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Abstract
Terpenoids are natural compounds predominantly present in plants. They have many pharmaceutical and/or nutritional
functions, and have been widely applied in medical, food, and cosmetics industries. Recently, terpenoids have been used in
the clinical treatment of COVID-19 due to the good antiviral activities. The increasing demand for terpenoids in interna-
tional markets poses a serious threat to many plant species. For environmentally sustainable development, microbial cell
factories have been utilized as the promising platform to produce terpenoids. Nevertheless, the bioproduction of most
terpenoids cannot meet commercial requirements due to the low cost-benefit ratio until now. The biosynthetic potential of
endophytes has gained attention in recent decades owing to the continual discovery of endophytes capable of synthesizing
plant bioactive compounds. Accordingly, endophytes could be alternative sources of terpenoid-producing strains or
terpenoid synthetic genes. In this review, we summarized the research progress describing the main and supporting roles
of endophytes in terpenoid biosynthesis and biotransformation, and discussed the current problems and challenges which
may prevent the further exploitation. This review will improve our understanding of endophyte resources for terpenoid
production in industry in the future.
Key points
• The mechanisms employed by endophytes in terpenoid synthesis in vivo and in vitro.
• Endophytes have the commercial potentials in terpenoid bioproduction and biotransformation.
• Synthetic biology and multiomics will improve terpenoid bioproduction in engineered cell factories.
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Introduction

Terpenoids, also referred to as isoprenoids, are a large family
of the most abundant natural products in nature derived from

isoprene units. They exist in almost every organism, but are
mainly synthesized by plants as secondary metabolites. To
date, more than 80,000 terpenoids have been identified, some
of which have important medicinal, physiological, metabolic,
communication, and defense functions, and are widely uti-
lized in food, cosmetics, and pharmaceutical industries
(Pichersky and Raguso 2018). Especially, terpenoids exert
their effects on human health including anticancer, antiviral,
anti-inflammation, immune regulation, antioxidation, and oth-
er functions (Davies et al. 2015; Hill and Connolly 2020). Due
to the good antiviral effects (such as SARS-CoV-2 and hepa-
titis C virus) (Chao et al. 2016), many terpenoids have been
used in the clinical treatment of COVID-19 (Bailly and
Vergoten 2020; Murck 2020).

As shown in Fig. 1, isopentenyl pyrophosphate (IPP) and
dimethylallyl pyrophosphate (DMAPP), the fundamental
structural units of all terpenoids, are synthesized through the
mevalonate (MVA) pathway and the 2-C-methyl-D-
erythritol-4-phosphate (MEP) pathway. IPP and DAMPP
can be reversibly isomerized by isopentenyl pyrophosphate
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isomerase (IDI). Afterwards, IPP and DMAPP are converted
by prenyltransferases to longer chain terpenoid skeletons,
such as geranyl diphosphate (GPP, the C10 skeleton of
monoterpenoids), farnesyl diphosphate (FPP, the C15 skeleton
of sesquiterpenoids and triterpenoids), and geranylgeranyl di-
phosphate (GGPP, the C20 skeleton of diterpenoids and
tetraterpenoids). The various bioactivities of terpenoids can
be achieved through structural rearrangement of the carbon
skeleton and the addition of functional groups, such as glyco-
syl, hydroxyl, ketone, carbonyl, and aldehyde (Kirby et al.
2009; Sun et al. 2019).

Previously, terpenoid products were obtained in a gen-
eral of two ways: plant extraction and chemical synthesis.
With the development of biological techniques in recent
years, microbial synthesis has become a promising alter-
native approach in the production of terpenoids (Sun et al.
2020; Yu et al. 2020). Microorganisms grow faster than
plants, and the biosynthetic processes are generally sus-
tainable and environmental friendly. However, despite
few terpenoids such as artemisinin, an amorphane sesqui-
terpene which has achieved the goal of industrial produc-
tion in the genetically modified Saccharomyces cerevisiae
(Paddon et al. 2013), the biochemical production of most
terpenoids is insufficient to be commercial. The main hur-
dle is the poor inner catalytic activity of plant-derived
enzymes in microbes (Sun et al. 2019). To overcome the
bottleneck encountered, new breakthroughs need to be
found. Some studies suggested that enzymes derived from
microbes functioned well in engineered microbes (Huang
et al. 2015; Wang et al. 2019; Xu et al. 2018).
Considering the long-term harmony and coevolution in
plant-endophyte symbioses, endophytes are realized to
be potential alternatives for terpenoid bioproduction, ei-
ther directly or indirectly (Venugopalan and Srivastava
2015). In the present review, research progresses of endo-
phyte in the bioproduction of terpenoids, including endo-
phytic production of terpenoids, the heterologous expres-
sion of endophyte-derived terpenoid biosynthetic genes,

the role of endophyte in enhancing their hosts’ terpenoid
production, and biotransformation of terpenoids by endo-
phytes, were summarized. It is beneficial for researchers
to make better understanding and more effective utiliza-
tion of these excellent resources to achieve efficient syn-
thesis of terpenoids.

