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Abstract: We address the problem of observing personal diploid methylomes, CpG methylome pairs
of homologous chromosomes that are distinguishable with respect to phased heterozygous variants
(PHVs), which is challenging due to scarcity of PHVs in personal genomes. Single molecule real-time
(SMRT) sequencing is promising as it outputs long reads with CpG methylation information, but a
serious concern is whether reliable PHVs are available in erroneous SMRT reads with an error rate of
∼15%. To overcome the issue, we propose a statistical model that reduces the error rate of phasing
CpG site to 1%, thereby calling CpG hypomethylation in each haplotype with >90% precision and
sensitivity. Using our statistical model, we examined GNAS complex locus known for a combination
of maternally, paternally, or biallelically expressed isoforms, and observed allele-specific methylation
pattern almost perfectly reflecting their respective allele-specific expression status, demonstrating the
merit of elucidating comprehensive personal diploid methylomes and transcriptomes.

Keywords: statistical methods; DNA methylation; gene expression; single molecule real-time
sequencing; allele-specific analysis

1. Introduction

DNA methylation plays important regulatory roles in a wide range of biological processes,
including differentiation, transposon repression, and cancer progression [1–3]. Several technological
advances now enable us to evaluate genome-wide DNA methylation [4] at the resolution of a single
base-pair [5]. Furthermore, single-cell biology can now be applied to epigenetics, allowing methylation
to be measured at the single-cell level. This creates a unique research frontier [6–8]. Despite such
advances in methodology, the detection of allele-specific methylation (ASM) [9], in which only one of
two homologous chromosomes is methylated in a specific region, remains challenging.

To distinguish two homologous chromosomes directly, several studies have explicitly utilized
heterozygous variants, as such variants define the differences between two homologous chromosomes.
One approach involves a two-step experiment [10,11]. In the first step, DNA fragments containing
methylated alleles were enriched using a methylation-sensitive restriction enzyme or by methylated
DNA immunoprecipitation. In the second step, sequence variants in the library were quantified
using a single nucleotide polymorphism (SNP) array or DNA sequencing. Variants associated with
methylation might thus be over-represented when compared with an appropriate negative control.
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This approach is relatively cost-effective and comprehensive, but the resolution is limited by the
distribution of the relevant restriction enzyme cleavage sites, which are far sparser than CpG sites.

Another approach exploits heterozygous variants within bisulfite-treated sequencing reads [12,13].
To assign a read to one of two alleles, the read must contain at least one informative (i.e., heterozygous)
variant in addition to the CpG site. However, we will show below that this condition is rarely satisfied
when short bisulfite-treated reads are used; bisulfite cleaves DNA into fragments less than 500 bp
long [14], with maximum read lengths of 1500 bp [15]. For example, Kuleshov et al. performed
haplotyping of a genome using a read cloud containing long-range information and performed
short-read bisulfite sequencing to survey ASM in a genome-wide manner; however, ASM was only
partially observed [16].

It is difficult to observe comprehensive ASM for a given individual genome because of the lack
of sufficient heterozygous variants available in short reads around the CpG sites. Consequently,
the current genome-wide overview of ASM is an average mixture of observations for many individuals
in a population.

In the present work, we hypothesize that long reads are necessary to directly observe genome-wide
ASM of most CpG sites in an individual genome. We developed an alternative method that allows
evaluation of regions of intermediate methylation status. We used kinetic information obtained by
PacBio (Pacific Biosciences, Menlo Park, California, USA) sequencing to call regional CpG methylations
as reported previously [17]. We term the allele-specific methylome data obtained using phased long
reads as the personal diploid methylome, as these data are comprehensive genome-wide ASM data
obtained from a single individual based on personal haplotype information.

Previous studies have revealed the prevalence of allele-specific expression (ASE) in humans and
demonstrated a link between ASM and ASE [18,19]. We incorporated transcriptome data obtained
using long reads (as in “Iso-seq” studies using PacBio long reads [20]) and short reads to confirm that
some of the ASM statuses we detected are consistent with their transcriptional activity, including their
ASE statuses, i.e., personal diploid transcriptomes.

2. Materials and Methods

2.1. Data Source

DNA sequencing data and phased variant information for HG002 were obtained from a file
transfer protocol (FTP) repository of the GIAB (Genome in a Bottle) consortium [21]. The original
cell lines are available (Coriell GM24385). DNA/RNA sequencing data and assembled haplotigs
(haplotype A and B) for AK1 were obtained from a public repository (Accession No. PRJNA298944) [22].
Both samples were lymphoblastoid cell lines.

2.2. Assignment of Reads to Each Haplotype for AK1 and HG002

For AK1 data, contigs of haplotypes A and B were separately aligned to human hg38 reference
genome by BWA aligner (version 0.7.15) [23] with the “mem” mode. The phased heterozygous single
nucleotide variants (SNVs) were called by comparing the haplotype A and haplotype B genomes.
For both samples, we mapped the genomic reads to the reference using BLASR (http://bix.ucsd.edu/
projects/blasr/) with default options set in SMRT Analysis 2.3.0 (Pacific Biosciences) (Figure 1a). Then,
if the read contained matches to phased heterozygous variants (PHVs), we counted the number of
PHVs supporting each allele. Assignment of the allele for each read was determined by majority
voting, and reads were excluded from further analysis if they contained none of the PHVs, or if the
voting was tied. In total, 24,181,074 reads (210,782 Mb) from the AK1 dataset were aligned to hg38.
The average length of the mapped reads was 8717 bp. Of the reads, 13,857,752 (139,467 Mb) contained
at least one match to a PHV, and a haplotype label was assigned. Although these reads constituted
57.3% of all mapped reads in terms of read number, they contained 66.2% of the mapped bases. More
bases were retained because longer reads were more likely to contain matches to the PHV. In other
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words, reads with no matches were likely to be shorter, therefore affecting a relatively small number of
bases. Consequently, the average length of reads assigned to a haplotype was 10,064 bp, 115% that of
the average length in the original dataset.

