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ABSTRACT

Transforming growth factor beta (TGFβ) plays a key role in regulating epithelial-
to-mesenchymal transition (EMT). A gene expression signature (TGFβ-EMT) 
associated with TGFβ-induced EMT activities was developed using human Non-Small 
Cell Lung Carcinoma (NSCLC) cells treated with TGFβ-1 and subjected to Affymetrix 
microarray analysis. The final 105-probeset TGFβ-EMT signature covers 77 genes, and 
a NanoString assay utilized a subset of 60 of these genes (TGFβ-EMTN signature). We 
found that the TGFβ-EMT and TGFβ-EMTN gene signatures predicted overall survival 
(OS) and metastasis-free survival (MFS). The TGFβ-EMT signature was validated as 
prognostic of 5-year MFS in 3 cohorts: a 133 NSCLC tumor dataset (P = 0.0002), a 
NanoString assays of RNA isolated from formalin-fixed paraffin-embedded samples 
from these same tumors (P = 0.0015), and a previously published NSCLC MFS dataset 
(P = 0.0015). The separation between high and low metastasis signature scores was 
higher at 3 years (ΔMFS TGFβ-EMT = -28.6%; ΔMFS TGFβ-EMTN = −25.2%) than at 
5 years (ΔMFS TGFβ-EMT = -18.6%; ΔMFS TGFβ-EMTN = −11.8%). In addition, the 
TGFβ-EMT signature correlated with whether the cancer had already metastasized or 
not at time of surgery in a colon cancer cohort. The results show that the TGFβ-EMT 
signature successfully discriminated lung cancer cell lines capable of undergoing EMT 
in response to TGFβ-1 and predicts MFS in lung adenocarcinomas. Thus, the TGFβ-
EMT signature has the potential to be developed as a clinically relevant predictive 
biomarker, for example to identify those patients with resected early stage lung 
cancer who may benefit from adjuvant therapy.
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INTRODUCTION

Early-stage non-small cell lung carcinoma (NSCLC) 
recurrences are attributable to metastatic disease 
undetected at the time of resection [1]. In the first step 
of metastasis, tumor cells dissociate and migrate from 
the primary tumors as a consequence of epithelial-to-
mesenchymal transition (EMT), a process involving 
the induction of transcription factors through multiple 
signaling pathways that, together, change cell adhesion 
and migration properties [2]. Signaling pathways involved 
in the induction of EMT include Transforming Growth 
Factor β (TGFβ), Wnt-β-catenin, Bone Morphogenetic 
Protein, Notch, Hedgehog, and some receptor tyrosine 
kinases [2]. Specifically, TGFβ has been shown to induce 
EMT in NSCLC, which may lead to an increased potential 
to invade and disseminate [3].

TGFβ is a cytokine involved in numerous cellular 
processes, including growth, proliferation, adhesion, 
migration, and apoptosis [4]. TGFβ signal transduction 
begins with ligand binding to the TGFβ type II receptor, 
followed by recruitment of the type I receptor and 
formation of a hetero-oligomeric complex of TGFβ-1, 
TGFβ type II receptor, and TGFβ type I receptor [5]. After 
complex formation, the constitutively autophosphorylated 
TGFβ type II receptor phosphorylates the TGFβ type 
I receptor, initiating a phosphorylation cascade of 
downstream cytoplasmic substrates, including the SMAD 
proteins, with subsequent activation of target genes [4]. 
The crosstalk between the TGFβ pathway and many other 
signal transduction pathways results in modification of the 
original TGFβ signal through non-canonical pathways, and 
is used to explain the multiple effects of TGFβ [6–8]. In 
normal epithelial cells, TGFβ inhibits cell proliferation and 
induces apoptosis, thereby acting as a tumor suppressor; 
however, TGFβ also acts as a tumor promoter, as it plays 
a role at many levels of carcinogenesis. These include 
epithelial/mesenchymal differentiation via SMADs 
and PI3K-AKT, angiogenesis via activating vascular 
endothelial growth factor and metalloproteases [9], and 
evasion of immune suppression by inhibiting the growth 
of many hematopoietic cell lines and by impairing T-cell 
activation [10, 11].

Correlations between a TGFβ-induced gene 
expression signature and clinical outcomes have been 
described [12–14]. In some of these studies, cell lines 
were used for initial identification of a specific TGFβ-
response gene signature, and these signatures have been 
correlated with overall survival (OS) using publicly 
available databases [15]. For example, Coulouarn and 
colleagues compared the TGFβ response of primary 
hepatocytes isolated from a TGFβ receptor knockout 
mouse model (unresponsive to TGFβ) and from wild type 
mice (responsive to TGFβ), and were able to identify early 
and late TGFβ signatures that predict different clinical 
outcomes in human hepatocellular carcinomas [13]. 

