S1 (dashed blue), S2 (dashed green),
S3 (dashed red), S4 (dashed light blue), S5 (dashed orange) and S6 (dashed pink). Changes in lA,1 are measured as a fold change from the normal value
l0

A,1: (c,d ) Toxin concentration T2 as a function of b for the same couplings.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150130

10
systems with correlated noise. In this work, we used the

coupled model of equations (2.7)–(2.13), and stochastically

simulated the unrelated systems with uncorrelated noise

terms. We poised an entire population at the low toxin con-

centration, which corresponds to normal growth, and then

added noise. Figure 8a,b shows that the toxin concentrations

of the two systems fluctuated independently, generally near

the low toxin concentration at which they were poised. The

systems infrequently and spontaneously switched to fluctu-

ate about the high steady state and appeared to switch

together. As a result, figure 8c shows that individual mem-

bers of the population infrequently and spontaneously

switched to the slow growth, persistent state and, in at least

one case, subsequently recovered. The transitions are infre-

quent, as is to be expected given that persister frequency in a

population can be as low as 1026 [24]. Numerous additional

simulations exhibited the same behaviour, and mirror the sto-

chastic behaviour we thoroughly tested and described in our

previous work [30]. Here, the results confirm that the bistability

introduced by unrelated toxin–antitoxin systems can also give

rise to a dynamically changing subpopulation of persisters.
4. Discussion
Previous experimental work has shown that the frequency of

persisters in a population is correlated with the number of

toxin–antitoxin systems in the organism [29]. Our previous

work provided a mechanistic link between the two. Using a

simplified model where every toxin–antitoxin system was kine-

tically identical, we showed that the frequency of persisters is

related to the width of the bistable region, which is in turn
dependent on the number of toxin–antitoxin systems in the

cell [30]. By extending the previous work, we are now able to

show that the same result can be accomplished using a more

realistic model that includes toxin–antitoxin systems with dra-

matically different kinetics. The bistable switch can be driven

by proteolysis of the antitoxin, stochastic fluctuation or a

change in the growth rate. The presence of bistability and the

switching threshold itself are dependent on the other par-

ameters of the system. Even if a single system lacks bistability,

multiple systems can be coordinated by the growth rate to pro-

duce the same effect. Other work has shown a similar link

between growth and bistability, where modulating the growth

rate can create an implicit feedback loop, bistability and a hetero-

geneous population [70]. In our past work, the toxin–antitoxin

systems were kinetically identical. The results here indicate

that kinetically different systems—even systems that are

dramatically different—can be coupled to produce bistability,

and that the strength of the effect, or the size of the bistable

region, is dependent on the relative switching thresholds of

the individual systems.

Experimental work has shown that sufficient stress can

induce persistence [71–73], which can also be seen in our

model (figure 2). However, our model also shows how, under

relatively normal conditions, stochastic fluctuations can spon-

taneously transition toxin–antitoxin systems to the persistent

state. Even when the stochastic fluctuations in each system are

uncorrelated, the toxin–antitoxin systems in a cell switch

together, coupled by the growth rate. The spontaneous, coordi-

nated switch to persistence describes how toxin–antitoxin

systems can give rise to a bimodal population of normal and

persistent cells. We predict that a persistent subpopulation

would always be present, even under normal conditions, as a
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bet-hedging strategy to survive a catastrophic event. Indeed,

there is some experimental evidence suggesting that this might

be the case [8]. Interestingly, the switch back to the normal

state is also spontaneous, and therefore the time spent in persist-

ence is variable and unpredictable. It is possible that the

emergence from persistence is just as important, if not more

important, than entering it—persisters that emerge too early,

before an environmental stress abates, will still perish. However,

remaining dormant indefinitely is not a viable strategy either. A

persistent subpopulation that survives catastrophe may employ

a bet-hedging strategy of its own: individual members might

randomly revert to normal and thrive if the stress is gone; if

not, the remaining persistent population carries on.

Persister frequency in a wild-type population of E. coli
is typically between 1026 and 1025 [24], but can vary by

species, strain and environment—the frequency in a biofilm of

P. aeruginosa may be as high as 1022 [74]. Experimental results

show that the frequency can be altered dramatically by varying

the overall number of toxin–antitoxin systems in the cell [29].

Our model confirms those results and suggests that the effect
is dependent on the average toxic impact of each system [30].

The average toxic impact of each system, in turn, is a function

of their relative toxic thresholds. In other words, adding

toxin–antitoxin systems with similar switching thresholds

increases the persister frequency more than systems with rela-

tively different thresholds. These results offer an explanation

for the abundance, variation and apparent redundancy of unre-

lated toxin–antitoxin systems: the heterogeneous systems can

be mixed and matched by mutation and horizontal

gene transfer, creating populations with varying persister

frequencies, each fit for a particular environmental niche.
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