For the HG002 dataset, the phased variants calculated using the linked-read technology were
available [24]. Starting from 23,031,407 reads (168,051 Mb) aligned to hg38, 13,676,974 reads
(111,543 Mb) were assigned a haplotype label. Thus, we retained 59.4% of all mapped reads and
66.4% of all mapped bases. The average read length of reads assigned to a haplotype was 8156 bp,
112% that of the average length of the original dataset, which was 7296 bp.

2.3. Generating the Diploid Methylomes

We examined the single-molecule real-time (SMRT) read sets of both alleles separately and called
the regional methylation status of genome-wide CpG sites using the kinetic information inherent in
reads, as described previously [17]. To determine the cause of read assignment errors in the ASM
detection pipeline and how they affect the accuracy of final ASM calls, we assumed that Inter-pulse
duration (IPD) ratio statistics around the SNV are perturbed by

∆IPD = random(−1, 1)× P× (IPD− 1.0), (1)

where random(−1, 1) is sampled from the uniform distribution over [−1, 1] and P = 1%. The third
factor, (IPD − 1.0), captures a typical scale of IPD deviation. The second factor (P) represents
probability of read assignment error, which was estimated to be 1% (Section 3).Then, the perturbation
will be largest (fully realized) when two alleles are in completely contrastive methylation state
(100%/0% of the molecules methylated), which corresponds to the extreme case where the first
factor = 1 or −1. In general, we cannot know underlying methylation states in each allele, and
we must utilize random distribution to mimic the magnitude of perturbation realized. Moreover,
we cannot assume a specific distribution for IPD perturbation, thus we decided to use uniform
distribution indifferently.

2.4. Calculating the Distribution of Phased Heterozygous Variants with Respect to CpG Islands or Exons

CpG island (CGI) annotation was retrieved from the UCSC Genome Browser (https://genome.
ucsc.edu/). For both PHVs and common SNPs, the distance from the CGI was calculated as the
genomic distance from the center of the CGI. To calculate the distribution of PHVs and common SNPs
with respect to exons, a gene model (GENCODE ver. 24) was intersected with each feature.

2.5. Allele-Specific Expression Analysis of AK1

Short-read (Illumina, San Diego, California, US) RNA-seq data was aligned to hg38 reference
genome by Hisat2 aligner (version 2.0.0-beta) [25] with the default parameter. For long-read (PacBio)
Iso-seq data, CCS reads were extracted from raw h5 files by SMRT Analysis software (version 2.3.0)
with the parameter “–minFullPasses 0 –minPredictedAccuracy 70”; then, CCS reads were aligned
to hg38 reference genome by GMAP aligner (version 2016-08-16) [26] with the default parameter.
IDP-ASE software [19] was used to perform ASE analysis at the gene and isoform levels by short-read
RNA-seq data and long-read Iso-Seq data.

2.6. Identifying CpG Islands with Allele-Specific Methylation

Of the 26,866 CGIs in the entire genome, we examined 20,140 with at least 30 CpGs to focus on
the more functional CGIs. Of these, in the HG002 dataset, 5063 were not covered by long reads after
allelic origin assignment, partly because they are relatively distant (4016 are separated by ≥5000 bp)
from their nearest PHV. We required that all CGIs be covered by a sufficient number (≥16.0× for
each haploid) of long reads to reduce the false discovery rate [17]. A total of 7093 CGIs met these
criteria. Similarly, we analyzed the AK1 dataset and determined that 7322 (of 20,140) CGIs were
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not covered by any read, but 10,087 of the remaining 12,818 CGIs had sufficient coverage (≥16.0×).
We then examined the methylation status of each CpG site using our methylation detection algorithm
AgIn [17]. Specifically, we calculated the methylation level of the CGI as the (unweighted) average
of the methylation status, presented as 0 or 1 (unmethylated or methylated, respectively), within the
CGI.After identifying ASM CGIs, each CGI was associated with a gene(s) by manual inspection on a
genome browser, and the closest gene (transcript) was recorded.

3. Results

3.1. A Statistical Model for Accurate Read Assignment

The first step towards ASM detection using long reads is read assignment (Figure 1a), i.e., to assign
each read to an original allele based on variants contained in the read. This is a nontrivial task
considering that long reads have a higher error rate. While the consensus accuracy of long reads can be
sufficiently good for detecting small genomic variants, here we are faced with a raw read error rate as
we assign each single read to an allele one by one. It is difficult to call heterozygous variants (found in
∼0.1% of all genomic positions) using only long reads with an error rate of, for example, ∼15%.

We instead utilized highly accurate haplotype PHVs determined by short read sequencing to
achieve reliable read assignment. By this design, we were able to ignore discordance between the
reference genome and long reads on non-variant sites, which effectively corrected most of the errors
in the long reads. Another technique employed to improve read assignment was to use only SNVs
and to ignore insertions and deletions (indels), which constitute a dominant fraction of the errors in
PacBio long reads, thereby reducing the relevant error rate. This observation has been utilized by
several authors to handle erroneous long reads, in diploid-aware de novo assembly [27] and in hybrid
error-correction procedure [28], but no explicit modelling has been done for the error probability of
long reads phasing. As we will see, even after omitting indels from the analysis, sufficient SNVs are
available for read assignment to haplotypes. PacBio read assignment for transcripts (Iso-seq reads) can
be similarly performed using heterozygous variants found in exons (Figure 1b).

We can now calculate the expected error rate of the read assignment. Suppose there is only one
heterozygous SNV within a read. According to the typical error profile, here we assumed we would
observe erroneous insertion (10%), deletion (5%), or substitution to any of the wrong bases (3%) at
each position in the PacBio read [29].

Then, read assignment error occurs if and only if the base at an SNV site is substituted by one of
the other three bases that incidentally supports the other allele with a probability of 1% (3% substitution
rate divided by three). Thus, the error rate of read assignment is expected to be approximately 1% for a
read with one SNV. Other types of sequencing errors, indels, and substitutions to bases other than one
supporting the wrong allele do not cause read assignment error because such reads are not assigned to
either allele.

