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A B S T R A C T

Both social perception and temperament in young infants have been related to social functioning later in life.
Previous functional Near-Infrared Spectroscopy (fNIRS) data (Lloyd-Fox et al., 2009) showed larger blood-
oxygenation changes for social compared to non-social stimuli in the posterior temporal cortex of five-month-old
infants. We sought to replicate and extend these findings by using fNIRS to study the neural basis of social
perception in relation to infant temperament (Negative Affect) in 37 five-to-eight-month-old infants.

Infants watched short videos displaying either hand and facial movements of female actors (social dynamic
condition) or moving toys and machinery (non-social dynamic condition), while fNIRS data were collected over
temporal brain regions. Negative Affect was measured using the Infant Behavior Questionnaire.

Results showed significantly larger blood-oxygenation changes in the right posterior-temporal region in the
social compared to the non-social condition. Furthermore, this differential activation was smaller in infants
showing higher Negative Affect.

Our results replicate those of Lloyd-Fox et al. and confirmed that five-to-eight-month-old infants show cortical
specialization for social perception. Furthermore, the decreased cortical sensitivity to social stimuli in infants
showing high Negative Affect may be an early biomarker for later difficulties in social interaction.

1. Introduction

Recent research using electroencephalography and functional near-
infrared spectroscopy (fNIRS) has greatly advanced our knowledge of
the development and specialization of the “social brain” in infancy (for
review see Grossmann, 2015; Grossmann and Johnson, 2007). The
sensitivity of the neural correlates of social perception to genetic and
environmental factors however is less explored (Grossmann et al.,
2011). In the present study, we investigated the impact of infant tem-
perament on the early cortical specialization for processing social sti-
muli.

Temperament may be defined as a set of biologically-based psy-
chological tendencies (McCrae et al., 2000; Rothbart and Bates, 1998,
2006). It comprises individual differences in reactivity (i.e., latency,
intensity and duration of emotional, attentional and motor responses to
changes in the internal and external environments) and regulation (i.e.,

processes of effortful control and orienting that modulate reactivity)
(Rothbart and Bates, 2006; Salley et al., 2013). Temperamental features
have regularly been shown to be continuous from infancy into child-
hood and even into adulthood (Caspi, 2000; Kandler et al., 2013).
Moreover, individual differences in temperament predict individual
differences in social functioning, family functioning, academic
achievement, and internalizing and externalizing behavior later in life
(Sanson et al., 2004). The strongest developmental continuity has been
found for the temperamental dimension Negative Affect, which is also
the first emerging form of reactivity (Putnam et al., 2001; Rothbart
et al., 2000). During infancy, Negative Affect comprises behaviors such
as anger, frustration, sadness, social fear/shyness, general distress-
proneness and poor soothability (Rothbart et al., 2001). High levels of
Negative Affect in infancy have been associated with several aspects of
poorer social functioning later in life, including social competence
(Sanson et al., 2004; Rothbart et al., 2001), social responsiveness, social
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awareness, social information processing, capacity for reciprocal social
communication, social motivation, and repetitive/restricted interest
(Salley et al., 2013). In addition, high Negative Affect has been asso-
ciated with infants being less frequently involved in joint attention,
which is considered to be a key factor in infants' social-cognitive de-
velopment (Salley and Dixon, 2007; Todd and Dixon, 2010; Vaughan
et al., 2003; Vaughan Van Hecke et al., 2007).

A considerable number of studies have linked temperament, in-
cluding Negative Affect, to differential activation in, and connectivity
between subcortical and cortical brain regions which are part of the
“social brain network”, including the amygdala, ACC, medial PFC and
posterior STS/TPJ (Ball et al., 2012; Davey et al., 2015; Harnett et al.,
2015; Perlman et al., 2015; Whittle et al., 2006; Vrticka et al., 2013).
However, these studies almost exclusively involve school-age children,
adolescents and adults. The neural correlates of social perception ob-
served in infants have been shown to be largely similar to those ob-
served in adults, and predominantly include bilateral temporal and
(orbito-) frontal cortical regions (Blasi et al., 2007; Lloyd-Fox et al.,
2009; Lloyd-Fox et al., 2013; Minagawa-Kawai et al., 2009; Nakato
et al., 2011; Vanderwert and Nelson, 2014; Grossmann, 2015). There
are only two infant studies linking individual differences in Negative
Affect to differential brain activation for social perception, one EEG-
study (Martinos et al., 2012) and one fNIRS-study (Ravicz et al., 2015);
both studies found a relation between processing of social information,
specifically facial emotion, in fronto-central brain regions and infants’
level of Negative Affect.