Plant endophytes as the alternative sources
for terpenoid bioproduction

Plant endophytes are a group of microorganisms that col-
onize in plant tissues without apparently pathogenic ef-
fects to their hosts. Researchers have indicated the pres-
ence of one or more types of endophytes in every plant
studied to date (Gupta et al. 2020; Shi et al. 2015; Shi
et al. 2016). The population of endophytes in a plant is
highly variable and depends on various components, in-
cluding plant genotype, plant growth stage, plant physio-
logical status, the type of plant tissues, the environmental
condition of the soil, and different agricultural practices
(Gupta et al. 2020). Endophytes exhibit complex interac-
tions with their hosts. For example, they are known to
enhance plant growth and nutrient gain, and to improve
the tolerances of plants to various types of abiotic and
biotic stresses. In addition, it has been proved that endo-
phytes were able to produce some plant-derived high-val-
ue compounds, including terpenoids or their precursors
(Kharwar et al. 2011; Kusari et al. 2013; Kusari et al.
2014a; Newman 2018; Souza et al. 2011). Over the past
decades, many valuable terpenoids with antioxidant, anti-
cancer, and antimicrobial activities have been successfully
identified from endophytes (Table 1).

Why could endophytes produce so many phytochem-
icals like terpenoids and other compounds, while the
microbes isolated from other habitats were seldomly able
to do so? Some studies considered that the phytochemi-
cal biosynthesis functions of endophytes were obtained
through their long-term evolution in their hosts by the
horizontal gene transfer between plant-associated endo-
phytes and the hosts, as well as among the endophytes
(Tiwari and Bae 2020; Zhang et al. 2019), making endo-
phytes as important sources of diverse plant secondary
metabolites. In contrast, some other studies showed that
the secondary metabolite biosynthetic genes in some en-
dophytes were not homologous with their hosts, and
some genes were even absent in the host genomes
(Heinig et al. 2013), indicating that the phytochemical-
producing endophytes might evolve independently.
Therefore, some systematic studies are needed to eluci-
date why endophytes could produce plant secondary
metabolites.

�Fig. 1 Overview of the MVA and MEP pathways for terpenoid
production in plant and microorganism. Single arrows represent one-
step conversions, and triple arrows represent multiple steps. AACT,
acetoacetyl-CoA thiolase; HMGS, hydroxymethylglutaryl-CoA syn-
thase; HMGR, hydroxymethylglutaryl-CoA reductase; MVK,
mevalonate kinase; PMVK, phosphomevalonate kinase; MVD,
diphosphomevalonate decarboxylase; DXS, 1-deoxy-D-xylulose-5-phos-
pha te syn thase ; DXR, 1-deoxy-D-xylu lose-5-phospha te
reductoisomerase; ISPD, 2-C-methyl-D-erythritol-4-phosphate
cytidylyltransferase; CDPMEK, 4-(cytidine 5′-phospho)-2-C-methyl-D-
erithritol kinase; ISPF, 2-C-methyl-D-erythritol-2,4-cyclodiphosphate
synthase; FPPS, farnesyl-diphosphate synthase; HDS: 4-hydroxy-3-
methylbut-2-enyl-diphosphate synthase; HDR, 4-hydroxy-3-methylbut-
2-enyl diphosphate reductase; GPPS, prenyltransferases geranyl diphos-
phate synthase; FPPS, farnesyl diphosphate synthase; GGPPS,
geranylgeranyl diphosphate synthase
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Heterologous production
of endophyte-derived terpenoids

Although various terpenoids can be synthesized by endo-
phytes, all of these endophytes have not been suitable for
commercial application due to the low yield and the weaken-
ing biosynthetic capacity upon repeated subcultivation.
Development of techniques in metabolic engineering and syn-
thetic biology promoted the idea of expressing the terpenoid
biosynthetic pathway in industrial microbes (Belcher et al.
2020). Besides, system biology techniques enlarged the bank
of potential genes involved in terpenoid biosynthesis from
environments. For example, modern metagenomic

sequencing approaches and de novo assembly of microbial
genomes from metagenome data provide powerful strategies
in discovering the novel microbes and genes involved in ter-
penoid biosynthesis from the endosphere and rhizosphere
microbiomes, regardless of whether the microbes are
culture-dependent or culture-independent (Carrion et al.
2019).