With more than one heterozygous SNV within a read, the accuracy of read assignment improves
drastically. If there are two heterozygous SNVs, then there are two cases where read assignment
should occur: First, simultaneous substitution errors resulting in the bases of the wrong allele
occur at both sites, giving two variants supporting the wrong allele. The probability of such an
event is 1% × 1% = 1.0 × 10−4; Second, one of the SNVs is lost by deletion (5%) or another
substitution (2%) in the read, and specific substitution occurs at the other site. In this case, only
one variant, which supports the wrong allele, is observed in the read. The probability for this event is
(2

1)× (5% + 2%)× 1% = 1.4× 10−3. As these two cases are mutually exclusive, the read assignment
error rate is 1.0× 10−4 + 1.4× 10−3 = 1.5× 10−3 = 0.15% for a two-SNV read.

Generally, read assignment error occurs when the number of SNVs supporting the wrong allele
is greater than that of SNVs supporting the correct allele. If the read has N SNVs, and k SNVs are
missed, then the read would be assigned to the wrong allele if more than half (denoted by l below) of
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the remaining (N − k) SNVs support the wrong allele. Thus, the probability of assignment error for a
read with N SNVs is

N−1

∑
k=0

(
N
k

)
(5% + 2%)k{

N−k

∑
l=d(N−k)/2e

(
N − k

l

)
(1%)l}, (2)

which is approximately 0.15%, 0.047%, and 0.010%, when N = 2, 3, and 4, respectively. Therefore,
the overall assignment error rate decreases exponentially with the number of available heterozygous
SNVs (Figure 1c).

Due to the limited availability of a ground truth dataset for personal diploid methylomes, it is
difficult to quantitatively assess the accuracy of ASM detection using experimental data. Therefore,
we approximated the accuracy by considering major potential sources of errors. To examine the
effect of read assignment errors, we added random perturbation, which was proportional to the
frequency of read assignment errors, to the IPD ratio of every position independently. Using this
setting, the predictive performance of the method was almost unchanged (both the sensitivity and
precision were >90%; Figure 1d), presumably because random errors were averaged out in our read
assignment. While our analysis simplifies the real situation, it conveys why sequencing errors would
not severely affect the accuracy of the method contrary to the impression. Therefore, we conclude that
the major source of inaccuracy of the method is methylation detection itself, which is guaranteed to be
highly accurate (>93%) [17].
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Figure 1. Outline of the proposed method to detect allele-specific methylation (ASM). (a) In our
method, we assume that haplotype information for the genome is available, i.e., phased heterozygous
variants (PHVs) exist (horizontal line in the middle with letters indicating PHVs), which serve as
sites of interest (sites shaded in green) for the allele assignment process. Available heterozygous
variants found in reads are indicated by letters (A, C, G, or T) at the shaded sites. Other mismatches
and insertions/deletions (indels) (shown as letters and yellow blocks) in reads can be assumed to be
sequencing errors and therefore ignored. After assigning PacBio reads to either allele (haplotype) by
PHVs on the reads, the methylation status of each allele is predicted using (average) kinetics data
obtained in the PacBio sequencing process (shaded in blue). Of note, if ASM is not present in the
region, wrong assignment of reads does not affect the accuracy of the methylation call; (b) Outline of
the detection of allele-specific expression (ASE). Only exonic PHVs (two of three in this figure) can
be used to distinguish two alleles. Next, ASE can be detected as an imbalance of alleles observed
in reads. (c) The probability of allele assignment error depends on the number of available PHVs
in the reads (x-axis). The probability was calculated using an equation presented in the text and is
shown in logarithmic scale on the y-axis; (d) prediction performance (sensitivity and precision) of the
method for assessing the perturbed inter-pulse duration (IPD) ratio (purple line). For comparison,
typical performance statistics for the original IPD are shown (green line). “P = 1%” indicates that the
IPD was perturbed to simulate 1% read assignment error, as described in the text; (e) Example of a
region exhibiting ASM in diploid methylomes and transcriptomes. On the right: two CpG islands
(CGIs) are shown in the middle; one allele (labeled A) is methylated and the other (B) unmethylated.
Each CGI overlaps with the promoter regions of distinct isoforms of a known imprinted gene ZNF331.
Bisulfite sequencing data in the bottom track exhibited intermediate-level methylation for the two CGIs
showing ASM. From top to bottom, the panel shows the following features: gene structure, alignments
of long RNA-seq (Iso-seq) reads, RNA-seq read counts for two alleles, which indicates ASE, sites of
PHVs available in this personal genome (black marks), which were used to determine the allelic origins
of the sequencing reads, annotated CGIs (green rectangles), methylation levels of the CpG sites of two
alleles that were predicted using single-molecule real-time (SMRT) reads (respective black and gray
bars towards positive and negative indicate methylated and unmethylated, respectively), and publicly
available data on methylation levels via bisulfite sequencing (orange bars).

3.2. Generating Diploid Methylomes and Transcriptomes for the AK1 and HG002 Datasets

To demonstrate our method of calling ASM, we used two independent datasets: AK1 (Asian
Korean) [22] and HG002 (Ashkenazi Trio son) [30], according to the procedure illustrated in Figure 1a
(see the details in Methods). The resulting set of methylation calls is a personal diploid methylome,
as it comprises two methylomes, each representing one haploid. For the AK1 dataset, RNA-seq data
obtained using long and short reads were available and thus used to support the hypothesis that
the differential methylation between two alleles that we detected was associated with differential
transcription activity. RNA-seq data were mapped to the genome, and then the number of reads
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supporting transcription from each allele was recorded (Figure 1b), building a pair of transcriptomes
in two homologous chromosomes, which we call personal diploid transcriptomes.

Figure 1e shows an example of ASM detected using our method in the genomic region encoding an
imprinted gene, ZNF331. There are three CGIs in this region, and each CGI corresponds to a promoter
region in distinct isoforms of the ZNF331 gene. While the CGI to the left in the panel was unmethylated
for both alleles, the other two CGIs (in the middle and to the right) showed ASM, and our methylation
calls informed us that the same allele (i.e., allele B) was unmethylated. Of note, a publicly available
methylation-level annotation[31] from a different sample by bisulfite sequencing suggested that these
two CGIs are in an intermediate methylation status. The alignment of long-read transcripts and read
counts at the exonic PHV supported that the corresponding two isoforms were transcribed exclusively
from allele B. Thus, these results suggest that the detected ASM is correlated with the transcriptional
activity of the genes. We will cover other examples in later sections to generalize this observation.

