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N6-Methyladenosine (m6A) is the most abundant modification on eukaryote messenger
RNA and plays a key role in posttranscriptional regulation of RNA metabolism including
splicing, intracellular transport, degradation, and translation. m6A is dynamically regulated
by methyltransferases (writers), RNA-binding proteins (readers), and demethylases
(erasers). Recent studies demonstrate that perturbation of m6A regulators remarkably
influences cell fate transitions through rewiring various biological processes, such as
growth, differentiation, and survival. Moreover, aberrant m6A modification is implicated in a
variety of diseases, in particular cancer. In this review, we describe the functional linkage of
m6A modifications to cellular reprogramming and cancer stemness properties.
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INTRODUCTION

N6-Methyladenosine modification (m6A) refers to the methylation of the adenosine base at the
nitrogen-6 position and tends to occur in a consensus sequence RRACH. It was originally discovered
in 1970s and now recognized as the most abundant modification present in eukaryotic messenger
RNA (mRNA) (Desrosiers et al., 1974; Adams and Cory, 1975; Lavi and Shatkin, 1975; Wei et al.,
1975). m6A modification is present in different types of RNAs including mRNAs, transfer RNAs
(tRNAs), ribosomal RNAs (rRNAs), circular RNAs (circRNAs), micro RNAs (miRNA), and long
non-coding RNAs (lncRNAs) (Liu and Pan, 2016). The process of m6Amodification is reversible and
regulated by methyltransferases (writers), demethylases (erasers), and RNA-binding proteins
(readers). Methyltransferase complex consisting of methyltransferase 3 (METTL3) (Bokar et al.,
1997), methyltransferase 14 (METTL14) (Liu et al., 2014), and WT1-associated protein (WTAP)
(Ping et al., 2014) catalyzes m6A formation. Other m6A writers such as RNA-binding motif protein
15/15B (RBM15/15B) (Patil et al., 2016), vir-like M6A methyltransferase associated (VIRMA) (Yue
et al., 2018), and zinc finger CCCH-type containing 13 (ZC3H13) (Wen et al., 2018) have been
identified to facilitate the function of the methyltransferase complex. On the other hand, fat mass and
obesity-associated protein (FTO) (Jia et al., 2011) and AlkB homolog H5 (ALKBH5) (Zheng et al.,
2013; Alemu et al., 2016), two key demethylases, demethylate m6A modification. Besides, m6A
readers, e.g., YTH domain-containing proteins (YTHDF1-3 (Wang et al., 2014a; Wang et al., 2015;
Shi et al., 2017) and YTHDC1-2 (Xiao et al., 2016; Wojtas et al., 2017)) and insulin-like growth
factor-2 mRNA-binding proteins (IGF2BP1/2/3) (Huang et al., 2018), target m6A marks of
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transcripts and trigger RNA processing and metabolism such as
alternative splicing, intracellular transport, degradation, and
translation.

Self-renewal and differentiation are two unique properties of
stem cells with the former referring to the capability of stem cells
to make more stem cells and maintain the undifferentiated state,
while the latter indicating the change of stem cells to a more
specialized cell type. Notably, the processes of self-renewal and
differentiation are controlled at a transcriptional level wherein
epigenetic and epitranscriptomic regulation play critical roles. To
date, m6A is proven to be a mark of transcriptome flexibility
involved in regulating the function of stem cells. Emerging
evidence have demonstrated that m6A modifications are
involved in the process of mouse embryonic development
(Geula et al., 2015), stem cell self-renewal (Batista et al., 2014;
Wang et al., 2014b), spermatogenesis (Zheng et al., 2013), and so
on. However, the origins and functions of m6A marks in
reprogramming stemness properties are still largely unclear.

Perturbation of m6A regulators strongly affects gene
expression patterns and biological functions of cells, leading to
a variety of diseases including cancer. Recent evidence reveals a
subpopulation of tumor cells, named cancer stem cells (CSCs),
responsible for tumor initiation, metastasis, and relapse. The roles
of cancer stem cells have been reported in both solid (Visvader
and Lindeman, 2008) and hematological cancers (Zagozdzon and
Golab, 2015), although the origin of the CSCs remains elusive.
They may derive from differentiated cells or tissue-resident stem
cells upon tumor initiation. Intriguingly, genes critical for self-
renewal of normal stem cells also function as cancer-related
genes, e.g., Bmi-1 (Siddique and Saleem, 2012), Nanog
(Gawlik-Rzemieniewska and Bednarek, 2016), Notch

(Ranganathan et al., 2011), Sox2 (Novak et al., 2020), and
Wnt (Zhan et al., 2017). Given that m6A modifications
regulate the expression of stemness-related genes, it is not
surprising that they also play an important role in CSCs
(Zhang et al., 2016; Li et al., 2017; Zhang et al., 2017; Chen
et al., 2021).

In this review, we discuss recent studies that underscore the
multifaceted role of m6A modifications in controlling gene
expression, highlighting key findings that m6A modifications
are essential in stem cells reprogramming and cancer stemness
properties regulation.

N6-METHYLADENOSINE AND RNA
METABOLISM

m6A controls almost every step of RNA metabolism including
alternative splicing, intracellular transport, degradation, and
translation (Figure 1). In this part, we describe the influences
of m6A writers, erasers, and readers on RNA metabolic process
through dynamic regulation of m6A.

N6-Methyladenosine and Alternative
Splicing
Alternative splicing (AS) is the process of making messenger
RNA (mRNA) from messenger RNA precursor (pre-mRNA) by
selecting different combinations of splice sites in pre-mRNA, thus
allowing a single gene to code for multiple proteins. AS is essential
for generating functional diversity given the limited gene number
in eukaryotic organisms. Emerging evidence shows that m6A

FIGURE 1 |m6A modifications and RNA metabolism. Dynamic m6A modifications inside cells influence almost every step of RNA metabolism including alternative
splicing, intracellular transport, degradation, and translation.
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writers, METTL3, METTL14, and WTAP, and m6A erasers,
ALKBH5 and FTO, are located in nuclear speckles where the
AS occurs, indicating a potential role of m6A for controlling pre-
mRNA processing. In support of this, treatment of
S-adenosylmethionine (SAM) synthesis inhibitors, neplanocin
A or cycloleucine, reduced RNA m6A methylation and
resulted in nuclear accumulation of unspliced transcripts
(Stoltzfus and Dane, 1982; Carroll et al., 1990). Consistently,
Dominissini et al. observed a correlation between m6A
methylation of multi-isoform genes and isoform switching by
analyzing human and mouse transcriptome-wide m6A profiling
(Dominissini et al., 2012).