A recent series of fNIRS studies has shed light on the cortical spe-
cialization for social information processing by robustly demonstrating
the involvement of the posterior temporal lobe in the processing of
social dynamic stimuli compared to non-social dynamic stimuli in
young infants (Lloyd-Fox et al., 2009, 2011, 2013, 2014, 2016; Farroni
et al., 2013). Within the posterior temporal lobe, activation in the pSTS
is associated with processing of gaze shifts, gestures and biological
motion in adults (e.g. Burnett et al., 2011; Lotze et al., 2006; Pelphrey
et al., 2005); thus, it is likely that infant hemodynamic responses to
social dynamic stimuli underlie pSTS activation. Relevant for our study,
infants at risk for autism (who often score high on Negative Affect)
showed less differential activation in temporal regions in response to
social dynamic stimuli than their typically developing peers (Lloyd-Fox
et al., 2013).

In the present study, we aim to replicate the results of Lloyd-Fox
et al. (2009) and investigate the impact of infant Negative Affect (as
measured by parental questionnaire) on the early cortical specialization
for processing social dynamic stimuli. To this end, we used a similar
fNIRS paradigm and the same stimuli as used previously by Lloyd-Fox
et al. (2009, Experiment 2). Functional Near-Infrared Spectroscopy
makes use of differences in light absorption by Oxygenated and De-
oxygenated hemoglobin to measure blood oxygenation changes in the
cortex, an indicator of neural activity (see Gervain et al., 2011 for an
introduction to the basic methodology of fNIRS). We studied typically-
developing children aged 5–8 months to a) determine whether cortical
specialization for social dynamic stimuli remains stable over these ages
and b) assess the influence of Negative Affect on the processing of social
stimuli. The paradigm used in this study compares the perception of
dynamic social stimuli to the perception of dynamic non-social stimuli.
Since no explicit emotional valence is present, this allows us to assess
the association between temperament and social processing in-
dependent of emotional processing. In line with earlier findings (Lloyd-
Fox et al., 2009), we focused our data analysis on the posterior tem-
poral region, i.e. the posterior channels of the optode layout. We hy-
pothesized that infants with higher scores on Negative Affect would
show weaker hemodynamic response to social compared to non-social
stimuli in the posterior-temporal cortex, based on three findings dis-
cussed above: 1) the observed relation between Negative Affect and
joint attention in infancy, 2) the overlap between brain regions asso-
ciated with Negative Affect and social information processing, and 3) the

observed reduced sensitivity in posterior temporal regions to social
dynamic stimuli in infants at risk for autism.

2. Methods

2.1. Participants

Thirty-seven healthy infants between 5 and 8 months of age parti-
cipated in the study (mean age = 185.1 days, SD = 29.0 days, range:
142–275 days; 16 females and 21 males). An additional 32 infants were
tested but excluded from the NIRS data analysis because they failed to
look at the stimuli for the minimum number of trials (n = 17) or be-
cause they did not have usable data in at least one of the relevant
channels (n = 15). See the data pre-processing section for further ex-
planation. Infants were recruited though direct mail after birth and
invited to participate in the study over telephone when they reached
the appropriate age. Addresses were provided by the Leiden city
council. The study protocol was approved by the Leiden University
Cognitive Psychology Ethics Committee. The mean average education
level of the parents was 4.42 (SD = 0.61, range: 3–5) on a 5-point scale
(1: primary school, 2: vocational school, 3: secondary school, 4: post-
secondary applied education, 5: university degree). Infants who were
excluded from the NIRS analysis did not differ from the included infants
in gender, age, mean parental education level, or Negative Affect
(ps > 0.18).