3.3. Distribution of Phased Heterozygous Variants in Two Personal Genomes

We next examined how the possibility of assigning reads and CpGs into alleles would be limited
by the distribution of PHVs in personal genomes. Specifically, given a read of length l bp containing a
CpG site, the allelic origin of the read can be determined only when the nearest PHV is located within
l bp from that site, and both the CpG site and PHV are covered by the same single read. Therefore,
to assess this approach, we calculated the proportions of CpGs or CGIs located within a specific
distance from the nearest PHV (Figure 2a,b). Of note, these factors depend on the distribution of PHVs
available in a given sample and thus can be quite different among individual samples.

One may use the set of SNPs for which the minor allele frequencies are ≥5% in at least 1 of 26
major populations of dbSNPs [32]. As we observed that 83.0% of CpG sites are located within 500 bp
from common SNPs (Figure 2a), it would be possible for relatively short reads to determine the allelic
origin of themselves if these common SNPs are heterozygously present in an individual genome.
However, the conditions posed by the real distribution of PHVs are more severe. Indeed, in the AK1
(HG002) dataset, at most 11.3% (12.3%), 33.7% (37.5%) and 46.1% (51.1%) of CpGs were apparent using
read lengths of 100, 500 and 1000 bp, respectively, whereas 72.2% (81.3%) of CpGs were apparent using
a read length of 8000 bp (Figure 2a,b, purple line). Therefore, longer reads are essential to detect ASM
in real-world situations.

When we try to detect ASE using these PHVs, the only variants we can rely on are those appearing
in the RNA-seq reads, i.e., exonic variants. Thus, the situation becomes even more difficult for ASE
analysis. For the AK1 dataset, 46.2% of the PHVs were found in intergenic regions and 50.0% in
intronic regions (Figure 2c). Thus, only the remaining 3.8% of variants were present in exons to call
ASE in this individual. Similarly, 89.1% of ∼310 k exons do not contain such variants, limiting the
possibility of determining the expressing allele. While the low abundance of PHVs within exons is
largely explained by the fact that exons constitute only a small fraction of the genome, the density
of PHVs is also smaller in exons, presumably because of selective pressure on the coding sequences.
On average, there were 0.68 PHVs within exons (0.79 PHVs within introns) per 1 kbp.

3.4. Allele-Specific Methylation of CpG Islands and Allele-Specific Expresion

Given the fact that exonic phased variants are found only in a small number of transcripts,
genome-wide observation of ASM would provide alternative information about the transcriptional
activity of individual genomes. To prove this concept, we generated diploid methylomes for the AK1
dataset and compared it with ASE analysis of RNA-seq data for the same dataset (Figure 2d,e).

Shown in the middle of the first panel, a CGI is located in the promoter region of ZNF597
(Figure 2d). We detected ASM around this CGI, and allele A was unmethylated upstream of the
transcription start site (TSS) of ZNF597; thus, we predicted that the gene is expressed exclusively from
allele A. Consistent with the prediction, we found two long reads and 59 short reads, supporting
transcription from allele A, while no reads supported the other allele, B. This identification of ASE was
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based on an exonic SNV within the last exon, which was the only exonic SNV present in this region,
highlighting the sparseness of PHVs in exons.

The second example region is the GNAS complex locus, where several isoforms of the GNAS
gene show ASE (Figure 2e) [33]. Specifically, while Gsα (shown at the right end) is expressed from
both alleles, the A/B transcripts, XLαs is paternally expressed (allele B in Figure 2e), and NESP55 is
maternally expressed (allele A). We confirmed that Gsα was expressed from both alleles, as the exon
specific to the isoform contained a PHV, and both alternative alleles were observed in the RNA-seq
reads. For the other isoforms, although we could not directly observe their allelic expression patterns
due to the lack of phased variants in exonic regions, the CGIs located in the promoter regions of each
isoform showed an ASM pattern consistent with the expected expression pattern; the two CGI regions
in the promoters of the A/B transcripts, XLαs, and GNAS-AS were allele-specifically methylated on
the same allele, B, and the CGI at the promoter of NESP55 was methylated on the other allele, A.
Thus, we could predict the expected expression pattern for this locus via its methylation pattern.

These examples demonstrate that the detected ASM status of CGIs can reflect the expression
status of the corresponding genes/isoforms. Therefore, such ASM of CGIs would provide useful
information, especially when ASE is difficult to detect because of the absence of phased variant sites
within exons.
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Figure 2. (a,b) Proportions of CGIs located within a distance in the x-axis from the nearest genomic
feature, common single nucleotide polymorphisms (SNPs) (green) and heterozygous single nucleotide
variants (hetSNVs, or PHVs) (purple), in each genome of (a) AK1 and (b) HG002. Common SNPs
and PHVs distributed differently in both personal genomes. PHVs were essential in determining
the proportions of CGIs; (c) distribution of PHVs with respect to exons. The left pie chart shows the
proportion of exons containing PHVs for which the ASE status can be assessed directly. The right
pie chart shows the ratios of PHVs in exonic (blue), intronic (pale blue), or intergenic (gray) regions,
thus classifying PHVs into three categories; (d) example showing personal diploid methylomes and
transcriptomes in the AK1 genome. The CGI in the bidirectional promoter region (area shaded in blue)
of the ZNF597 and NAA60 genes showed ASM. The RNA-seq reads (both long and short) support that
transcription was only derived from allele A, which is the unmethylated allele in the region; (e) Personal
diploid methylomes around the GNAS complex locus in the AK1 genome. The four regions are colored
to show their known transcriptional pattern: maternally expressed (blue), paternally expressed (green),
or expressed from both alleles (purple). Correspondingly, these regions shaded with different colors
exhibited distinct methylation patterns. Of note, the ASM regions exhibited an intermediate level of
methylation according to bisulfite sequencing (bottom). RNA-seq reads suggested the expression of
Gsα from both alleles.