METTL3 was found to colocalize with spliceosomal protein
U2 small nuclear ribonucleoprotein B’’ (U2B′)’ in nuclear
speckles (Bokar et al., 1997). Silencing of METTL3 could affect
AS patterns and gene expressions (Dominissini et al., 2012).
WTAP is a regulatory subunit of RNA m6A methyltransferase
complex. Localization of METTL3 and METTL14 into nuclear
speckles requires interaction withWTAP. Yang et al. showed that
WTAP promoted METTL3 and METTL14 accumulation in
nuclear speckles and regulated AS of targeted genes (Ping
et al., 2014). Knockdown of METTL3 or WTAP led to a
remarkable change of transcriptional isoform numbers (Ping
et al., 2014). ALKBH5 also colocalized with mRNA-processing
factors, including phosphorylated serine/arginine-rich splicing
factor 2 (SC35), smith antigen (SM), and alternative splicing
factor/splicing factor 2 (ASF/SF2) in nuclear speckles (Zheng
et al., 2013). Similarly, FTO was present in nucleoplasm and
partially colocalized with splicing factors U4/U6.U5 tri-snRNP-
associated protein 1 (SART1), serine/arginine-rich splicing factor
2 (SC35), and RNA polymerase II phosphorylated at Ser2 (Pol II-
S2P) (Jia et al., 2011). These two key m6A erasers are both capable
of controlling mRNA splicing. ALKBH5 was found to regulate
assembly of mRNA processing factors (Zheng et al., 2013); on the
other hand, FTO depletion increased the m6A level of target
genes, thereby raising the binding capacity of serine/arginine-rich
splicing factor 2 (SRSF2) which subsequently increased inclusion
of target exons (Zhao et al., 2014). m6A reader YTHDC1 is also
engaged in the AS process. YTHDC1 was present in YT bodies
near nuclear speckles. Wild type YTHDC1, but not m6A-binding-
defective YTHDC1, could recruit pre-mRNA splicing factor
SRSF3 (SRp20) but block the binding of SRSF10 (SRp38) to
targeted mRNAs in the nucleus, thus promoting exon inclusion
(Xiao et al., 2016). All these data indicate an essential regulatory
role of m6A in mRNA splicing.

N6-Methyladenosine and RNA Export
RNAs produced in the nucleus are exported to the cytoplasm
through nuclear pore complexes. This is a fundamental step in
gene expression process. TREX complex is important for mRNA
export. Recent work identified the interactions between TREX
subunits (ALYREF, UAP56, THOC5, and CHTOP) and m6A
methyltransferases (METTL3, METTL14, WTAP, and
KIAA1429) (Lesbirel et al., 2018). The m6A methyltransferase
complex could recruit TREX to m6A-modified mRNAs to
facilitate their export (Lesbirel et al., 2018). Moreover,
depletion of KIAA1429 and WTAP led to an export block for

m6A-modified mRNAs (Lesbirel et al., 2018). m6A eraser
ALKBH5 also affects mRNA export dependent on its
demethylation activity. Cytoplasmic mRNA level was
significantly increased after silencing of ALKBH5 because of
accelerated nuclear RNA export; re-expression of wild type
ALKBH5, but not catalytic inactive mutant H204A, could
rescue this phenomenon (Zheng et al., 2013). Binding of
YTHDC1 to m6A-modified genes is important for mRNA
export. Knockdown of YTHDC1 induced an export block for
nuclear m6A-modified mRNA, resulting in accumulation of
transcripts in the nucleus (Roundtree et al., 2017).
Mechanistically, YTHDC1 interacted with SRSF3, an mRNA
export adaptor, to increase RNA binding to SRSF3 (Roundtree
et al., 2017).

m6A modifications also participate in circular RNA nuclear
export. Depletion of m6A writer METTL3 induced circNSUN2
accumulation in the nucleus, and re-expression of METTL3 could
rescue this phenomenon (Chen et al., 2019). Moreover, the m6A
reader YTHDC1 was capable of binding to m6A marks of
circNSUN2 in the backsplicing junction sites to facilitate the
export process (Chen et al., 2019). Together, m6A modifications
regulate RNA export.

N6-Methyladenosine and RNA Decay
RNA decay is the process whereby RNA is enzymatically
degraded. RNA decay is important for effective mRNA
surveillance and turnover. Accumulating evidence suggest m6A
modifications affect RNA stability through dynamic interplays
with RNA-binding proteins. In mouse embryonic stem cells, m6A
level was found to be negatively correlated with mRNA stability
(Wang et al., 2014b). m6A writers METTL3 and METTL14 could
form a stable heterodimer to catalyze m6A deposition on RNA.
Downregulation of METTL3 and METTL14 reduced the m6A
level of mRNA, resulting in more binding of human antigen R
(HuR) to mRNA which in turn promoted mRNA stability (Wang
et al., 2014b). In line with these findings, depletion of METTL3 in
both human and mouse cells led to m6A erasure and prolonged
half-life of targeted mRNAs (Batista et al., 2014). Although
WTAP lacks m6A catalytic activity, it binds to METTL3-
METTL14 complex to enhance m6A deposition. As such,
WTAP-mediated m6A modifications were negatively correlated
with mRNA stability (Schwartz et al., 2014). Furthermore,
silencing of METTL3, METTL14, or WTAP reduced global
m6A methylation and increased the lifetime of nascent RNAs
(Liu et al., 2014). Therefore, m6A modifications affect RNA
stability.