Here, by taking Huperzine A (HupA) as an example, we
discuss the feasibility of heterologous production of
endophyte-derived terpenoids. HupA is a sesquiterpene alka-
loid naturally existing in members of the Huperziaceae, such
as Huperiza serrata. A large number of clinical trials have
shown that HupA is an effective therapeutic medicine with

Table 1 Examples of high value terpenoids with relatively high yield isolated from endophytes

Terpenoid Endophyte Host plant Yield Reference

Azadirachtin A Eupenicillium parvum Azadirachta indica 43 μg/L (Kusari et al. 2012)
Azadirachtin B Eupenicillium parvum Azadirachta indica 11 μg/L (Kusari et al. 2012)
Camptothecin Fusarium solani MTCC 9668 Apodytes dimidiata 28.9 μg/L (Venugopalan et al. 2016)
Camptothecin Nodulisporium Nothapodytes foetida 45 μg/g* (Rehman et al. 2009)
Cryptotashinone Penicillium canescens Salvia abrotanoidescan 0.31 ± 0.12 mg/g* (Boghsani et al. 2020)
Cryptotashinone Penicillium Murcianum Salvia abrotanoidescan 0.86 ± 0.2 mg/g* (Boghsani et al. 2020)
Cryptotashinone Paraphoma radicina Salvia abrotanoidescan 1.09 ± 0.29 mg/g* (Boghsani et al. 2020)
Cryptotashinone Coniolariella hispanica Salvia abrotanoidescan 0.23 ± 0.04 mg/g* (Boghsani et al. 2020)
Ginsenoside Rg3 Agrobacterium sp. PDA-2 Panax ginseng 0.062 g/L (Yan et al. 2019)
Ginsenoside Rh2 Agrobacterium sp. PDA-2 Panax ginseng 0.019 g/L (Yan et al. 2019)
Ginsenosides Penicillium sp. G22 Aralia elata 2.049 g/L (Wu et al. 2012)
Huperzine A Shiraia sp. Slf14 Huperzia serrata 142.6 μg/g* (Zhu et al. 2010)
Huperzine A Cladosporium cladosporioides LF70 Huperzia serrata 39.61 μg/g* (Zhang et al. 2011)
Huperzine A Colletotrichum gloeosporioides ES026 Huperzia serrata 1 μg/g* (Shu et al. 2014)
Huperzine A Colletotrichum gloeosporioides ES026 Huperzia serrata 45.81 μg/g* (Zhao et al. 2013)
Huperzine A Trichoderma harzianum L44 Huperzia serrata 37.63 μg/g* (Dong et al. 2014)
Huperzine A Paecilomyces tenuis YS-13 Huperzia serrata 21 μg/L (Su and Yang 2014)
Huperzine A Ceriporia lacerata MY311 Phlegmariurus phlegmaria 40.53 μg/L (Wang et al. 2011)
Huperzine A Penicillium sp. LDL4.4 Huperzia serrata 168.9 μg/g* (Thanh et al. 2019)
Huperzine A Fusarium sp. C17 Phlegmariurus taxifolius 3.2 μg/g* (Cruz et al. 2020)
Huperzine A Alternaria brassicae AGF041 Huperzia serrata 42.89 μg/g* (Zaki et al. 2019)
Huperzine A Fusarium sp. Rsp5.2 Huperzia serrata 19.45 μg/g* (Le et al. 2020)
Saponins Fusarium sp. Pg27 Panax ginseng 0.181 g/L (Wu et al. 2013)
Saponins Aspergillus sp. Pg30 Panax ginseng 0.144 g/L (Wu et al. 2013)
Saponins Verticillium sp. Pg42-1 Panax ginseng 0.144 g/L (Wu et al. 2013)
Tanshinone I Trichoderma atroviride Salvia miltiorrhiza Bunge 1.119 ± 0.008 μg/g* (Ming et al. 2012)
Tanshinone IIA Trichoderma atroviride Salvia miltiorrhiza Bunge 3.049 ± 0.001 μg/g* (Ming et al. 2012)
Tanshinone IIA TR21 Salvia miltiorrhiza Bunge 18.827 ± 0.22 g/L (Zhang et al. 2018)
Taxol Phoma medicaginis Taxus wallichiana var. mairei PDB culture: 1.215 mg/L,

spent culture medium:
0.936 mg/L,
dry mycelium: 20 μg/g

(Jian et al. 2017)