3.5. Statistics of Allele-Specific Methylation CpG Islands

Applying the same methodology to the HG002 dataset, we determined the methylation status of
genome-wide CGIs by summarizing the allelic methylation status of CpG sites contained in each CGI
(Methods). We calculated the methylation score for each CGI as the average of the methylation scores
of all CpGs comprising the CGI (Figure 3a). Next, we selected the 70 CGIs with the top 1% absolute
differences (≥0.68) in methylation scores between the haploids of the diploid methylomes (Table S1).
For comparison, we analyzed the AK1 dataset and determined 139 CGIs (1.3%) had a methylation
difference ≥0.68, which is consistent with the ratio in the HG002 dataset. Thus, we continued our
analysis using HG002 data. We noted that the distances between these ASM CGIs and the PHVs were
not necessarily small. Of the 70 ASM CGIs, 28 were separated by ≥500 bp and 9 by ≥1000 bp from
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their nearest PHV, which meant that the methylation status of the alleles of these CGIs could not be
measured simultaneously when the reads were shorter than 500 or 1000 bp.
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Figure 3. (a) Summary of the methylation scores (for each allele) for CGIs in personal diploid
methylomes in HG002. Each CGI is shown as a circle. On the two opposite corners (top left and
bottom right), CGIs with the top 1% absolute differences in methylation levels between the two alleles
were provisionally classified as ASM CGIs. Red circles: The corresponding CGIs were separated
from the nearest PHV by 1000 bp or more. Blue circles: Separation <1000 bp; (b) distribution of each
type of CGI, ASM (black bar) or non-ASM (white bar), with respect to the functional annotation of
genomic regions; (c) example showing personal diploid methylomes in the MEST gene-coding region
of the HG002 (Ashkenazim Trio Son) genome. Although the upstream CGI (with 66 CpG sites) was
unmethylated in both alleles, the larger downstream CGI (with 184 CpG sites) exhibited ASM. The CGIs
corresponded to the promoter regions of different isoforms of the genes; (d) another example of ASM
around an imprinted gene PEG13, paternally expressed gene 13.

To confirm that the detected ASM CGIs are functionally relevant, we compared the ASM CGIs
with genomic annotations from the combined segmentation by Segway and ChromHMM defined
in the ENCODE project (Figure 3b) [34]. Of note, CGIs in general significantly overlapped the
TSS, as expected. In contrast to this background, CGIs showing ASM overlapped with segments
annotated as “transcribed regions” or “repressed regions” more than with the TSS. This result may
seem somewhat contradictory, since any single gene cannot be both transcribed and repressed at the
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same time; however, this still may be a plausibly correct categorization for regions containing ASM
genes because they can be, by definition, in two contrasting states in each of the alleles.

We also confirmed that our list of candidate ASM CGIs contains a number of CGIs overlapping
with known imprinted genes. For example, we reproduced the expected ASM around known imprinted
genes such as MEST (Figure 3c), PEG13 (Figure 3d), HYMAI, and ZNF597, etc. (Table S1) [35]. Indeed,
CGIs with a larger methylation difference between two alleles were enriched with imprinted genes
(p = 0.007, U test). Thus, we again confirmed the validity of our method by successfully recovering
the imprinted genes as ASM regions.

4. Discussion

In this work, we examined personal diploid methylomes to directly characterize the ASM status
of genome-wide CGIs based on a set of PHVs specific to each sample. A crucial technical problem in
this study was the accurate assignment of erroneous reads to haplotypes. The simulation revealed,
however, that the accuracy would not be severely affected by sequencing errors, as they are random
in nature [29]. On the other hand, wrong SNV calls/phasing can be a source of biased errors,
which should be alleviated by using a PHV set of better quality. Therefore, the overall accuracy
of detected methylation statuses would essentially replicate the prediction performance of the original
methylation detection method, e.g., >90% for regions with sufficient sequencing depth, for example,
20-fold on each allele [17].

Compared with previous studies employing short read sequencing [12,13,16], one novelty of our
approach is that we called methylation using kinetic information from long SMRT reads. We did not
employ any chemical treatments, such as bisulfite conversion, which cleaves DNA into small fragments
of <1500 bp [15]. By this design, we fully exploited the lengths of the PacBio reads (>8000 bp in
our data). We determined the allelic origins of more than half of the sequencing data. Thus, we were
able to cover more CpGs in the genome. We previously reported that a read coverage of ∼20-fold is
required for detecting regional CpG methylation [17]. In cases in which sufficient read coverage is
available for each allele after separation, this read coverage value can include a margin, since some
reads will not contain any informative PHV and will be filtered out. Therefore, 40–50-fold of reads
would be sufficient for the detection of ASM.

Compared with other existing methods, ours does not rely on the availability of restriction sites
around the CpG sites, which makes our method potentially more comprehensive. Another important
advantage of our method is that long reads enable the detection of ASM associated with distal
heterozygous variants, and we demonstrated that such cases are not necessarily rare, as illustrated in
Figure 2a,b.

As we demonstrated, comprehensive information about the genome-wide ASM status may
complement ASE observations if we assume that the methylation status of promoter CGIs are correlated
with transcriptional activity. We described a couple of examples to support this hypothesis using
RNA-seq data in the AK1 dataset and indicated that the analysis of ASM could recapture some
imprinted genes in the HG002 dataset. While we cannot use epigenetic observation as a complete
surrogate for expression data, it can complement the ASE statuses of transcripts when they are more
difficult to observe due to lack of exonic PHVs.

We also demonstrated that long reads are essential for the study of ASM, given the sparse
distribution of heterozygous variants within individuals. Availability of haplotype-resolved variants
data along the genomes was essential for the method presented, and the advent of linked-reads
technology (10× GemCode/Chromium) enabled us to extract long-range (100 kbp) co-occurrences
of DNA sequences for that purpose [24] and also for accuracy of the haplotype-phasing matters;
with phasing errors, the sensitivity of our method might be undermined, or methylation statuses might
be swapped between the two alleles. While we recommend to try such linked-read technology first as
it is less labor-intensive and it can simply provide additional linking information to conventional short
read sequencing data, several available methods for chromosome-scale haplotype reconstruction have



Genes 2018, 9, 460 12 of 14

been developed in recent years; there are novel protocols such as Strand-seq [36], and CPTv2-seq [37],
and/or one can combine existing techniques such as Hi-C [38], optical mapping (Bionano, Tulsa,
Oklahoma, USA) [39], and long/short read sequencing as well as linked-read [36,39]. Such technology
renders it easier to sequence individual genomes in a manner that the majority of variants are
haplotype-phased. The more accessible the haplotype-phased genomes become, the more reasonable
it becomes to study the epigenome, being aware of the existence of two alleles.