Recent reports state that YTHDF2 is the major decay-inducing
reader protein that binds to m6A-modified mRNAs to facilitate
RNA degradation (Du et al., 2016; Park et al., 2019). Two distinct
mechanisms of YTHDF2-induced mRNA degradation have been
identified: RNase P/MRP-mediated endoribonucleolytic-cleavage
pathway and carbon catabolite repression 4 (CCR4)-negative on
TATA-less (NOT)-mediated deadenylation pathway, depending
on whether messenger ribonucleoprotein (mRNP) has heat-
responsive protein 12 (HRSP12)-binding site or not (Lee et al.,
2020). Showed that m6A-modified RNAs underwent
endoribonucleolytic cleavage via YTHDF2, HRSP12, and
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RNase P/MRP, of which HRSP12 acted as an adaptor to connect
YTHDF2 and RNase P/MRP Park et al. (2019). In this case,
HRSP12-binding site and RNase P/MRP-directed cleavage site
were identified upstream and downstream of YTHDF2-binding
site, respectively (Park et al., 2019). Of note, m6A-modified
circular RNA could also be degraded through YTHDF2-
HRSP12-RNase P/MRP-mediated endoribonucleolytic cleavage
(Park et al., 2019). On the other hand, Du et al. reported that
YTHDF2 directly recruited CCR4/NOT deadenylase complex to
m6A-modified mRNAs, leading to deadenylation of mRNAs (Du
et al., 2016). Besides, YTHDF3 was identified to regulate the RNA
accessibility of YTHDF2 and enhanced YTHDF2-mediated
mRNA decay (Shi et al., 2017). In contrast to YTHDF2-
mediated mRNA decay, a recent study revealed that IGF2BP1-
3 could recognize m6A markers through their KH domains to
stabilize m6A-modified RNA (Huang et al., 2018). Intriguingly,
although YTHDF2 and IGF2BP1-3 were all proved to bind to
m6A markers, their transcriptome-wide binding sites were
distinct (Huang et al., 2018). Therefore, m6A modifications
can either enhance or inhibit mRNA stability depending on
the binding of specific m6A readers.

N6-Methyladenosine and Messenger RNA
Translation
Translation is the decoding of mRNA by ribosomes to produce
polypeptide which later forms a functional protein inside the
cells. Recent studies demonstrate that m6A modifications
modulate mRNA translation efficiency through different
mechanisms. YTHDF1 is known to promote the translation of
m6A-modified mRNA. Mechanistically, YTHDF1 could promote
ribosome occupancy of targeted mRNA in the cytoplasm by
recruiting the initiation factor eukaryotic initiation factor 3
(eIF3) (Wang et al., 2015). In addition, YTHDF3 was reported
to facilitate YTHDF1-promoted translation (Shi et al., 2017).
METTL3 also enhances mRNA translation. Barbieri et al. found
that the transcription factor, CEBPZ, recruited METTL3 to the
promoters of select active gene to catalyze m6Amethylation in the
coding region (CDS) of targeted mRNA, resulting in enhanced
translation by relieving ribosome stalling (Barbieri et al., 2017).
Consistently, knockdown of METTL3 decreased translational
efficiency of m6A-modified transcripts in both human myeloid
leukemia and HeLa cell lines (Vu et al., 2017). Surprisingly,
METTL3-promoted translation could be independent of m6A
catalytic activity (Lin et al., 2016). Gregory and others showed
that tethering a wild type or catalytically inactive METTL3 to the
3′UTR of a reporter mRNA exhibited similar translation
enhancement (Lin et al., 2016). They further identified a direct
physical and functional interaction between METTL3 at 3′UTR
near the stop codon and eIF3h at the 5′ untranslated region (5′
UTR) of the mRNA and that METTL3-eIF3h loop may promote
translation through ribosome recycling (Choe et al., 2018).
Intriguingly, depletion of YTHDF1 did not influence the
expression of METTL3 targets (Choe et al., 2018). Thus,
METTL3 promotes mRNA translation through diverse
mechanisms. It is worth noting that mouse embryonic stem
cells (mESCs) with METTL3 knockout exhibited a modest

increased translation efficiency (TE) compared to wild type
(WT) cells, although this effect was observed for both
methylated and unmethylated transcripts with higher GC
content (Geula et al., 2015). In this study, loss of m6A could
directly enhance mRNA stability of m6A-marked transcripts
while indirectly favoring translation of GC-rich transcripts
(Geula et al., 2015). Intriguingly, Slobodin et al. reported that
transcription rate positively affected the efficiency of mRNA
translation which was mediated by m6A modification
(Slobodin et al., 2017). Therefore, mRNA m6A could mediate
the communication between transcription and translation.

Qian and Jaffrey’s team suggested that m6A could enable
mRNA translation in a cap- and IRES-independent manner
(Meyer et al., 2015; Zhou et al., 2015; Coots et al., 2017; Zhou
et al., 2018). They showed that heat shock stress promoted
nuclear localization of YTHDF2 which in turn increased 5′
UTR m6A of stress-inducible mRNAs through competing with
FTO in preserving m6A modification, leading to enhanced cap-
independent translation initiation (Zhou et al., 2015). In addition,
eIF3 could bind to 5′ UTR m6A and recruit the 43S complex to
initiate translation without the cap-binding factor eIF4E under
stress (Meyer et al., 2015). Furthermore, depletion of METTL3
selectively inhibited translation of mRNAs with 5′UTRm6A, but
not mRNAs with 5′ terminal oligopyrimidine (TOP) elements
(Coots et al., 2017). Notably, ABCF1 was identified to coordinate
with METTL3 in promoting translation of m6A-modified mRNA
(Coots et al., 2017). Thus, 5′ UTR m6A facilitates cap-
independent translation under stress.

m6A is also thought to facilitate efficient translation of circular
RNA (circRNA) (Yang et al., 2017). Initiation factor eIF4G2 and
YTHDF3 were identified to be required for m6A-driven circRNAs
translation, which were enhanced by METTL3/14-mediated
methylation or suppressed by FTO-mediated demethylation
(Yang et al., 2017). Consistently, Bozzoni et al. demonstrated
that METTL3 and YTHDC1 could direct the back-splicing
reaction of circRNAs, and recognition of m6A marks by
YTHDF3 and eIF4G2 modulate circRNAs translation (Di
Timoteo et al., 2020).