2.2. Procedure

The participating infant’s parent was first fully informed about the
procedure and asked to sign the consent form. The head circumference
of the infant was measured, and a cap of the appropriate size was
chosen and prepared for the experiment (Easycap infant caps for head
sizes 42–48 cm). During fNIRS recording, the infant sat on the parent’s
lap in a sound-proof booth facing a 42-inch screen at approximately
70 cm distance. The NIRS cap was placed on the infant’s head, posi-
tioning it relative to the ears and the midline. Optode cables were
supported by a cable arm and cable trees at the back of the head to
reduce optode movement. During the session infants were recorded by a
video camera placed under the screen. Stimulus presentation lasted a
maximum of 13 min, but was stopped earlier if the infants became
bored or fussy.

Our experiment used identical stimuli to those in Experiment 2 from
Lloyd-Fox et al. (2009) and closely followed its procedure. It included a
social dynamic and a non-social dynamic experimental condition, in
addition to a static baseline condition. The social dynamic condition
consisted of video clips displaying a female actor performing different
combinations of eye movements, silent vowel mouth-movements or
playing “peek-a-boo” and “incy-wincy spider” games with her hands.
The non-social dynamic condition consisted of video clips showing
different combinations of moving machine cogs, pistons and spinning
toys. The baseline condition consisted of still images of different types
of transport (i.e., cars and helicopters) presented randomly for a
pseudorandom duration (1–3 s). The video clips and still images were
each presented for 16 s. They were displayed at a size of 30 × 20 cm,
where the female actors’ face was approximately life-size. None of the
stimulus videos contained sound, but continuous instrumental music
was played softly during stimulus presentation.

Each recording session started with a resting period (30s) during
which the infant was shown small animal pictures in randomly varying
positions on the screen to familiarize the infant with the setup and to
allow time for calibration. During calibration, the signal for each
source-detector combination (channel) is optimized. Following cali-
bration, the presentation of the stimulus trials started. The two ex-
perimental conditions were presented in pseudo-random order with a
baseline trial following each experimental trial (see Lloyd-Fox et al.,
2009 for a graphical representation of the paradigm). Randomization
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was restricted to a maximum of three consecutive social or non-social
dynamic trials, and a maximum of four social or non-social dynamic
trials in every 6 consecutive experimental trials. A maximum of 24
baseline and 24 experimental (12 social and 12 non-social) trials were
presented. No differences were found between the experimental con-
ditions regarding the number of trials infants were exposed to (social
dynamic: mean/SD = 9.8/2.6; non-social dynamic: mean/SD = 9.9/
2.7, p > .1) or the number of included trials in statistical analyses
(social dynamic: mean/SD = 8.7/2.8; non-social dynamic: mean/
SD = 8.2/2.9, p > .1). Following the experiment, information about
temperament, health and general development of the infant was ob-
tained through parental questionnaires.

2.3. Data acquisition and array placement

fNIRS data were recorded using a NIRx NIRScout 8 × 16 apparatus
with NIRStar acquisition software (NIRx Medical Technologies, Berlin,
Germany). The NIRScout apparatus performs dual-wavelength con-
tinuous-wave near infrared diffuse tomographic measurements using
LED emitters at two wavelengths (760 and 850 nm). Our placement of
the optodes was equivalent to that in Experiment 2 from Lloyd-Fox
et al. (2009). Four sources and four detectors were inserted in the cap
on each hemisphere with a source-detector separation of 20 mm de-
fining 10 channels over the left, and 10 channels over the right frontal
and temporal cortices (Fig. 1), resulting in a sampling rate of 6.25 Hz.

2.4. Data analysis

Valid trials were selected based on the looking behavior of each
infant. The video recording of each measurement session was coded for
looking behavior using ELAN (ELAN Linguistic annotator v.4.8.1, Max-
Planck-Institute for Psycholinguistics, Nijmegen, The Netherlands).
Following Lloyd-Fox et al.’s (2009) procedure, only those experimental
and baseline trials were included in the analysis during which the infant
looked at the screen for a minimum of 80% of the trial duration. Trials
that did not meet this criterion were excluded from the analysis. A
minimum of three valid trials for each condition (social dynamic, non-
social dynamic and baseline) were required to include an infant in the
study.