Supplementary Materials: The following are available at http://www.mdpi.com/2073-4425/9/9/460/s1,
Table S1: Detected CpG islands with allele-specific methylation and associated genes.

Author Contributions: Conceptualization, Y.S. and S.M.; Methodology, Y.S. and Y.W.; Software, Y.S. and Y.W.;
Writing—Original Draft Preparation, Y.S.; Writing—Review and Editing, Y.S., Y.W., K.F.A. and S.M.; Supervision,
K.F.A. and S.M.

Funding: This work was funded in part by Japan Society for the Promotion of Science (Grant-in-Aid for JSPS
Fellows 15J03645) (Y.S.), Japan Science and Technology Agency (CREST JPMJCR13W3) (S.M.), Japan Agency for
Medical Research and Development (GRIFIN) (S.M.), National Human Genome Research Institute (R01HG008759)
(Y.W. and K.F.A.), Dept. of Internal Medicine, University of Iowa (institutional fund) (Y.W. and K.F.A.), and
Pharmaceutical Research and Manufacturers of America Foundation (Research Starter Grant) (Informatics) (Y.W.)

Acknowledgments: The authors thank the Genome in a Bottle (GIAB) consortium for allowing us to use the
Ashkenazi trio data. We also thank Michael Schnall-Levin of 10X Genomics for the stimulating discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ASM Allele-specific methylation
ASE Allele-specific expresssion
SNP Single nucleotide polymorphism
SNV Single nucleotide variant
PHV Phased heterozygous variant
IPD Inter-pulse duration
CGI CpG island

References

1. Jones, P.A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat. Rev. Genet.
2012, 13, 484–492. [CrossRef] [PubMed]

2. Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 2013,
14, 204–220. [CrossRef] [PubMed]

3. Schübeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [CrossRef]
[PubMed]

4. Down, T.A.; Rakyan, V.K.; Turner, D.J.; Flicek, P.; Li, H.; Kulesha, E.; Graef, S.; Johnson, N.; Herrero, J.;
Tomazou, E.M.; et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome
analysis. Nat. Biotechnol. 2008, 26, 779–785. [CrossRef] [PubMed]

5. Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonti-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.;
Ngo, Q.M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences.
Nature 2009, 462, 315–322. [CrossRef] [PubMed]

6. Smallwood, S.A.; Lee, H.J.; Angermueller, C.; Krueger, F.; Saadeh, H.; Peat, J.; Andrews, S.R.; Stegle, O.;
Reik, W.; Kelsey, G. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity.
Nat. Methods 2014, 11, 817–820. [CrossRef] [PubMed]

7. Gravina, S.; Dong, X.; Yu, B.; Vijg, J. Single-cell genome-wide bisulfite sequencing uncovers extensive
heterogeneity in the mouse liver methylome. Genome Biol. 2016, 17, 1–8. [CrossRef] [PubMed]

8. Clark, S.J.; Lee, H.J.; Smallwood, S.A.; Kelsey, G.; Reik, W. Single-cell epigenomics: Powerful new methods
for understanding gene regulation and cell identity. Genome Biol. 2016, 17, 72. [CrossRef] [PubMed]

http://www.mdpi.com/2073-4425/9/9/460/s1
http://dx.doi.org/10.1038/nrg3230
http://www.ncbi.nlm.nih.gov/pubmed/22641018
http://dx.doi.org/10.1038/nrg3354
http://www.ncbi.nlm.nih.gov/pubmed/23400093
http://dx.doi.org/10.1038/nature14192
http://www.ncbi.nlm.nih.gov/pubmed/25592537
http://dx.doi.org/10.1038/nbt1414
http://www.ncbi.nlm.nih.gov/pubmed/18612301
http://dx.doi.org/10.1038/nature08514
http://www.ncbi.nlm.nih.gov/pubmed/19829295
http://dx.doi.org/10.1038/nmeth.3035
http://www.ncbi.nlm.nih.gov/pubmed/25042786
http://dx.doi.org/10.1186/s13059-016-1011-3
http://www.ncbi.nlm.nih.gov/pubmed/27380908
http://dx.doi.org/10.1186/s13059-016-0944-x
http://www.ncbi.nlm.nih.gov/pubmed/27091476


Genes 2018, 9, 460 13 of 14

9. Yamada, Y.; Watanabe, H.; Miura, F.; Soejima, H.; Uchiyama, M.; Iwasaka, T.; Mukai, T.; Sakaki, Y.;
Ito, T. A comprehensive analysis of allelic methylation status of CpG islands on human chromosome
21q. Genome Res. 2004, 14, 247–266. [CrossRef] [PubMed]

10. Kerkel, K.; Spadola, A.; Yuan, E.; Kosek, J.; Jiang, L.; Hod, E.; Li, K.; Murty, V.V.; Schupf, N.; Vilain, E.; et al.
Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA
methylation. Nat. Genet. 2008, 40, 904–908. [CrossRef] [PubMed]

11. Schalkwyk, L.C.; Meaburn, E.L.; Smith, R.; Dempster, E.L.; Jeffries, A.R.; Davies, M.N.; Plomin, R.; Mill, J.
Allelic skewing of DNA methylation is widespread across the genome. Am. J. Hum. Genet. 2010, 86, 196–212.
[CrossRef] [PubMed]

12. Shoemaker, R.; Deng, J.; Wang, W.; Zhang, K. Allele-specific methylation is prevalent and is contributed by
CpG-SNPs in the human genome. Genome Res. 2010, 20, 883–889. [CrossRef] [PubMed]