When they used these two signatures to query archived 
gene expression profiles of lung adenocarcinomas, they 
found the same results for patients with hepatocellular 
carcinoma (patients with a late TGFβ signature had 
significantly shortened median survival time compared to 
patients who had an early TGFβ signature). Also, using 
breast carcinoma cell lines, Padua and colleagues used the 
gene expression profile of response to TGFβ to define a 
signature specific for lung metastasis (as opposed to bone 
metastasis) and identified ANGPTL4 (angiopoietin-like 
4) as one of the genes induced by TGFβ involved in this 
mechanism [14]. In recent years, the emphasis has been 
on the development of TGFβ-induced EMT signatures as 
a tool for the prognosis and treatment of metastatic cancers 
(see Table 1 in Foroutan et al. [15]). Interestingly, there 
is very little overlap among the genes in the different 
signatures, likely due to either the number or type of 
cell lines used, time of TGFβ exposure, or different 
normalization methods. Using these signatures, Foroutan 
et al. used a bioinformatics approach to generate a 
signature, which identified tumors in The Cancer Genome 
Atlas (TCGA) with evidence of TGFβ-induced EMT. 
Among these tumors, tumors with high scores showed 
significantly lower overall survival (OS) rates than those 
with low scores. 

There are several robust prognostic gene expression 
signatures in NSCLC that predict poor outcomes [1, 
16–19]; however, numerous reviews have pointed out the 
complexities of moving these from the discovery stage 
into clinical application [20–23]. Herein, we describe the 
development of a gene expression signature associated 
with TGFβ’s tumor-promoting EMT activities (TGFβ-EMT 
signature) that works in a NanoString format in formalin-
fixed paraffin embedded (FFPE) tissues. We demonstrate, 
through bioinformatics analysis, that this signature can 
identify lung cancer cell lines capable of undergoing 
EMT in response to TGFβ-1, and is transferable to human 
tumors. Most importantly, we demonstrate that the TGFβ-
EMT signature, in both the microarray and NanoString 
format, can predict not only overall survival (OS), but also 
metastasis-free survival (MFS) in patients with NSCLC. 

RESULTS 

Gene expression in NSCLC after TGFβ-induced 
EMT

NSCLC cell lines can undergo TGFβ-induced EMT, 
implicating EMT in the development of metastasis from 
the lung [24, 25]; however, different NSCLC cell lines 
vary in their responses to TGFβ and in their capacity to 
undergo TGFβ-induced EMT [26] in vitro. Therefore, 
in this study, we used fourteen NSCLC cell lines and 
characterized them in terms of their response to TGFβ-
1, via measurements of: growth, morphology, migration, 
SMAD-2 phosphorylation, transcriptional activity, and 
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expression of EMT markers (E-cadherin 1, vimentin, 
SNAIL). Table 1 summarizes these characteristics. All 
cell lines in this study were WT EGFR; 7 were WT KRAS 
(H292, H322, H522, H1395, H1437, H1648, and H2347) 
and 4 were WT TP53 (A549, H292, H1394, and H1944). 
Cells were categorized as EMT if they responded to 
TGFβ-1 (Supplementary Figure 1) and if they had EMT-
associated changes after treatment with TGFβ-1. Calu-6 
was excluded from the final analysis, as it is constitutively 
mesenchymal [26]. 

Gene expression changes in these cells after TGFβ 
treatment were determined using Affymetrix U133 Plus 
2.0 microarrays. Principal component analysis (PCA) 
of the resulting data cleanly separated TGFβ-treated 
cell lines that underwent EMT when exposed to TGFβ-
1 from cell lines that did not undergo EMT (Figure 1A). 
As part of the validation process, some cell lines were 
treated for longer time periods to ensure that lack of EMT 
response was not due to differences in doubling time 
(T120 time points in Figure 1A). To identify changes 
in gene expression associated with a TGFβ-induced 
EMT phenotype, cell lines that responded to TGFβ and 
underwent TGFβ-induced EMT (H358, A549, H1437, 
and H1944) were compared with those that did not (H23, 
H292, H322, H441, H522, H1395, H2122, and H2347). 
Changes in gene expression in cell lines undergoing 
EMT were validated by qRT-PCR on cDNA obtained 
from TGFβ treated and untreated NSCLC cell lines. qRT-
PCR with a panel of 5 genes (SERPINE, SMAD7, SNAI1, 
MUC5AC, PLAUR) confirmed the cell specificity and 
direction of changes identified in the microarray analysis 
(Supplementary Figure 2). 

TGFβ-EMT signature

The initial 1,201 differentially expressed probesets 
were reduced to an intermediary 135-probeset signature, 
consisting of the probesets exhibiting the strongest 
biological separation, along with a few additional less-

strong genes of EMT-related biological interest. Because 
cell lines are a greatly simplified system compared 
with human lung adenocarcinoma tissue samples, the 
genes identified in the cell line experiment may behave 
differently in human tumors. Using these 135 probesets, 
a PCA of human lung adenocarcinomas from several 
external public datasets was used to identify genes that 
did not translate well into human tumors (see Materials 
and Methods), resulting in a final translated 105-probeset 
signature covering 77 genes, the TGFβ-EMT signature 
(Figure 1B and Table 2). A good separation of the genes 
is observed with loadings of these final 105 probesets 
in the translational datasets described in Materials and 
Methods, along with loadings from TCGA [27], the 
Schabath 442 cohort [28], and the combined cohorts from 
Nguyen et al. [29]. As shown in Figure 2, the behavior 
of the signature in lung tumor cohorts was similar to that 
shown in the cell line experiment, with positively (red) 
and negatively (blue) differentially expressed probesets 
generally clustering opposite each other, indicating good 
transferability between cell lines and lung tumors. 