Data-preprocessing was performed in NIRSlab v. 2016.01 (NIRx
Medical Technologies, Berlin, Germany). The quality of the raw at-
tenuation data was assessed per channel for each infant. Channels in
which the coefficient of variation (CV: SD/mean*100) was larger than
10%, the gain was larger than 8, or where no heartbeat was visible in
the signal spectrum were excluded from the analyses. In the majority of
cases, channels were excluded based on CV’s > 10%, which were
driven by subject movement. It should be noted that, in the future, the
use of advanced data correction algorithms may help to correct rather
than exclude such data, leading to lower attrition rates.

Remaining artifacts were removed from the attenuation data using

the NIRSlab built-in algorithm for the removal of step artifacts, ap-
plying a five-SD threshold on the difference between each set of two
consecutive data points. Any large spikes remaining in the data after
this procedure were identified and removed, replacing them with the
nearest signal.

Following artifact rejection, data were filtered using a low-pass
filter with a cut-off frequency of 1.8 Hz and a roll-off width of 15%.
HbO (Oxygenated hemoglobin) and HbR (De-oxygenated hemoglobin)
concentration changes were then computed from the attenuation data
using the modified Beer-Lambert law. Differential path length factors
for the two wavelengths were adapted to infant values according to the
equation published by Scholkmann and Wolf (2013).

To compute block averages, individual stimulation blocks were first
corrected for baseline by subtracting the mean of the signal during the
five seconds preceding stimulation. Following baseline correction, in-
dividual subject block averages for each experimental condition (social
dynamic and non-social dynamic) and channel were computed in
NIRSlab by averaging HbO and HbR concentration time courses over
valid trials. Subsequently, peak HbO and HbR changes in the time
window between 10 and 25 s past stimulus onset were extracted for
each infant and channel to be used in further statistical analysis. This
time window was selected based on the timing of the HbO peaks in our
sample.

Statistical analysis of fNIRS data was restricted to channels lying
over the bilateral posterior temporal and parietal regions (channels 7,
8, 9, 10, 17, 18, 19 and 20; marked green in Fig. 1). In this region,
Lloyd-Fox et al. (2009, 2011, 2013, 2014, 2016) repeatedly demon-
strated significant differences between HbO changes elicited by social
versus non-social dynamic stimuli in an identical paradigm.

2.5. Negative affect

To assess Negative Affect in infants, parents were asked to complete
the Infant Behavior Questionnaire – Revised – Short form (Gartstein and
Rothbart, 2003; Putnam et al., 2014). This questionnaire consists of 91
questions regarding the behavior of the infant in a multitude of possible
situations over previous week(s). Questions are rated on a 7-point
Likert-scale (1 = never; 7 = always). Four scales are used to measure
Negative Affect (25 questions): fear, distress to limitations, rate of re-
covery from distress, and sadness (Cronbach’s α in our sample was
0.75). Negative Affect thus gives an indication of how frustrated or ne-
gative infants react to situations, people and their general environment
with a minimum score of 1 and a maximum of 7, with higher scores
indicating higher level of Negative Affect. Mean score on Negative Affect
was 2.5 (range: 1.33–4.07; SD = 0.66) for the infants included in the
analysis.

Fig. 1. Location of the NIRS channels over the left and right hemisphere,
relative to 10–20 positions T7 and T8. Channels within the Region of
Interest are marked green.
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3. Results

3.1. Preliminary analysis – looking behavior

Each infant’s interest in the stimuli was assessed by calculating the
percentage of looking in each condition. There was no difference in the
average of looking percentages between the two experimental condi-
tions (social dynamic: mean = 91%; non-social dynamic:
mean = 88%), suggesting that potential differences in the activation of
temporal cortical areas are not due to general attention differences
between the two types of experimental stimuli. However, infants did
look more at the stimuli in both experimental conditions than at the
stimuli in the baseline condition (baseline: mean = 75%; social dy-
namic versus baseline: t= 6.3, df = 32, p < 0.001; non-social dynamic
versus baseline: t= 6.5, df = 32, p < 0.001) which can be explained
by the fact that the baseline stimuli were static. There were no sig-
nificant correlations between age or Negative Affect and the percentage
of looking time differences, total looking times, number of valid
channels or number of valid trials in any of the conditions, ps > 0.12.