13. Gertz, J.; Varley, K.E.; Reddy, T.E.; Bowling, K.M.; Pauli, F.; Parker, S.L.; Kucera, K.S.; Willard, H.F.;
Myers, R.M. Analysis of DNA methylation in a three-generation family reveals widespread genetic influence
on epigenetic regulation. PLoS Genet. 2011, 7, e1002228. [CrossRef] [PubMed]

14. Miura, F.; Enomoto, Y.; Dairiki, R.; Ito, T. Amplification-free whole-genome bisulfite sequencing by
post-bisulfite adaptor tagging. Nucl. Acids Res. 2012, 40, e136. [CrossRef] [PubMed]

15. Yang, Y.; Sebra, R.; Pullman, B.S.; Qiao, W.; Peter, I.; Desnick, R.J.; Geyer, C.R.; DeCoteau, J.F.; Scott, S.A.
Quantitative and multiplexed DNA methylation analysis using long-read single-molecule real-time bisulfite
sequencing (SMRT-BS). BMC Genom. 2015, 16, 350, doi:10.1186/s12864-015-1572-7. [CrossRef] [PubMed]

16. Kuleshov, V.; Xie, D.; Chen, R.; Pushkarev, D.; Ma, Z.; Blauwkamp, T.; Kertesz, M.; Snyder, M. Whole-genome
haplotyping using long reads and statistical methods. Nat. Biotechnol. 2014, 32, 261. [CrossRef] [PubMed]

17. Suzuki, Y.; Korlach, J.; Turner, S.W.; Tsukahara, T.; Taniguchi, J.; Qu, W.; Ichikawa, K.; Yoshimura, J.;
Yurino, H.; Takahashi, Y.; et al. AgIn: Measuring the landscape of CpG methylation of individual repetitive
elements. Bioinformatics 2016, 32, 2911–2919. [CrossRef] [PubMed]

18. Schultz, M.D.; He, Y.; Whitaker, J.W.; Hariharan, M.; Mukamel, E.A.; Leung, D.; Rajagopal, N.; Nery, J.R.;
Urich, M.A.; Chen, H.; et al. Human body epigenome maps reveal noncanonical DNA methylation variation.
Nature 2015, 523, 212. [CrossRef] [PubMed]

19. Deonovic, B.; Wang, Y.; Weirather, J.; Wang, X.J.; Au, K.F. IDP-ASE: Haplotyping and quantifying
allele-specific expression at the gene and gene isoform level by hybrid sequencing. Nucl. Acids Res. 2017,
45, e32. [CrossRef] [PubMed]

20. Au, K.F.; Sebastiano, V.; Afshar, P.T.; Durruthy, J.D.; Lee, L.; Williams, B.A.; van Bakel, H.; Schadt, E.E.;
Reijo-Pera, R.A.; Underwood, J.G.; et al. Characterization of the human ESC transcriptome by hybrid
sequencing. Proc. Natl. Acad. Sci. USA 2013, 110, E4821–E4830. [CrossRef] [PubMed]

21. Genome in a Bottle Consortium. Available online: ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release
(accessed on 18 September 2018).

22. Seo, J.S.; Rhie, A.; Kim, J.; Lee, S.; Sohn, M.H.; Kim, C.U.; Hastie, A.; Cao, H.; Yun, J.Y.; Kim, J.; et al. De novo
assembly and phasing of a Korean human genome. Nature 2016, 538, 243–247. [CrossRef] [PubMed]

23. Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics
2010, 26, 589–595. [CrossRef] [PubMed]

24. Zheng, G.X.; Lau, B.T.; Schnall-Levin, M.; Jarosz, M.; Bell, J.M.; Hindson, C.M.;
Kyriazopoulou-Panagiotopoulou, S.; Masquelier, D.A.; Merrill, L.; Terry, J.M.; et al. Haplotyping
germline and cancer genomes with high-throughput linked-read sequencing. Nat. Biotechnol. 2016, 34,
303–311. [CrossRef] [PubMed]

25. Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements.
Nat. Methods 2015, 12, 357. [CrossRef] [PubMed]

26. Wu, T.D.; Watanabe, C.K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences.
Bioinformatics 2005, 21, 1859–1875. [CrossRef] [PubMed]

27. Chin, C.S.; Peluso, P.; Sedlazeck, F.J.; Nattestad, M.; Concepcion, G.T.; Clum, A.; Dunn, C.; O’Malley, R.;
Figueroa-Balderas, R.; Morales-Cruz, A.; et al. Phased diploid genome assembly with single-molecule
real-time sequencing. Nat. Methods 2016, 13, 1050. [CrossRef] [PubMed]

28. Au, K.F.; Underwood, J.G.; Lee, L.; Wong, W.H. Improving PacBio long read accuracy by short read
alignment. PLoS ONE 2012, 7, e46679. [CrossRef] [PubMed]

http://dx.doi.org/10.1101/gr.1351604
http://www.ncbi.nlm.nih.gov/pubmed/14762061
http://dx.doi.org/10.1038/ng.174
http://www.ncbi.nlm.nih.gov/pubmed/18568024
http://dx.doi.org/10.1016/j.ajhg.2010.01.014
http://www.ncbi.nlm.nih.gov/pubmed/20159110
http://dx.doi.org/10.1101/gr.104695.109
http://www.ncbi.nlm.nih.gov/pubmed/20418490
http://dx.doi.org/10.1371/journal.pgen.1002228
http://www.ncbi.nlm.nih.gov/pubmed/21852959
http://dx.doi.org/10.1093/nar/gks454
http://www.ncbi.nlm.nih.gov/pubmed/22649061
http://dx.doi.org/10.1186/s12864-015-1572-7
http://www.ncbi.nlm.nih.gov/pubmed/25943404
http://dx.doi.org/10.1038/nbt.2833
http://www.ncbi.nlm.nih.gov/pubmed/24561555
http://dx.doi.org/10.1093/bioinformatics/btw360
http://www.ncbi.nlm.nih.gov/pubmed/27318202
http://dx.doi.org/10.1038/nature14465
http://www.ncbi.nlm.nih.gov/pubmed/26030523
http://dx.doi.org/10.1093/nar/gkw1076
http://www.ncbi.nlm.nih.gov/pubmed/27899656
http://dx.doi.org/10.1073/pnas.1320101110
http://www.ncbi.nlm.nih.gov/pubmed/24282307
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release
http://dx.doi.org/10.1038/nature20098
http://www.ncbi.nlm.nih.gov/pubmed/27706134
http://dx.doi.org/10.1093/bioinformatics/btp698
http://www.ncbi.nlm.nih.gov/pubmed/20080505
http://dx.doi.org/10.1038/nbt.3432
http://www.ncbi.nlm.nih.gov/pubmed/26829319
http://dx.doi.org/10.1038/nmeth.3317
http://www.ncbi.nlm.nih.gov/pubmed/25751142
http://dx.doi.org/10.1093/bioinformatics/bti310
http://www.ncbi.nlm.nih.gov/pubmed/15728110
http://dx.doi.org/10.1038/nmeth.4035
http://www.ncbi.nlm.nih.gov/pubmed/27749838
http://dx.doi.org/10.1371/journal.pone.0046679
http://www.ncbi.nlm.nih.gov/pubmed/23056399