TGFβ-EMT signature and lung cancer driver 
mutations

Using the Schabath 442 cohort, we looked for 
correlations between the TGFβ-EMT signature and driver 
mutations in NSCLC. As shown in Figure 3, no association 
was found with mutation status of EGFR (P = 0.058), 
TP53 (P = 0.155), or KRAS (P = 0.066); however, a slight 
association was found with STK11 mutations (P = 0.002). 
A possibility is that, in STK11 mutants, the environment is 
altered, allowing cells to metastasize. Interestingly, TCGA 
patients with an STK11 mutation have significantly lower 
levels of TGFβ-1 gene expression level (Supplementary 
Figure 3). Therefore, we next investigated which mutations 
were associated with TGFβ biology and whether these 
mutations could be related to EMT. For this analysis, the 
TCGA database was used to identify mutations associated 

Table 1: Characteristics and TGFβ response of NSCLC cell lines

Tumor Type Adenocarcinoma Cell Line
EGFR wild type A549, Calu-6, H23, H292, H322, H358, H441, H522, H1395, H1437, H1648, H1944, 

H2122, H2347 
KRAS wild type H292, H322, H522, H1395, H1437, H1648, H2347
KRAS mutant A549, Calu-6, H23, H358, H441, H1944, H2122
Primary lesions A549, Calu-6, H23, H322, H522, H358, H1395, H2347
Metastatic lesions H292, H441, H1437, H1648, H1944, H2122
Response to TGFβ
Growth Inhibition A549, H23, H441, H1944 
Smad2-p A549, Calu-6, H23, H292, H322, H358, H441, H1395, H1437, H1944, H2122, H2347
Decreased E-cadherin 1 A549, H358, H1944 
Increased Migration A549, H358, H1944
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with the TGFβ-EMT signature score in NSCLC patients 
with STK11 mutations. K-means clustering was used to 
separate patients into low and high signature scores. A 
Fisher’s exact test of each gene revealed an enrichment of 
KEAP1 (Kelch-like ECH-associated protein 1) and HGF 
(Hepatocyte growth factor) mutations in patients with a 
low TGFβ-EMT signature score and ZNF831 mutations in 
patients with a high TGFβ-EMT signature score (Figure 3B). 

TGFβ-EMT signature and metastasis-free 
survival

Overall survival (time from date of surgery to last 
contact or death) and MFS (survival in which metastasis 

and death were both counted as events) were estimated 
for a 136-sample FFPE tumor subset of the Schabath 
442 microarray dataset (Table 3). Three patients had a 
pre-existing metastasis at time of surgery, and thus were 
excluded from the MFS analyses (OS: n = 136, MFS: 
n = 133). Our results (Table 4) showed that the TGFβ-
EMT signature not only predicted 5-year overall survival 
in general (P = 5.7 × 10−5), but, more specifically, also 
predicted 5-year metastasis-free survival (P = 1.6×10−4 
(Figure 4A)). Furthermore, if only the samples from 
Stage I patients were evaluated, the differences between 
the high and low metastasis samples remained significant 
(Figure 4B; P = 0.0207). Significant differences between 
high and low metastasis (P = 0.0015) were observed when 

Figure 1: Separation of cell lines based on EMT capacity using the TGFβ-EMT signature. (A) Principal component analysis 
(PCA) performed on the TGFβ-EMT signature, separating cell lines that underwent TGFβ-induced EMT (H358, A549, H1437, H1944) 
versus those that did not (H23, H292, H322, H441, H522, H1395, H1648, H2122, and H2347). Samples from cells either untreated (U) 
or treated with TGFβ (T) were collected at different time points (0, 2, 24, 28, 72 and 120 hours). Sample scores for the first two principal 
components (t[1], t[2]) are plotted on the X- and Y- axes. Percent variation captured is given in parentheses for each principal component. 
TGFβ-treated A549 exhibits mesenchymal gene expression at 24 hours, even though it had yet to exhibit a mesenchymal phenotype. (B) 
Heatmap of TGFβ-treated cell line experiment. Individual probesets within the signature exhibit stronger signal as samples become more 
mesenchymal. Samples were sorted left-to-right by treatment + phenotype group (untreated, treated with no epithelial-to-mesenchymal 
transition, treated with constitutively mesenchymal, treated with epithelial-to-mesenchymal transition), and then sorted within groups by 
the first principal component of the signature applied to all samples. Probesets were sorted vertically by their corresponding PCA loadings 
and colored by the mean-centered unit-variance scaled values used in the PCA. For each cell line, only the latest time point is shown for 
clarity (48 hour: Calu6, H23, H322, H441, H522, H1395; 120 hour: A549, H292, H358, H1437, H1648, H1944, H2122, H2347).
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we examined the TGFβ-EMT signature in a combined 
cohort of the two NSCLC datasets from Nguyen et al. 
[29] (Figure 4C). It is interesting to note that in this cohort 
of 231 tumors, there were twice as many patients who 
developed metastases, suggesting that this cohort was 
more aggressive. In addition, the TGFβ-EMT signature 
was applied to a cohort of 96 colon tumors [30], and the 
first principal component was used to assign TGFβ-EMT 
signature strength to each tumor, which was then used 
for a two-group comparison, using a two-sided t-test, 
between patients who had metastases at the time of tumor 
resection and those who did not (Figure 4D). This analysis 
demonstrated a statistically significant association between 
the TGFβ-EMT signature and presence of metastases in 
colon cancer patients (P = 0.0026), demonstrating that 
targeting this conserved pathway results in a signature that 
works in other cancer types. 