N6-METHYLADENOSINE AND CELLULAR
REPROGRAMMING

Mammalian development is thought to be continuous and
unidirectional in which stem cells give rise to specialized
differentiated cells through a series of cellular changes.
However, recent studies have shown that it is possible to
modify cell identity by somatic cell nuclear transfer (SCNT)
(Matoba and Zhang, 2018), forced expression of specific
transcription factors (Takahashi and Yamanaka, 2016) or
micro-RNAs (Judson et al., 2009), and using small signaling
molecules (Hou et al., 2013). In 2006, Kazutoshi Takahashi
and Shinya Yamanaka successfully reprogrammed mouse
embryonic fibroblasts (MEF) and adult mouse tail-tip
fibroblasts to generate induced pluripotent stem cells (iPSCs)
by ectopic expression of four transcription factors, namely Oct3/
4, Sox2, c-Myc, and Klf4 (Takahashi and Yamanaka, 2006). In
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2007, they further demonstrated the generation of iPSC from
adult human dermal fibroblasts with the same four factors
(Takahashi et al., 2007). The fact that terminally differentiated
somatic cells can be reprogrammed to generate iPSCs has opened
new gateways for therapeutics research. Recent evidence has
revealed epigenetic profile changes during the process of cell
differentiation and reprogramming and that epigenetic
perturbations could affect the efficiency of reprogramming
iPSCs (Young, 2011; Liang and Zhang, 2013; Hochedlinger
and Jaenisch, 2015; Xu and Xie, 2018). In this part, we
describe the influences of m6A modifications on stemness and
reprogramming.

N6-Methyladenosine and Stemness
To maintain self-renewal and pluripotency, stem cells need to
stably express pluripotency genes; however, they are also capable
of rapidly altering gene expression programming for
differentiation. m6A is involved in cell fate determination and
is now considered as a mark of transcriptome flexibility required
by stem cells. Zhao and others identified that depletion of
METTL3 or METTL14 in mESCs suppressed m6A methylation
and self-renewal capability (Wang et al., 2014b). Mechanistically,
m6A marks blocked the binding of RNA stabilizer protein HuR
and protected mRNA from degradation induced by RNA-
induced silencing complex (RISC) (Wang et al., 2014b).
Consequently, developmental regulators were more enriched
than pluripotency genes upon METTL3 or METTL14
knockdown (Wang et al., 2014b). Thus, METTL3/METTL14-
mediated m6A modification is required to maintain the
pluripotency of ES cells. However, Batista et al. reported that
m6A loss promoted ESC self-renewal and hindered
differentiation (Batista et al., 2014). In this study, they profiled
m6A methylome in mouse and human ESCs, revealing extensive
m6A modification of ESC genes, including core pluripotency
regulators such as Nanog, Klf4, Myc, Lin28, Med1, Jarid2, and
Eed (Batista et al., 2014). They considered m6A as a mark for
RNA turnover over in a timely fashion, and knockout of METTL3
improved mESCs self-renewal without affecting cell viability
(Batista et al., 2014). The differences in phenotypes between
these two studies may partially be explained by the
methodology used (RNAi and CRISPR) which may affect
downstream m6A-modified RNAs pattern. Another possibility
is that the mESCs used in these two studies were at different
states. TGFβ signaling is essential for human pluripotent stem
cells (hPSCs) to maintain pluripotency (James et al., 2005).
Vallier et al. identified a functional interaction between
SMAD2/3 transcription factors and METTL3-METTL14-
WTAP complex (Bertero et al., 2018). SMAD2/3 could
promote the binding of METTL3-METTL14-WTAP to specific
SMAD2/3 transcriptional targets involved in early cell fate
decisions, e.g., pluripotency factor gene NANOG, leading to
increased m6A methylations that facilitate mRNA degradation
(Bertero et al., 2018). Consequently, m6A-mediated rapid
downregulation of SMAD2/3-targeted genes facilitated timely
shut down of pluripotency on differentiation (Bertero et al.,
2018). Intriguingly, Filipczyk and others reported that
depletion of m6A could both support pluripotency

maintenance and exit through activating pAkt and pErk
signaling, respectively (Jin et al., 2021).

m6A modification is required for embryo development.
Knockout of METTL3 or METTL14 led to early embryonic
lethality (Geula et al., 2015; Meng et al., 2019). In Mettl3−/−

mice, preimplantation epiblasts and naïve embryonic stem cells
with loss of m6A were still viable; however, they failed to
terminate the naïve state toward lineage differentiation,
resulting in early embryonic lethality (Geula et al., 2015). The
abnormal expression and location of NANOG caused by
METTL3 ablation was regarded as the leading cause (Geula
et al., 2015). Meanwhile, METTL14 is indispensable for
postimplantation embryonic development. Silencing of
METTL14 contributed to abnormal embryo development since
embryonic day 6.5 (E6.5), mainly due to resistance to
differentiation (Meng et al., 2019). Mechanistically, METTL14
depletion caused dysregulation of genes associated with embryo
development pathways (Meng et al., 2019). The m6A readers
YTHDF2 and YTHDC1 are also important for mammalian
development (Ivanova et al., 2017; Kasowitz et al., 2018).
Maternal RNA degradation, which was mediated by YTHDF2,
facilitated oocyte maturation; oocytes with YTHDF2 deficiency
failed to change metaphase II (MII) transcriptome, leading to
female-specific infertility in mice (Ivanova et al., 2017). On the
other hand, knockout of YTHDC1 caused massive alternative
splicing defects in oocytes, resulting in a block at the primary
stage of folliculogenesis (Kasowitz et al., 2018).

N6-Methyladenosine and Epitranscriptomic
Reprogramming
The epigenetic modifications could lock cells into a differentiated
state during cell differentiation; therefore, targeting repressive
epigenetic marks in differentiated cells improve the efficiency of
iPSC formation (Huangfu et al., 2008; Shi et al., 2008). Recent
studies also pinpoint m6A as an important player during cellular
reprogramming. Chen et al. reported that m6A formation
facilitated cell reprogramming to pluripotency (Chen et al.,
2015). In this study, lots of cell-type specific markers are
m6A-modifed, such as Oct4, Nanog, and DPPA2 for ESCs and
iPSCs; POU3F2 and ROBO2 for neural stem cells; and DHH and
Sox8 for testicular sertoli cells (Chen et al., 2015). These genes are
critical for stem cell maintenance and developmental regulation.
Intriguingly, miRNAs could target m6A marks by base pairing
and modulate the binding of METTL3, thus leading to the change
of cellular m6A abundance (Chen et al., 2015). Deletion of Dicer,
an essential endonuclease for producing mature miRNAs,
remarkably inhibited the RNA m6A level; in contrast,
overexpression of miRNAs increased the binding of METTL3
on mRNAs and enhanced m6A abundance (Chen et al., 2015). To
investigate the role of m6A in cell reprogramming, manipulation
of METTL3 was conducted in MEFs transduced with four
Yamanaka transcription factors. The result indicated that
ectopic expression of METTL3 increased colonies of iPSC,
enhanced expressions of key pluripotent factors (Oct4, Sox2,
and Nanog), and promoted the reprogramming of MEFs to
pluripotent stem cells; conversely, depletion of METTL3
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reduced m6A and led to impeded reprogramming (Chen et al.,
2015).