Genes 2018, 9, 460 14 of 14

29. Ono, Y.; Asai, K.; Hamada, M. PBSIM: PacBio reads simulator—Toward accurate genome assembly.
Bioinformatics 2012, 29, 119–121. [CrossRef] [PubMed]

30. Zook, J.; Catoe, D.; McDaniel, J.; Vang, L.; Spies, N.; Sidow, A.; Weng, Z.; Liu, Y.; Mason, C.;
Alexander, N.; et al. Extensive sequencing of seven human genomes to characterize benchmark reference
materials. Sci. Data 2016, 3, 160025. [CrossRef] [PubMed]

31. Stunnenberg, H.G.; Abrignani, S.; Adams, D.; de Almeida, M.; Altucci, L.; Amin, V.; Amit, I.;
Antonarakis, S.E.; Aparicio, S.; Arima, T.; et al. The International Human Epigenome Consortium:
A blueprint for scientific collaboration and discovery. Cell 2016, 167, 1145–1149. [CrossRef] [PubMed]

32. Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI
database of genetic variation. Nucl. Acids Res. 2001, 29, 308–311. [CrossRef] [PubMed]

33. Bastepe, M. The GNAS locus: Quintessential complex gene encoding Gsα, XLαs, and other imprinted
transcripts. Curr. Genom. 2007, 8, 398–414. [CrossRef] [PubMed]

34. Consortium, T.E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489,
57–74. [CrossRef] [PubMed]

35. Baran, Y.; Subramaniam, M.; Biton, A.; Tukiainen, T.; Tsang, E.K.; Rivas, M.A.; Pirinen, M.; Gutierrez-Arcelus, M.;
Smith, K.S.; Kukurba, K.R.; et al. The landscape of genomic imprinting across diverse adult human tissues.
Genome Res. 2015, 25, 927–936. [CrossRef] [PubMed]

36. Porubsky, D.; Garg, S.; Sanders, A.D.; Korbel, J.O.; Guryev, V.; Lansdorp, P.M.; Marschall, T. Dense and
accurate whole-chromosome haplotyping of individual genomes. Nat. Commun. 2017, 8, 1293. [CrossRef]
[PubMed]

37. Zhang, F.; Christiansen, L.; Thomas, J.; Pokholok, D.; Jackson, R.; Morrell, N.; Zhao, Y.; Wiley, M.; Welch, E.;
Jaeger, E.; et al. Haplotype phasing of whole human genomes using bead-based barcode partitioning in a
single tube. Nat. Biotechnol. 2017, 35, 852. [CrossRef] [PubMed]

38. Ben-Elazar, S.; Chor, B.; Yakhini, Z. Extending partial haplotypes to full genome haplotypes using
chromosome conformation capture data. Bioinformatics 2016, 32, i559–i566. [CrossRef] [PubMed]

39. Mostovoy, Y.; Levy-Sakin, M.; Lam, J.; Lam, E.T.; Hastie, A.R.; Marks, P.; Lee, J.; Chu, C.; Lin, C.;
Džakula, Ž.; et al. A hybrid approach for de novo human genome sequence assembly and phasing.
Nat. Methods 2016, 13, 587. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/bioinformatics/bts649
http://www.ncbi.nlm.nih.gov/pubmed/23129296
http://dx.doi.org/10.1038/sdata.2016.25
http://www.ncbi.nlm.nih.gov/pubmed/27271295
http://dx.doi.org/10.1016/j.cell.2016.11.007
http://www.ncbi.nlm.nih.gov/pubmed/27863232
http://dx.doi.org/10.1093/nar/29.1.308
http://www.ncbi.nlm.nih.gov/pubmed/11125122
http://dx.doi.org/10.2174/138920207783406488
http://www.ncbi.nlm.nih.gov/pubmed/19412439
http://dx.doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
http://dx.doi.org/10.1101/gr.192278.115
http://www.ncbi.nlm.nih.gov/pubmed/25953952
http://dx.doi.org/10.1038/s41467-017-01389-4
http://www.ncbi.nlm.nih.gov/pubmed/29101320
http://dx.doi.org/10.1038/nbt.3897
http://www.ncbi.nlm.nih.gov/pubmed/28650462
http://dx.doi.org/10.1093/bioinformatics/btw453
http://www.ncbi.nlm.nih.gov/pubmed/27587675
http://dx.doi.org/10.1038/nmeth.3865
http://www.ncbi.nlm.nih.gov/pubmed/27159086
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Data Source
	Assignment of Reads to Each Haplotype for AK1 and HG002
	Generating the Diploid Methylomes
	Calculating the Distribution of Phased Heterozygous Variants with Respect to CpG Islands or Exons
	Allele-Specific Expression Analysis of AK1
	Identifying CpG Islands with Allele-Specific Methylation

	Results
	A Statistical Model for Accurate Read Assignment
	Generating Diploid Methylomes and Transcriptomes for the AK1 and HG002 Datasets
	Distribution of Phased Heterozygous Variants in Two Personal Genomes
	Allele-Specific Methylation of CpG Islands and Allele-Specific Expresion
	Statistics of Allele-Specific Methylation CpG Islands

	Discussion
	References