3.2. Main effect of social perception

Fig. 2 shows grand mean average time courses of HbO and HbR
across infants for each of the experimental conditions in each channel of
interest. One-sample t-tests were conducted to assess HbO and HbR
concentration changes compared to baseline for the social dynamic and
the non-social dynamic conditions, while paired t-tests were used to
compare HbO and HbR concentration changes between the two ex-
perimental conditions. Table 1 gives a summary of the results. All p-
values given in Table 1 survive correction for multiple comparisons
according to the False Discovery Rate (Benjamini and Hochberg, 1995;
see Gervain et al., 2016 for its use in infant fNIRS).

The social dynamic condition showed a significant increase in HbO
compared to baseline in all channels of interest in the right hemisphere
and the three most posterior channels in the left hemisphere
(ps ≤ 0.008). Furthermore, social dynamic stimuli elicited a significant
HbR concentration decrease compared to baseline in all channels of
interest over the right hemisphere, and in channels 7 and 10 over the
left hemisphere. The non-social dynamic stimuli elicited significant
HbO increases in two channels over each hemisphere (ps ≤ 0.017), and
significant HbR decreases were found in four channels over the left and
in three channels over the right hemisphere (ps ≤ 0.016).

Paired t-tests revealed a significant difference in HbO concentration
between the conditions in channel 18 over the right posterior temporal
region (t= 3.15, df= 17, p= 0.006), with a larger increase in HbO
concentration in the social dynamic compared to the non-social dy-
namic condition (see Table 1). When testing for lateralization, direct
comparison with the corresponding channel in the left hemisphere re-
vealed a trend, indicating a larger difference in the right hemisphere
(one-tailed paired-sample t-test: Mean difference = 0.0012, t= 1.773,
df= 13, p =0.05). Age was not significantly related to differential re-
sponses in the right posterior temporal region (Pearson’s r = −0.06,
p > 0.8).

3.3. Temperament and social vs non-social differences in HbO

Associations between HbO or HbR concentration changes and
Negative Affect were assessed using Pearson’s correlations. Negative
Affect correlated negatively with HbO differences between the social
dynamic and non-social dynamic conditions in channel 20 in the right
hemisphere (Pearson r = −0.58, p = 0.007, N = 20, FDR-corrected for
multiple comparisons). Trends in the same direction were observed in
two additional channels in the right posterior region (channel 17:
Pearson r= −0.41, p= 0.051, N = 23; channel 18: Pearson
r = −0.44, p= 0.07, N = 18), see Fig. 3 for plots. Moreover, differ-
ences in HbR concentration changes between the two conditions

correlated positively with Negative Affect in channel 19, which can be
interpreted as a decreased negative or positive HbR response in infants
with high Negative Affect (Pearson r = 0.48, p= 0.019, N = 24, FDR-
corrected for multiple comparisons). Infants with lower levels of Ne-
gative Affect thus seem to show a larger difference in right posterior
temporal activation between the experimental conditions. Including the
infants’ age or the difference between looking percentages for social
and non-social stimuli in the analyses (partial correlations) did not af-
fect the (significant) correlations between Negative Affect and HbO or
HbR differences for the social dynamic and non-social dynamic condi-
tions.

4. Discussion

The first objective of this study was to investigate whether differ-
ential activation in response to social dynamic versus non-social dy-
namic stimuli could be observed in the posterior temporal cortex of
infants aged five to eight months. The differential activation in the
posterior region most likely reflects processing in the superior temporal
sulcus (STS), a brain region consistently activated by processing faces
and different forms of biological motion in adults (Burnett et al., 2011;
Lotze et al., 2006). In the present study, we indeed found more acti-
vation in the social dynamic compared to the non-social dynamic
condition, indicated by significantly larger HbO increase in the pos-
terior temporal region in the social dynamic condition. We thus re-
plicated the findings of Lloyd-Fox et al.’s study (2009). However, while
Lloyd-Fox et al. (2009) reported bilateral activation in five-month olds,
the HbO increase we observed for social-dynamic compared to non-
social dynamic stimuli was only significant in the right hemisphere.
Since our lateralization analysis only proved marginally significant, we
cannot draw strong conclusions on the lateralization of social percep-
tion in infants. However, previous studies did show right lateralized
responses to similar stimuli. In adults, perception of eye and mouth
movements (Pelphrey et al., 2005) and gaze shifts (Pelphrey et al.,
2003) has been shown to evoke right-lateralized STS activation as well.
Furthermore, in five-month-old infants, mouth movements were also
shown to specifically activate the right middle temporal cortex (Lloyd-
Fox et al., 2011). Further studies are needed to determine whether
processing of social information becomes increasingly lateralized in
older infants.