TGFβ-EMT signature NanoString assay

Given the potential of predicting development of 
metastasis, the TGFβ-EMT signature was adapted into a 
NanoString assay, which is amenable to use with FFPE 
samples. The subset of 60 genes included in the TGFβ-
EMT signature NanoString Assay (TGFβ-EMTN signature) 
is shown in Supplementary Table 1. The TGFβ-EMTN 
signature was used with RNA isolated from FFPE blocks 
of a 133-sample subset of the Schabath 442 cohort, and a 
statistically significant difference in MFS was observed 
(Figure 5A; P = 0.0015; ΔMFS 3 yr. = −28.6%; ΔMFS 
5 yr. = −18.6%). As with the TGFβ-EMT signature, if 
only samples from Stage I patients were evaluated, the 
differences between the high and low groups remained 
significant in the TGFβ-EMTN signature (Figure 5B; P = 
0.0477; ΔMFS 3 yr. = −25.2%; ΔMFS 5 yr. = −11.8%). 

Table 2: Genes included in the TGFβ-EMT signature

Symbol
ACTN1 IL11 PPP1R13L
ADGRF4 ITGA5 PPP1R18
AFAP1L2 JUNB PTRF
ANKLE2 KCTD11 PXDC1
ARHGEF18 KLF7 PXN-AS1*

ARHGEF40 LAMC2 RHOD
BEAN1 LTBP1 SAMD4A
BICDL1* LTBP3 SERPINE1
BMP1 LTBP4 SHANK3
CALD1 MAF SKIL
CERCAM MAPRE2* SMAD7
CHST3 MBOAT2 SNAI1
CMTM3 METRNL TBC1D30*

COL1A1 MLXIP TGFB1I1
COL7A1 MUC5AC* TGFBR1
DBN1 MUC5B* THRB*

DEPTOR* NAV1 TIMP2
EEPD1 NCOR2 TMC5*

EHF* NKAIN4 TP53I3
EPB41L5* PDLIM7 TPM1
EPHB2 PEA15 TRIO
EXOC6* PIK3CD TRMT10A*

FLNA PLAUR TSPAN2
FRMD6 PLEK2 VCAN
GADD45B PMEPA1 WNT7A
GALNT2 ZFP36L1

* = Negative PCA coefficient
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Several molecules have been proposed as 
biomarkers for lung cancer progression, predictors of 
response to therapy or response to immunotherapy  
[31–33]. To examine whether the TGFβ-EMT signature 
or the NanoString assay-adapted TGFβ-EMTN signature 
would provide an advantage over these biomarkers, 
expression levels of EMT and immune biomarkers were 
correlated with OS and MFS in a lung adenocarcinoma 
Tissue Microarray (TMA) [34]. This lung cancer TMA 
contained 150 lung adenocarcinomas with 133 cases, 
overlapping with the Schabath 442 cohort, and having 
recurrence and metastasis data available that were used 
to determine the association between the TGFβ-EMT 
signature and MFS. We stained the lung adenocarcinoma 
TMA with antibodies against an EMT marker (E-cadherin 
1 (CDH1), molecules included in the signature (SMAD7, 
PLAUR), and immune checkpoint markers. As shown in 
Table 4, the strongest positive correlations with MFS were 
that of the TGFβ-EMT signature microarray (3-yr: P = 1.4 

× 10−3, 5-yr: P = 1.6 × 10−4) and TGFβ-EMTN signature 
NanoString (3-yr: P = 5.9×10−4, 5-yr: P = 1.5 × 10−3) 
assays. The correlation with staining for either the EMT 
biomarker E-cadherin 1 (CDH1, P = 0.023; Supplementary 
Figure 4 and Supplementary Table 2) or the lack of 
expression of lymphocyte activation gene-3 (LAG3,  
P = 0.021) were also statistically significant to a lesser 
degree, and the CDH1 high and LAG3 high (red curves) 
show lower MFS than the CDH1 low and LAG3 low (blue 
curves) (Figures 5C and 5D). Therefore, we propose that 
the TGFβ-EMTN signature, in a NanoString format that 
uses FFPE samples, can serve as a better predictor for 
those patients who go on to develop metastases. 