The crosstalk between epigenetic and epitranscriptomic
networks is important to cellular reprogramming. Aguilo et al.
reported that chromatin-associated zinc finger protein 217
(ZFP217) coordinated epigenetic and epitranscriptomic
regulation to ensure ESC self-renewal and somatic cell
reprogramming (Aguilo et al., 2015). They identified gradually
increased ZFP217 expression along with decreased METTL3
expression during somatic reprogramming (Aguilo et al.,
2015). ZFP217 could induce transcription of core
reprogramming factors and repress m6A deposition of
pluripotency genes by sequestering METTL3 (Aguilo et al.,
2015). Depletion of ZFP217 in MEFs increased the m6A level
of Nanog, Sox2, Klf4, and c-Myc mRNAs, promoting their
degradation and leading to diminished iPSC colonies
formation; this phenomenon could be partially rescued by
METTL3 knockdown (Aguilo et al., 2015). Therefore, m6A
modifications may be a barrier for ZFP217-meidiated somatic
cell reprogramming. In support of these, Song et al. demonstrated
that ZFP217 suppressed m6A mRNA methylation by promoting
FTO expression (Song et al., 2019). Silencing of ZFP217
decreased FTO expression to enhance m6A levels, resulting in
retarded adipogenic differentiation (Song et al., 2019).

So, how to understand the conflicting phenomena regarding
the role of m6A on somatic cell reprogramming? One possible
explanation is that m6A on cell fate choice is context dependent.
Geula et al. reported that depletion of METTL3 exerted a
divergent effect on naïve and primed PSCs (Geula et al.,

2015). In naïve PSCs, pluripotency genes were highly
expressed, and silencing of METTL3 could further enhance
their expression to boost naïve circuitry stability; by contrast,
the expression of pluripotency genes was downregulated while
lineage commitment markers were upregulated in primed cells;
thus silencing of METTL3 exerted a minor effect on expression of
pluripotency genes while it remarkably increased the expression
of lineage commitment markers, making the cells tend toward
differentiation (Geula et al., 2015). Therefore, epigenetics and
epitranscriptomics can form a complex network to regulate stem
cell pluripotency and differentiation.

N6-METHYLADENOSINE AND CANCER
STEM CELLS

CSCs or tumor-initiating cells (TICs) are a small subpopulation
of cancer cells which could give rise to tumors through processes
of self-renewal and differentiation, just like normal stem cell
(Figure 2). Tumor development and iPSC generation share
striking similarities on gene expression programming,
implying a potential link between pluripotency and cancer
(Wong et al., 2008). Furthermore, recent evidence state that
cancer cells could be reprogrammed to retrieve benign cell
functions or differentiate into other unrelated cell types by re-
expression of lineage-specific genes, opening a new avenue for
cancer treatment (Bussard et al., 2010; Pezzolo et al., 2011).
Understanding the molecular drivers of CSCs will advance the
development of anticancer therapeutics. In this section, we
summarize the key findings on how m6A modifications
modulate cancer stemness (Table 1).

N6-Methyladenosine and Solid Tumors
Solid tumors refer to an abnormal mass of tissue in “solid” organs.
Gastrointestinal (GI) cancer is one of them, referring to cancers
that affect the digestive system, e.g., colorectal cancer (CRC),
gastric cancer (GC), and liver cancer. Several m6A regulators have
been reported to play important roles in GI cancer. Our team
recently identified the novel oncogenic epitranscriptome axis of
METTL3-m6A-GLUT1-mTORC1 (Chen et al., 2021) and
YTHDF1-m6A-ARHGEF2 (Wang et al., 2022) in promoting
CRC tumorigenesis. In the former study, METTL3 was found
to promote GLUT1 translation in an m6A-dependent manner by
integrative m6A sequencing, RNA sequencing, and ribosome
profiling analyses, resulting in increased glucose uptake and
lactate production which subsequently activated mTORC1
signaling; consequently, depletion of METTL3 impaired the
self-renewal capacity of colon cancer-initiating cells (Chen
et al., 2021). As to the latter study, knockdown of YTHDF1
suppressed CRC organoids and decreased cell growth;
mechanistically, YTHDF1 bind to m6A marks of ARHGEF2
mRNA and enhanced ARHGEF2 translation by multiomic
analysis of m6A sequencing, RNA sequencing, YTHDF1 RNA
immunoprecipitation sequencing and proteomics (Wang et al.,
2022). In line with our findings, Han et al. reported that high
expression of YTHDF1 was induced by Wnt signaling in
intestinal stem cells (ISCs) which in turn promoted translation

FIGURE 2 | Cancer stem cells are key drivers to tumor initiation and
progression. Cancer stem cells (CSCs) have been identified in different type of
solid cancers (colorectal cancer, gastric cancer, liver cancer, glioblastoma,
melanoma, breast cancer, lung cancer, and ovarian cancer) and
hematological cancers (myeloid leukemia, lymphoma, and myeloma).
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of TCF7L2/TCF4, leading to enhanced β-catenin activity that
promoted stemness of ISCs (Han et al., 2020). YTHDF1 also
activates Wnt/β-catenin signaling in GC. Pi et al. revealed that
YTHDF1 increased translation of frizzled7 (FZD7), a key Wnt
receptor, in an m6A-dependent manner; consequently,
hyperactivation of the Wnt/β-catenin was induced that
facilitated GC tumorigenesis (Pi et al., 2021). Intriguingly, long
non-coding RNAs (lncRNAs) could influence the m6A
modification process. LNC942 was identified to induce GC
stemness and chemoresistance by stabilizing Musashi2 (MSI2),
a member of RNA-binding proteins (RBPs); MSI2 then bind to
m6A sites of c-Myc mRNA to increase mRNA stability (Zhu et al.,
2022).