Age of the infants was not related to posterior temporal activation in
response to social-dynamic compared to non-social dynamic stimuli,
which indicates that selective processing of dynamic social stimuli re-
mains stable between the ages of five and eight months, and that the
brain regions supporting this selective processing do not change in this
period. This result corroborates a recent fNIRS finding by Farroni et al.
(2013), showing that this area's specialization for biological motion
might already be present in newborns, and aligns with behavioral
studies that have shown infants' ability to discriminate between biolo-
gical and non-biological motion from birth onwards (Simion et al.,
2008; Bardi et al., 2011).

The second objective of this study was to investigate the relation
between temperament and neural correlates of social perception in
infants. We found that Negative Affect was negatively correlated with
differential activation between social dynamic and non-social dynamic
stimuli in the right posterior temporal region. That is, infants with
higher Negative Affect scores showed a reduced hemodynamic response
in the social dynamic compared to the non-social dynamic condition.
This result confirmed our hypothesis that high Negative Affect is nega-
tively related to cortical specialization for social dynamic stimuli. It is
important to point out that this finding cannot be explained by an at-
tention bias associated with Negative Affect, since there was no relation
between Negative Affect scores and infants’ interest in the social dy-
namic or non-social dynamic stimuli. Furthermore, the smaller differ-
ential posterior temporal activation in infants with higher Negative
Affect could not simply be attributed to poorer fNIRS data quality in
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these children as there was no association between Negative Affect and
either the number of excluded infants or the number of valid trials or
channels within the included infants.

To date, only Ravicz et al. (2015) have related infant Negative Affect
to fNIRS data. Their study showed that high Negative Affect is associated
with decreased prefrontal responses to happy facial expression in seven-
month-old infants. The two studies thus agree on the direction of
temperamental influence, where weaker differential neural responses
are related to higher levels of Negative Affect. Differences between our
results and those of Ravicz et al., mainly lie in the brain regions where
differential activity was observed, which can be attributed to the dif-
ferences in stimulus material and to the type of contrast (emotional
valence of facial expression vs. social vs non-social dynamic stimuli).
Since our optode montage was not designed to capture oxygenation
changes in prefrontal regions, we cannot exclude the possibility that

prefrontal, Negative Affect-related differential activation might also be
present using the current paradigm. The faces portrayed in our social
dynamic stimuli were friendly but neutral, lacking explicit happy facial
expressions. Therefore, the relation between Negative Affect and pos-
terior-temporal differential activation in our current study is unlikely to
be elicited solely by reduced sensitivity to positive facial expressions by
infants with higher Negative Affect. Nonetheless, future studies are
needed to tease apart both the neural correlates of processing dynamic
facial/body movements vs. explicit facial expressions in infants, and
their individual relations to Negative Affect.

Based on our current findings, we cannot draw firm conclusions on
the causal direction of the association between Negative Affect and
cortical specialization for social perception, nor on the cognitive me-
chanism underlying it. It has been proposed (Nabi, 1999; Salley et al.,
2013) that temperamental negativity may impact infants’ opportunities

Fig. 2. Grand mean average time courses with Standard Error of HbO and HbR changes in millimolar (mM) as a function of time (stimulus block starts at 0) for each of the experimental
conditions in the posterior temporal channels.
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Table 1
HbO and HbR changes in the social and non-social dynamic conditions relative to baseline and differences in HbO and HbR between social dynamic and non-social dynamic conditions.
FDR-corrected p-values are shown.