DISCUSSION

Most patients who die from lung cancer die from 
metastatic disease. Current therapeutic regimens have 
been ineffective in the cure of metastatic cancer; thus, 

Figure 2: Transferability of the TGFβ-EMT signature to tumors. The TGFβ-EMT signature was applied to 6 different datasets 
(GEO datasets GSE30219 (A), GSE37745 (B), and the Director’s Challenge Plus (C), TCGA (D), the Schabath 442 cohort (E), and the 
combined cohorts from Nguyen et al. (F)). Variable loadings for the first two principal components (p[1], p[2]) are plotted on the X- and 
Y- axes. Percent variation captured is given in parentheses for each principal component, with large p[1]/p[2] loading ratios indicating 
strong signature biology [48]. The loadings for the first two principal components are plotted for each dataset and colored by the sign of 
the probeset in the original cell line experiment (red: up-regulated; blue: down-regulated). 
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an urgent need remains to predict which patients will 
go on to develop metastases. Gene signatures represent 
gene expression changes consistently observed after 
perturbation of a biological process under a limited 
set of experimental conditions. The behavior of genes 
within a signature derived from cell line experiments is 
expected to differ to some extent in tumors compared 
with cell lines. This could be due to many factors such 
as the immortalization of cell lines in the laboratory, the 
simplification of a complex multi-tissue/organ biological 
system into a single cell type growing on a plate, and the 
possible presence of additional gene expression drivers 
not probed in the initial cell line experiments that may 
confound the expression of genes within the signature. For 
a signature to be translatable into the more complex, but 

more clinically relevant, context of a tumor population, 
genes within a signature must be further selected for 
similar behavior within a tumor population. 

Bioinformatics analyses, which compared cell lines 
that undergo TGFβ-induced EMT with those that do not, 
identified 1,201 probesets potentially involved in TGFβ-
induced EMT. Pathway analysis of these genes with 
GeneGO Metacore identified cytoskeleton remodeling/
cell adhesion and EMT as the main pathways affected in 
TGFβ-induced EMT (data not shown). Other pathways 
identified included cell proliferation, DNA damage, 
and immune response pathways. TGFβ-1 stimulation 
induces mesenchymal cells to secrete collagens such as 
collagen 7A1 (COL7A1), decrease protease production, 
and increase the secretion of protease inhibitors such as 

Figure 3: Association of TGFβ-EMT signature with mutations. (A) Scores from the first principal component of the TGFβ-EMT 
signature applied to the Schabath 442 cohort are plotted for both wild-type (WT) and mutant, for four common lung adenocarcinoma 
mutations. Signature scores are generally lower in STK11-mutant tumors (P = 0.002) compared with WT. The other three mutations do not 
differ significantly from WT. (B) Genes from the TGFβ-EMT signature were used to cluster STK11 mutant patients in the TCGA database 
into cohorts that represent a high and low signature phenotype. These patients were then analyzed by Fisher’s exact test to determine if 
there were mutations associated with the TGFβ phenotype that drive the STK11 mutant population. Kelch-like ECH-associated protein 1 
(KEAP1), hepatocyte growth factor (HGF) ZNF831 (Zinc Finger Protein 831).
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TIMPs and SERPINE1 [35], all of which are differentially 
expressed in cells undergoing TGFβ-induced EMT. As 
expected, the probesets differentially expressed include 
molecules from other pathways through which TGFβ 
signals, such as PIK3CD. Other genes identified (e.g., 
IL11, LTBP1/2, SERPINE) have been previously reported 
to be regulated by TGFβ in other microarray studies, 
suggesting that these TGFβ-regulated genes are not tumor 
type-specific, and are generally regulated by TGFβ [13, 
14, 36]. Interestingly, several molecules involved in the 
negative regulation of the TGFβ pathway are up-regulated 
in cell lines that undergo EMT (e.g., SMAD7, SMURF1), 
whereas members of the TGFβ canonical SMAD pathway 
(e.g., SMAD2) are down-regulated. This suggests that one 
of the responses in cells that undergo TGFβ-induced EMT 
is to turn on this negative feedback loop to desensitize 
the cells to the action of TGFβ treatment, resulting in 
a signaling switch from the canonical pathway to other 
pathways. KEAP1 interacts with nuclear factor (erythroid-
derived 2)-like 2 (Nerf2), and the KEAP1/Nerf2 pathway 
is considered a master regulator of oxidative stress 
responses. Recent studies have also shown an inhibitory 
role of KEAP1 in the TGFβ-1 stimulated response pathway 

[37]. Interestingly, in cells undergoing TGFβ-induced 
EMT changes (e.g., increases in fibronectin 1 and collagen 
1A1), Nerf2 activity was decreased. In this system, 
knockdown of KEAP1 results in repression of TGFβ 
signaling (SMAD transcriptional activity) and an increase 
in SMAD7 expression, both of which are part of the TGFβ-
EMT signature. HGF (Hepatocyte growth factor) is a gene 
that has been shown to play an antagonistic role to TGFβ 
signaling [38]. Additionally, it has been shown to induce 
EMT in NSCLC, further linking its function to the TGFβ 
pathway [39]. 