Current evidence also pinpoints a pivotal role of m6A
modifications in liver cancer stem cells (Zhang et al., 2020;
Zhou et al., 2020; Bian et al., 2021; Wang et al., 2021). In
purified CD133+ liver cancer stem cells, knockdown of
YTHDF2 impaired tumor-initiating ability; in contrast,
overexpression of YTHDF2 exerted the opposite effect (Zhang
et al., 2020). YTHDF2 was capable of binding to m6A sites in the
5′UTR of OCT4 mRNA to promote its translation as determined
by luciferase activity assay and polysome profiling assay (Zhang
et al., 2020). Meanwhile, METTL14 induced m6A methylation of
hepatocyte nuclear factor 3γ (HNF3γ) mRNA, a hepatocyte
nuclear factor, leading to reduced HNF3γ expression in
hepatocellular carcinoma (HCC) (Zhou et al., 2020). Notably,
enforced HNF3γ expression promoted differentiation of HCC
cells and liver CSCs, resulting in retarded growth of HCC (Zhou
et al., 2020). In addition, HNF3γ expression rendered sensitivity
of HCC cells to sorafenib treatment, implying the potential of
HNF3γ as a therapeutic target for HCC (Zhou et al., 2020). RALY
RNA-binding protein-like (RALYL), a liver progenitor specific
gene, was also related with HCC differentiation (Wang et al.,
2021). Overexpression of RALYL suppressed the m6A level of

TGF-β2 mRNA to enhance its mRNA stability, leading to
subsequent activation of TGF-β signaling that contributed to
HCC self-renewal and chemoresistance (Wang et al., 2021). In
this study, FTO was found to bind to RALYL and thought to be
responsible for m6A demethylation of TGF-β2 mRNA (Wang
et al., 2021). Furthermore, FTO-mediated RNA demethylation
was also involved in S-adenosylmethionine decarboxylase
proenzyme (AMD1)-induced cancer stemness in HCC (Bian
et al., 2021). AMD1 was capable of stabilizing the interaction
between Ras GTPase-activating-like protein 1 (IQGAP1) and
FTO, leading to enhanced FTO expression which in turn
promoted HCC stemness (Bian et al., 2021). Together, m6A
modifications are critical for self-renewal and differentiation of
CSCs in GI cancer.

Dysregulated m6A modifications play an important role in lung
cancer. Yin et al. identified an lncRNA named RNA Component of
Mitochondrial RNA Processing Endoribonuclease (RMRP) which
exhibited enriched m6A modifications and increased RNA stability
in non-small cell lung cancer (NSCLC) (Yin et al., 2021). Both
in vitro and in vivo experiments in this study revealed that RMRP
induced TGFBR1/SMAD2/SMAD3 axis and promoted the cancer
stem cell properties of NSCLC (Yin et al., 2021). However, howm6A
modifications regulate RMRP stability warrants further
investigation. On the other hand, Liu et al. (2022) recently
reported that ALKBH5 was highly expressed in CSCs isolated
from NSCLC. They revealed that depletion of ALKBH5 increased
the global m6A level, suppressed expression of Nanog and Oct4, two
essential transcription factors for self-renewal and pluripotency of
ESCs, and inhibited stemness of CSCs (Liu et al., 2022). Intriguingly,
p53 was reported to regulate malignancies of CSCs partially through
transactivating ALKBH5 expression (Liu et al., 2022).

Glioblastoma is a prevalent and malignant cancer that occurs
in the brain or spinal cord. m6Amodifications could regulate gene
expression and cell fate in glioblastoma stem-like cells (GSCs).
Compared to normal neural stem cells (NSCs), GSCs
preferentially expressed YTHDF2 which was essential for
GSCs maintenance (Dixit et al., 2021). Intriguingly, instead of
destabilizing mRNAs, YTHDF2 was found to increase MYC and
VEGFA mRNA stability in an m6A-dependent manner in GSCs,
although the mRNA-stabilizing function of YTHDF2 was unclear
(Dixit et al., 2021). YTHDF2-MYC-IGFBP3 axis was further
identified to promote glioblastoma growth both in vitro and in
vivo (Dixit et al., 2021). Importantly, administration of linsitinib,
an IGF1/IGF1R inhibitor, exerted potent inhibitory effect against
YTHDF2-expressing GSCs without affecting NSCs (Dixit et al.,
2021). ALKBH5 was also found highly expressed in GSCs, and
silencing of ALKBH5 inhibited the growth of patient-derived
GSCs (Zhang et al., 2017). Mechanistically, ALKBH5 reduced the
m6A level of FOXM1 mRNA, resulting in enhanced FOXM1
expression which in turn promoted GSC tumorigenesis (Zhang
et al., 2017). m6A modifications are critical for self-renewal of
GSCs. Knockdown of METTL3 or METTL14 promoted growth,
self-renewal, and tumorigenesis of human GSC; conversely,
overexpression of METTL3 or inhibition of FTO exerted the
opposite effect (Cui et al., 2017). ADAM19 was a downstream
target of METTL3/METTL14 that exerted critical biological
functions in GSCs (Cui et al., 2017). m6A modifications could

TABLE 1 | M6A-mediated molecular events in different cancer types.

Cancer type Molecular event

Acute myeloid leukemia FTO-m6A-ASB2/RARA Li et al. (2017)
FTO-m6A-MYC/CEBPA Su et al. (2018)

Breast cancer ALKBH5-m6A-NANOG Zhang et al. (2016)
METTL14-m6A-DROSHA Peng et al. 2021)

Colorectal cancer METTL3-m6A-GLUT1-mTORC1 Chen et al. (2021)
YTHDF1-m6A-ARHGEF2 Wang et al. (2022)
YTHDF1-m6A-TCF7L2/TCF4-β-catenin Han et al. (2020)

Gastric cancer YTHDF1-m6A-FZD7-Wnt/β-catenin Pi et al. (2021)
Glioblastoma YTHDF2-m6A-MYC-IGFBP3 Dixit et al. (2021)

ALKBH5-m6A-FOXM1 Zhang et al. (2017)
METTL3/METTL14-m6A-ADAM19 Cui et al. (2017)
METTL3-m6A-SRSF Li et al. (2019)

Liver cancer YTHDF2-m6A-OCT4 Zhang et al. (2020)
METTL14-m6A-HNF3γ Zhou et al. (2020)
FTO-m6A-TGF-β2 Zhou et al. (2020)

Lung cancer ALKBH5-m6A-Nanog/Oct4 Liu et al. (2022)
Lymphoma WTAP-m6A-HK2 Han et al. (2021)