Social condition HbO
Left H t df p Mean Difference Right H t df p Mean Difference
Ch 8 4.34 19 0.000 0.001457 Ch 17 3.79 22 0.002 0.000515
Ch 9 3.22 21 0.006 0.001023 Ch 18 3.23 17 0.007 0.001508
Ch 10 3.12 13 0.009 0.000711 Ch 19 3.75 23 0.002 0.001279

Ch 20 4.20 19 0.000 0.000673
Non-social condition HbO
Left H t df p Mean Difference Right H t df p Mean Difference
Ch 8 3.70 19 0.005 0.001370 Ch 17 2.31 22 0.0496 0.000491
Ch 9 3.87 21 0.004 0.000978 Ch 19 4.36 23 0.000 0.001183

Ch 20 2.63 19 0.034 0.000408
Social versus Non-social HbO
Left H t df p Mean Difference Right H t df p Mean Difference

Ch 18 3.15 17 0.048 0.001038
Social condition HbR
Left H t df p Mean Difference Right H t df p Mean Difference
Ch 7 −3.47 26 0.004 −0.000305 Ch 17 −2.89 22 0.011 −0.000270
Ch 10 −3.74 13 0.004 −0.000246 Ch 18 −3.59 18 0.004 −0.000375

Ch 19 −4.93 23 0.000 −0.000549
Ch 20 −3.43 18 0.005 −0.000236

Non-social condition HbR
Left H t df p Mean Difference Right H t df p Mean Difference
Ch 7 −5.23 26 0.000 −0.000305 Ch 17 −2.39 22 0.026 −0.000187
Ch 8 −2.95 19 0.011 −0.000372 Ch 18 −3.59 17 0.003 −0.000508
Ch 9 −2.63 21 0.018 −0.000251 Ch 19 −4.11 23 0.000 −0.000305
Ch 10 −4.45 13 0.002 −0.000199 Ch 20 −5.64 19 0.000 −0.000215
Social versus Non-social HbR
Left H t df p Mean Difference Right H t df p Mean Difference

Fig. 3. Correlations between Negative Affect scores and differential HbO and HbR concentration changes (in mM) in the social dynamic compared to the non-social dynamic condition in
the right posterior temporal region.
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for processing social information since infants with higher Negative
Affect may be less motivated to engage in social situations or they may
react differently to their social environments. These differences could
then lead to delays or differences in cortical specialization for social
perception, and to difficulties in the social-cognitive development in
infants. On a neural level, our finding of reduced differential activity in
the posterior-temporal cortex in infants with higher Negative Affect may
also be related to down-regulation of additional cortical and subcortical
regions that are connected to the temporal cortex and are directly re-
lated to temperament (e.g. amygdala). One can also speculate that it is
the weaker neural response of cortical regions related to social per-
ception that (at least partly) leads to the emergence of temperament
differences, that is, infants who show delays in or difficulties with
processing social stimuli may become frustrated and stressed in social
situations. Longitudinal studies following infants from younger than
five months of age or even from birth onward are required for a better
understanding of the emergence, and therefore of the direction of the
association between social perception and temperament features.

5. Conclusion

We showed that blood oxygenation in the right posterior temporal
cortex reflects the processing of social compared to non-social stimuli in
five-to-eight-month-old infants. This supports the notion that the spe-
cialization of the posterior STS for the processing of faces and biological
motion (Blakemore, 2008) is already in place at this early age.

We further demonstrated that Negative Affect was associated with
hemodynamic responses to social compared to non-social stimuli in the
right posterior-temporal cortex. Infants scoring high on Negative Affect
showed a reduced differential response to social versus non-social sti-
muli, suggesting that temperament is related to the processing of social
information at this age.

Earlier studies suggested that increased neural activity in response
to social stimuli is present from birth onward (Farroni et al., 2013).
However, the social brain will continue to develop and become more
specialized with age, with shifts in both the location of activation and
its intensity in response to social stimuli, in addition to changes in
functional connectivity (Burnett et al., 2011). Although longitudinal
studies will be needed to determine the continuity of the association
between social perception and Negative Affect, social perception in in-
fancy and its neural correlates might serve as early markers for beha-
vioral outcomes later in life.
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