The final derivation of the TGFβ-EMT signature 
was created by applying the cell line derived signature 
to several patient-derived tumor specimen cohorts, then 
identifying and removing genes that exhibit opposite 
behavior between cell lines and human tumors; thus, 
minimizing variations due to in vitro manipulations. This 
resulted in a signature that predicts both overall survival 
and metastasis free survival. Most of the TGFβ-induced 
EMT signatures described in the literature, report an 
association between a high TGFβ signature score and 
OS [15], but in some studies it is the abrogation of TGFβ 
signaling that correlates with OS [12], and very few [29] 

Table 3: Characteristics of patients included in the 133-sample subset of the Schabath 442 fresh frozen tumor 
microarray dataset

Patient characteristic
Mean age, years (range) 69.2 (50–87)
Sex, No. (%)
 Male 63 (47)
 Female 70 (53)
Race, No. (%)
 White 128 (96)
 Black 3 (2)
 Other 2 (2)
Smoking history, No. (%)
 Ever-smoker 110 (83)
 Never-smoker 7 (5)
 Not available 16 (12)
Disease stage, No. (%)
 I 4 (3)
 IA 50 (38)
 IB 22 (17)
 IIA 5 (4)
 IIB 16 (12)
 IIIA 16 (12)
 IIIB 10 (8)
 IV 10 (8)
Recurrence, No. (%) 40 (30)
Metastasis, No. (%) 33 (25)
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report an association with MFS. Most importantly, the 
TGFβ-EMTN signature (NanoString format), also predicts 
MFS using FFPE samples commonly collected in the 
community. 

Immune evasion is required for tumor progression, 
and recent reports in the literature have pointed toward 
a connection between EMT and response to immune 
checkpoints, which balance self-tolerance and tissue 
destruction and are expressed by many tumors to 
inhibit anti-tumor immune responses. Recently, Mak 
and associates [40] found a correlation between a lung 
cancer EMT signature that predicts resistance to tyrosine 
kinase inhibitors in lung cancer and immune checkpoint 
inhibitors. Furthermore, Lou and colleagues examined the 
TCGA (The Cancer Genome Atlas), PROSPECT (Profiling 
of Resistance patterns and Oncogenic Signaling Pathways 
in Evaluation of Cancers of the Thorax), and BATTLE-1 
(Biomarker-integrated Approaches of Targeted Therapy 
for Lung Cancer Elimination) datasets and found that 
adenocarcinomas displaying a mesenchymal phenotype 
are associated with a distinct tumor microenvironment 
that includes elevated levels of PD1, PDL1, PDL2, TIM3, 
BTLA, and CTLA4 [41]. This association has also been 
seen in breast cancer, where an association between an 
EMT signature and PDL1 up-regulation was reported [42]. 
These reports suggest a role for EMT markers as predictors 
of response to immunotherapy. In a lung adenocarcinoma 
TMA, protein expression of immune checkpoint molecules 
(A2A, BTLA, CTLA4, INOS, TIM3, and PDL1) did not 
correlate with MFS or overall survival. Therefore, other 
possibilities, such as the differences in mutation burden 

in tumors with high TGFβ signature scores [15], should 
be examined to understand the relationship between EMT 
and immune response

There is some overlap between different EMT 
signatures, suggesting some common EMT-related 
changes in gene expression; however, from our 
work and the work of others, it is clear that different 
EMT drivers result in different genes differentially 
expressed in different tissues. For instance, Nguyen 
and associates [29] analyzed six pathway-specific 
gene expression signatures (TGFβ, KRAS, TCF4, SRC, 
E2F3, and MYC) in cohorts of lung adenocarcinomas 
and primary breast tumors for which the MFS status 
was available, and identified signatures that can predict 
breast cancer recurrence (TGFβ signature) and lung 
cancer recurrence (TCF4 and MYC signatures). More 
recently, Fouran and colleagues, using bioinformatics, 
derived a TGFβ-induced EMT signature, and concluded 
that, “there is significant overlap between our signature 
and other previously described signatures, suggesting 
some common EMT traits that should be included in 
assays used to identify patients who would most likely 
metastasize” [15]. Since Stage I lung cancer patients as a 
group do not benefit from adjuvant therapy, and 40–50% 
are not cured with surgery alone, a biomarker such as the 
TGFβ-EMT signature that is predictive of relapse with 
the development of metastatic disease has the potential 
to identify patients who may possibly benefit from 
adjuvant therapy. In addition, identifying which patients 
will survive metastasis free will spare them the time and 
expense of therapy.

Table 4: Association of immunohistochemistry staining with survival in formalin fixed paraffin-embedded samples

Overall survival Metastasis-free survival
3 year 5 year 3 year 5 year

TGFβ-EMT 4.62 × 10-4 5.69 × 10-5 1.37 × 10-3 1.59 × 10-4

TGFβ-EMTN 5.82 × 10-4 8.78 × 10-4 5.91 × 10-4 1.49 × 10-3

A2A 0.736 0.619 0.890 0.559
BTLA 0.486 0.745 0.439 0.865
CDH1 0.112 0.018 0.091 0.023
CTLA4 0.371 0.100 0.424 0.195
INOS 0.481 0.973 0.593 0.697
LAG3 0.375 0.397 0.050 0.021
PDL-1 0.792 0.839 0.599 0.415
PLAUR 0.346 0.189 0.877 0.812
SMAD7 0.409 0.572 0.161 0.242
TIM3 0.219 0.316 0.388 0.532