ALKBH5/FTO-m6A-SPI1/PHF12 Wu et al. (2021)
Multiple myeloma FTO-m6A-HSF1 Xu et al. (2022)

ALKBH5-m6A-TRAF1 Qu et al. (2022)
Ovarian cancer FTO-m6A-PDE1C/PDE4B Huang et al. (2020)
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influence nonsense-mediated mRNA decay (NMD) in GSCs. Li
et al. reported that METTL3 regulated the NMD of splicing
factors and AS process in glioblastoma (Li et al., 2019). Depletion
of METTL3 inhibited the m6A levels of serine- and arginine-rich
splicing factors (SRSF), leading to NMD of SRSF which was
mediated by YTHDC1 (Li et al., 2019). Subsequently,
downregulated SRSFs significantly changed alternative splicing
events of several genes including BCL-X and NCOR2,
contributing to suppression of GSCs self-renewal (Li et al.,
2019). All these findings establish a critical role of m6A
modifications in GSCs.

Breast cancer and ovarian cancer are common cancers in
women. m6A modifications exert profound and diverse functions
in breast cancer stem cells and ovarian cancer stem cells. In
response to hypoxia, hypoxia-inducible factor (HIF)-1α and HIF-
2α were stimulated to promote ALKBH5 expression in breast
cancer cells; subsequently, ALKBH5 inhibited the m6A level in
the 3′UTR of Nanog mRNA and increased NANOG expression,
resulting in enhanced breast cancer stem cell phenotype (Zhang
et al., 2016). Conversely, ALKBH5 knockdown in human breast
cancer cells suppressed tumor initiation capacity (Zhang et al.,
2016). Therefore, ALKBH5-mediated m6A modifications play a
pivotal role in maintaining breast cancer stemness in the hypoxic
environment. Aurora kinase A (AURKA) is a member of serine/
threonine kinases family and was reported to stabilize METTL14
protein by preventing its ubiquitylation in breast cancer stem-like
cells (Peng et al., 2021). Subsequently, upregulated METTL14
expression induced the m6A level of DROSHA, a Class 2
ribonuclease III enzyme, to stabilize DROSHA mRNA which
was meditated by m6A reader IGF2BP2 (Peng et al., 2021).
Intriguingly, AURKA could strengthen the binding of
IGF2BP2 to DROSHA mRNA, thus promoting DROSHA
expression (Peng et al., 2021). Furthermore, DROSHA
interacted with β-catenin to transactivate STC1, resulting in
enhanced stemness of breast cancer (Peng et al., 2021). In
ovarian cancer, FTO is suggested to suppress self-renewal of
ovarian CSCs. Huang et al. revealed reduced FTO expression in
ovarian tumors and ovarian CSCs (Huang et al., 2020). In this
study, ectopic expression of FTO in ovarian cancer cells inhibited
the m6A level in the 3′UTR of two phosphodiesterase genes,
PDE1C and PDE4B, and reduced their mRNA stability, leading to
activation of second messenger 3′, 5′-cyclic adenosine
monophosphate (cAMP) signaling and suppression of
stemness features (Huang et al., 2020). Furthermore, FTO
could suppress self-renewal of ovarian CSCs in vivo in an
m6A-dependent manner (Huang et al., 2020). All these studies
unveil a key role of m6A modifications in regulating stemness
phenotype of breast cancer and ovarian cancer.

N6-Methyladenosine and Hematological
Tumors
Hematologic malignancies comprise three main types:
leukemia, lymphoma, and multiple myeloma (MM). In
acute myeloid leukemia (AML), a subpopulation of AML
cells, called leukemia stem cells (LSCs), exert self-renewal
capacity and is responsible for the maintenance of the AML