Kaplan–Meier log-rank test P-values are reported for immunohistochemistry staining of 10 genes. MFS ratios at 3- and 
5- yrs. represent the proportion of patients that have not suffered an event (metastasis or death). The TGFβ-EMTN signature 
was significantly associated with both OS and MFS at both 3 and 5 years. Positive E-cadherin 1 (CDH1) staining is 
significantly associated with OS (P = 0.018) and MFS (P = 0.023) only at 5 years. Interestingly, lack of LAG3 signal is 
significantly associated with MFS 5 years (P = 0.021), and borderline significant at 3 years (P = 0.050).
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MATERIALS AND METHODS

Cell culture

The following human lung adenocarcinoma cell 
lines were obtained from the American Type Culture 
Collection (Manassas, VA): NCI- H23, H292, H322, 
H358, H441, H522, H1395, H1437, H1648, H1944, 
H2122, H2347, CALU-6, and A549. NSCLC cell lines 
were cultured in RPMI-1640 medium (Thermo Fisher 
Scientific, Waltham, MA) supplemented with 10% fetal 
bovine serum (Atlanta Biologicals, Inc., Lawrenceville, 
GA), 100 U/mL penicillin, 100 μg/mL streptomycin, and 1 
mM glutamine. The cell lines were maintained in a humid 
incubator at 37° C and 5% CO2.

Microarray

Lung adenocarcinoma cell lines were treated with 
TGFβ-1 (5 ng/mL). Recombinant human TGFβ-1 protein 

was purchased from R&D Systems (Minneapolis, MN) 
and reconstituted in 4-mM HCL and 1-mg/mL bovine 
serum albumin solution. RNA was collected at various 
times (0, 24, 48, and 120 hours), processed, converted 
to cDNA, amplified, biotin-labeled, and hybridized 
to Affymetrix U133 Plus 2.0 microarrays (Thermo 
Fisher Scientific) by Moffitt Cancer Center’s Molecular 
Genomics Core. 

Microarray analysis

Microarrays were normalized against the median 
sample using IRON [43]. To reduce differences in gene 
expression due to basal differences between cell lines, log2 
ratios were calculated for each sample versus the average 
of the untreated controls for its respective cell line. 

The samples were then classified as Untreated, 
no-EMT (TGFβ treated, no EMT), EMT (TGFβ treated, 
EMT), and TGFβ (EMT + no-EMT groupings), and 
compared as follows: EMT versus no-EMT, EMT versus 

Figure 4: Kaplan–Meier metastasis-free survival analysis of TGFβ-EMT signature in fresh frozen samples. (A) Samples 
with high TGFβ-EMT signature score (red curve) exhibit significantly worse metastasis-free survival than samples with low TGFβ-EMT 
signature score (blue curve). (B) Magnitude of the difference in fraction survival between high (red curve) and low (blue curve) groups 
is similar within the early-stage subset of the cohort. (C) Kaplan–Meier metastasis-free survival analysis of the TGFβ-EMT signature 
in external fresh frozen Nguyen cohort [29]. Samples with high TGFβ-EMT signature score (red curve) exhibited significantly worse 
metastasis-free survival, although the magnitude of the difference between high (red curve) and low (blue curve) groups was smaller than 
in the cohort used for the TMA. (D) Differences in TGFβ-EMT signature score distributions within resected primary colon tumors. Primary 
tumors from patients with pre-existing metastatic disease at time of surgery (red circles) exhibit higher TGFβ-EMT signature scores than 
those from patients whose tumors had not metastasized (blue circles).
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other, EMT versus Untreated, no-EMT versus EMT, no-
EMT versus other, no-EMT versus Untreated, and TGFβ 
versus Untreated. Classification as “Other” indicates 
samples other than the current samples of interest. For 
each two-group comparison, probesets were determined 
to be differentially expressed if the following conditions 
were met: the average within the experimental group and 
the difference between the averages of the two groups 
agree in sign and the absolute value of the difference is ≥ 
~0.585 (1.5-fold). 

Probesets were then categorized as EMT-related if 
significant in all three EMT groupings and in opposite 
direction to no EMT groupings (if present), no-EMT-
related if significant in all three no-EMT groupings and 
in opposite direction to the EMT groupings (if present), or 
TGFβ-related if all three versus Untreated groupings were 
of the same sign. Only a single probeset, 240185_at (anti-
sense to TMCO1), was classified as both EMT-related and 
no EMT-related, indicating strongly opposite expression 
behavior between the two phenotypes; this probeset was 

thus removed from further analysis. This initial filtering 
resulted in 1,201 EMT-related probesets (corresponding 
to > 900 genes).

These initial 1,201 probesets were further pruned 
into a 135-probeset signature (representing 100 genes) 
by keeping those most strongly associated with TGFβ-
induced EMT (128 probesets), as well as an additional 
7 probesets that, while less strong, are of general EMT-
related biological interest (DDR1, LTBP1, PDGFB, 
SMURF1, SNAI1, TGFBR1). Identification of the 
strongest probesets was determined by first requiring 
complete separation between the two groupings 
being compared in at least one of three EMT grouping 
comparisons. The worst (lowest magnitude) of the three 
comparisons must then pass a 2-fold cutoff, and both the 
t-test and Mann-Whitney U test values must be < 0.002.