phenotype. There have been numerous studies reporting the
functional importance of m6A modifications in AML. Li et al.
revealed increased expression of FTO in AML (Li et al., 2017).
High FTO expression suppressed the m6A levels of ankyrin
repeat and SOCS box protein 2 (ASB2) and retinoic acid
receptor α (RARA), leading to reduced mRNA stability of
these two genes (Li et al., 2017). However, future study is
required to identify m6A readers that are responsible for
stabilizing FTO target transcripts, such as ASB2 and
RARA. Consequently, FTO promoted leukemogenesis and
inhibited Tretinoin-induced AML cell differentiation (Li
et al., 2017). Given the functional significance of FTO in
AML, several FTO inhibitors have been developed. In a
subsequent study, Su et al. reported that R-2-
hydroxyglutarate (R-2HG), originally thought to be an
oncometabolite, strongly inhibited FTO activity, thereby
increasing global m6A modifications, resulting in reduced
mRNA stability of MYC/CEBPA in R-2HG-sensitive
leukemia cells (Su et al., 2018). Of note, R-2HG treatment
also increased ASB2 and RARA expressions in R-2HG-
sensitive cells, but not in the resistant cells (Su et al.,
2018). Importantly, R-2HG exhibited a potent anti-tumor
effect against leukemia with high FTO expression by
targeting FTO-m6A-MYC/CEBPA axis (Su et al., 2018).
However, whether and how R-2HG exerted its effect on
cancer metabolism in leukemia was unclear. Accordingly,
Qing et al. showed that R-2HG could effectively inhibit
aerobic glycolysis in R-2HG-sensitive leukemia cells, but
not in normal CD34+ hematopoietic stem/progenitor cells
(Qing et al., 2021). Aerobic glycolysis, termed Warburg effect,
converts glucose to lactate even without oxygen, thereby
providing the energy required by the cancer cells. R-2HG
inhibited FTO activity and increased the m6A level of
phosphofructokinase platelet (PFKP) and lactate
dehydrogenase B (LDHB), two critical glycolytic genes,
thereby reducing their mRNA stability which was mediated
by YTHDF2 (Qing et al., 2021). Notably, FTO, PFKP, or
LDHB depletion recapitulated R-2HG-induced glycolytic
inhibition and suppressed leukemogenesis in vivo (Qing
et al., 2021). Using structure-based rational design, Huang
et al. recently developed two FTO inhibitors, FB23 and FB23-2
(derivatives of meclofenamic acid), which could directly bind
to FTO and suppress its demethylase activity (Huang et al.,
2019). FB23-2 strongly inhibited cell proliferation but
induced differentiation/apoptosis of human AML cells both
in vitro and in vivo; moreover, FB23-2 exhibited a promising
therapeutic efficacy in patient-derived xeno-transplantation
AML mouse model (Huang et al., 2019). Notably, FB23-2
treatment could significantly eliminate LSCs in these mice
models, thereby disrupting AML maintenance (Huang et al.,
2019). However, the half-maximal inhibitory concentration
(IC50) values of FB23 and FB23-2 in suppressing AML are still
high: >20 μM and >1 μM for FB23 and FB23-2, respectively
(Huang et al., 2019). To develop efficacious inhibitors against
FTO, Chen’s team conducted a structure-based virtual
screening of the 260,000 compounds and validation assays,
leading to the identification of two compounds, CS1 and CS2,
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which displayed strong inhibitory effects against FTO activity
and AML cell viability with 10- to 30-fold lower IC50 (Su
et al., 2020). FTO was frequently overexpressed in LSCs, and
pharmacological inhibition of FTO by CS1 and CS2
suppressed self-renewal of LSCs (Su et al., 2020). In
addition, targeting FTO decreased the expression of
immune checkpoints, such as PD-L1, PD-L2, and LILRB, to
reverse immune evasion of leukemia cells (Su et al., 2020),
highlighting the potential of FTO inhibitors for cancer
therapy. Nevertheless, there remains some limitations for
small-molecule FTO inhibitors, e.g., toxic side effects, the
sensitivity and specificity of inhibitors against LSCs. As such,
Cao et al. developed FTO inhibitor-loaded GSH-bioimprinted
nanocomposites (GNPIPP12MA) of synergistic FTO
inhibition and GSH depletion (Cao et al., 2022). Notably,
GNPIPP12MA not only selectively targeted LSCs but also
enhanced the efficacy of the PD-L1 blockade, thereby
suppressing leukemogenesis (Cao et al., 2022). Other m6A
regulators, such as METTL3 (Barbieri et al., 2017; Vu et al.,
2017), METTL14 (Weng et al., 2018), YTHDF2 (Paris et al.,
2019), YTHDC1 (Cheng et al., 2021; Sheng et al., 2021), and
ALKBH5 (Shen et al., 2020; Wang et al., 2020), have also been
demonstrated to regulate LSCs features and contribute to
leukemogenesis. It is worth noting that Yankova et al.
recently developed a highly potent and selective METTL3
inhibitor, named STM2457, that posed a strong effect in
suppressing growth while increasing differentiation and
apoptosis of AML (Yankova et al., 2021). Together, all
these studies suggest that targeting m6A regulators is a
potential therapeutic strategy against AML.

Myeloma is a blood cancer of plasma cells derived from bone
marrow. Recent evidence implies a functional role of m6A in MM
pathogenesis. Upregulated isocitrate dehydrogenase 2 (IDH2) in
CD138+ MM cells reduced global RNA m6A modification
through activating FTO (Song et al., 2021). The m6A level of
WNT7B mRNA was decreased by IDH2, leading to increased
WNT7B expression and subsequent activation of Wnt pathway
which eventually facilitated tumorigenesis and progression of
MM (Song et al., 2021). Consistently, FTO was highly expressed
in plasma cells from MM patients, concomitant with decreased
RNA m6A level (Xu et al., 2022). FTO inhibited m6A
modifications of heat shock factor 1 (HSF1), thereby
increasing its mRNA stability in a YTHDF2-dependent
manner (Xu et al., 2022). Importantly, FTO-m6A-HSF1
promoted MM cells growth and metastasis (Xu et al., 2022).
Similarly, ALKBH5 was overexpressed in MM and promoted
MM tumorigenesis (Qu et al., 2022). ALKBH5 inhibited m6A
modifications in 3′UTR of TNF receptor-associated factor 1
(TRAF1) and enhanced its mRNA stability, leading to
activation of NF-κB and MAPK signaling pathways (Qu et al.,
2022).

Lymphoma is cancer of lymphocytes from lymph nodes,
spleen, thymus, or bone marrow. Han et al. reported that
PIWI-interacting RNAs (piRNAs)-30473 upregulated WTAP
and increased the global m6A level in diffuse large B-cell
lymphoma (DLBCL) (Han et al., 2021). Hexokinase 2 (HK2)
was further identified as the downstream target of piRNA-30473-

WTAP-m6A, and upregulated HK2 by piRNA-30473 contributed
to DLBCL tumorigenesis (Han et al., 2021). On the other hand,
proto-oncogene MYC was found to transcriptionally activate
ALKBH5 and FTO and inhibit m6A levels of SPI1 and PHF12
transcripts, thereby suppressing their mRNA translation which
was mediated by YTHDF3 (Wu et al., 2021). Furthermore,
depletion of ALKBH5 effectively reduced growth of B-cell
lymphomas with deregulated MYC expression (Wu et al., 2021).

CONCLUSION AND FUTURE
PERSPECTIVES

To date, great efforts have been made to explore the roles of
RNA m6A modifications in different biological processes, and
improvements have been achieved to advance our
understanding of m6A-mediated epitranscriptomic
regulation and its potential as therapeutic targets for cancer
patients. However, many questions remain elusive: 1) the
origins and functions of m6A marks at different stages of
human development are still largely unclear; 2) the
contribution of m6A modifications in iPSC pluripotency
should be further clarified; 3) m6A writers (e.g., METTL3)
and erasers (e.g., FTO) both play an oncogenic role in several
cancer types (e.g., AML). Thus, m6A regulators likely target
different groups of transcripts and regulate different biological
processes; 4) the position of m6A sites (e.g., 5ʹUTR, CDS, or
3ʹUTR) in transcripts likely influence the recognition of m6A
and the subsequent RNA metabolism; 5) m6A readers could
exhibit opposite functions. YTHDF2 promotes RNA
degradation of m6A-modified mRNAs while IGF2BP1-3
stabilizes them, although they target different transcripts.
Besides, more and more m6A readers are being discovered,
adding to the complexity of m6A epitranscriptome; and 6) the
crosstalk or competition among m6A writers, readers and
erasers should be further explored. Although the functions
of m6A regulators are context dependent, targeting m6A offers
great potential for cancer treatment. Future studies on
understanding the context-dependent role of m6A
modification in cellular reprogramming and cancer
stemness is of utmost importance.
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