To improve the translatability of the cell line-derived 
signature to human tumors, we used PCA on human lung 
adenocarcinomas from several external public datasets 
to remove genes from the signature that did not translate 

Figure 5: Kaplan–Meier metastasis-free survival analysis of TGFβ-EMT and TGFβ-EMTN signatures and CDH1 and 
LAG3 immunohistochemistry staining in formalin-fixed paraffin-embedded samples. TGFβ-EMTN high, CDH1 high, and 
LAG3 high are colored as red; TGFβ-EMTN low, CDH1 low, and LAG3 low are colored as blue. (A) Samples with high TGFβ-EMT 
signature score exhibit significantly worse metastasis-free survival. (B) Magnitude of the difference between high and low groups is similar 
within the early-stage subset of the cohort. Immunohistochemistry staining for CDH1 (C) and LAG3 (D) are not associated as strongly 
with MFS as the TGFβ-EMT or TGFβ-EMTN signatures, as they exhibit higher P-values and lesser separation between high and low curves 
than in (A) and (B).
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into human tumors. The datasets used in determining 
translatability were GEO [44] datasets GSE30219, 
GSE37745, and the Director’s Challenge Plus (Director’s 
Challenge [45] + sister samples from GSE14814). Each 
dataset was normalized separately with IRON and then 
de-batched as appropriate with COMBAT [46]. PCA was 
performed using Evince (Prediktera, Umeå, Sweden). 
After removing those genes that did not translate, the 
loadings from the first two principal components were 
used to visualize sign agreement between the original cell 
line-derived signature and the signature behavior in each 
dataset, resulting in the final 105-probeset TGFβ-EMT 
signature (representing 77 genes).

NanoString analysis

Due to lack of codeset availability or low agreement 
between FFPE and fresh frozen assays, the resulting 77 
genes were further reduced to a set of 60 genes for use 
with the MFS NanoString (NanoString Technologies, 
Seattle, WA) analyses. NanoString assays were performed 
on RNA extracted from FFPE blocks corresponding to 
a 136-sample subset of a 442 human adenocarcinoma 
dataset (Schabath 442) [28].

Kaplan–Meier analysis

OS and MFS were estimated using Kaplan-Meier 
analysis, applied to three sample cohorts: a 136 sample 
subset (three of the 136 NanoString samples had pre-
existing metastases at time of surgery, and were thus 
excluded from MFS analysis) of the Schabath 442 fresh 
frozen tumor microarray dataset [45], NanoString assays of 
RNA isolated from FFPE blocks of these same 136 tumors, 
and a combined cohort of the two datasets from Nguyen 
et al. [29]. For MFS analysis, metastasis and death were 
both counted as events. High and low TGFβ-EMT signature 
groupings were determined by applying the 105-probeset 
signature to each dataset using PCA, and then using the 
median of the first principal component as the cutoff point. 
P-values were calculated using the log-rank test.

Colon metastatic-potential cohort

The TGFβ-EMT signature was applied to a cohort of 
96 colon tumors from patients metastasis-free at diagnosis 
[47] that were normalized with IRON. The first principal 
component was used to assign TGFβ-EMT signature 
strength to each tumor, and a two-group comparison 
between patients that had metastasized at the time of 
tumor resection and those that had not was performed 
using a two-sided t-test.

Immunohistochemical staining and evaluation

A previously described lung adenocarcinoma Tissue 
Microarray (TMA) was used for these studies [34]. This 

TMA included 150 cores from primary adenocarcinomas, 
58 cores of adjacent normal lung tissue, 14 cores from 
non-lung tissue controls (normal and cancer), and 10 
samples of lung cancer cell lines. TMA slides were cut into 
4-µm sections and stained in the Moffitt Pathology Core 
with antibodies against CDH1 (#760-4440, Cell Marque, 
Rocklin, CA), SMAD7 (ab76498, Abcam, Cambridge, 
MA), PLAUR (PA5-15478, Thermo Fisher Scientific), 
A2A (ab3461, Abcam; BTLA, LS-B9823, Lifespan 
Bioscience, Seattle, WA), CTLA4 (sc-376016, Santa 
Cruz), INOS (ab3523, Abcam; Ki67, 790-4286, Ventana, 
Tucson, AZ), LAG3 (ab180187, Abcam), PDL1 (#13684, 
Cell Signaling, Danvers, MA), and TIM3 (AF2365, 
R&D Systems). Antigen retrieval and incubation times 
were optimized for each antibody as follows: 60-minute 
retrieval for CTLA4, TIM3, and SMAD7 antibodies, and 
32-minute incubation for the A2A, BTLA, LAG3, and 
INOS antibodies. The Ventana Benchmark XT platform 
was used for all immunohistochemistry analyses. Each 
TMA slide was scanned using the Aperio (Vista, CA) 
ScanScope XT with a ×20/0.8 numerical aperture 
objective lens at a rate of 10 minutes per slide. Image 
analyses for stained TMAs were performed using Aperio 
Nuclear v9.1 to segment nuclei of various intensities.

The data discussed in this publication have been 
deposited in NCBI’s Gene Expression Omnibus (Edgar 
et al., 2002) and are accessible through GEO Series 
accession number GSE114761 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc= GSE114761).
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