Taxol Cladosporium sp. F1 Taxus baccata 129 μg/g* (Kasaei et al. 2017)
Taxol Aspergillus aculeatinus Tax-6 Taxus chinensis var. mairei 1337.56 μg/L (Qiao et al. 2017)
Vinblastine Fusarium oxysporum Catharanthus roseus 76 μg/L (Kumar et al. 2013)
Vincristine Fusarium oxysporum Catharanthus roseus 67 μg/L (Kumar et al. 2013)
Vincristine Talaromyces radicus Catharanthus roseus 670 μg/L (Palem et al. 2015)
Vinblastine Talaromyces radicus Catharanthus roseus 70 μg/L (Palem et al. 2015)
Vinblastine Curvularia verruculosa Cathranthus roseus 182 μg/L (Parthasarathy et al. 2020)
Zeaxanthin diglucoside Pseudomonas sp. 102515 Taxus chinensis 206 ± 6 mg/L (Fidan and Zhan 2019)

*μg/g: terpenoid yield per dry weight of mycelium
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minor side effects for Alzheimer’s disease (AD) due to its high
anti-acetylcholinesterase activity (Zhao et al. 2013). So far,
part biosynthetic pathway of HupA in the family
Huperziaceae has been illustrated (Fig. 2a). The first two steps
are catalyzed by lysine decarboxylase (LDC) and copper
amine oxidase (CAO), which convert L-lysine to 5-
aminopentanal, the precursor of HupA. The genes expressing
LDCs and CAOs have been identified from Lycopodium
clavatum (Bunsupa et al. 2016) and H. serrata (Xu et al.
2017), but their enzymatic promiscuity activities were strong.
Many other enzymes participating in the HupA biosynthetic
pathway remain to be identified.

The discovery of HupA biosynthetic genes from endo-
phytes related to family Huperziaceae is of great value for
both scientific research and commercial applications. In
2010, two HupA-producing endophytic fungi Shiraia sp.
Slf14 (Zhu et al. 2010) and Cladosporium cladosporioides
LF70 (Zhang et al. 2011) were isolated from the leaves of
H. serrata, and their yields of HupA were 142.6 μg/g and
39.61 μg/g dry mycelium, respectively. Afterwards, Zhu and
colleagues sequenced the whole genome of Shiraia sp. Slf14,
identified a putative HupA biosynthetic gene cluster (Yang
et al. 2014), and then heterogeneously expressed the SsCAO
gene of the gene cluster into Escherichia coli (Yang et al.
2016). They found that the genetically modified E. coli strain
was able to convert cadaverine to 5-aminopentanal. In 2014,
another HupA-producing fungal endophyte Colletotrichum
gloeosporioides ES026 was isolated from H. serrata with
the HupA yield of 45.81 μg/g dry mycelium at most (Zhao
et al. 2013). Shu and colleagues did de novo RNA sequencing
of C. gloeosporioides ES026 and genes encoding LDC
(CgLDC) and CAO (CgCAO) were identified (Zhang et al.
2015). Later on, they heterogeneously overexpressed
CgLDC and CgCAO in E. coli, and successfully obtained 5-
aminopentanal in cells (Zhang et al. 2017) (Fig. 2b).

Besides HupA, the microbial-based production of some
other terpenoids was supported by genetic information of en-
dophytes. For example, John M. Gladden and colleagues dis-
covered 26 putative terpene synthases (TPSs) derived from
four endophytic fungal strains (Daldinia eschscholzii EC12,
Hypoxylon sp. CO27, Hypoxylon sp. CI4A, and Hypoxylon
sp. EC38), of which 12 were functionally expressed in
E. coli and induced the production of a wide variety of
monoterpenoids and sesquiterpenoids (Wu et al. 2016). Liu
and colleagues first identified and described a chimeric diter-
pene synthase from the endophyte C. gloeosporioides ES026
as (5R,12R,14S)-dolasta-1(15),8-diene synthase (CgDS), the
chimeric fungal clade II-D terpene synthases and catalyzes a
C1-III-IV cyclization, and obtained this compound with the
titer of 7.3 mg/L in S. cerevisiae (Bian et al. 2018). Zhan and
colleagues isolated an endophytic bacterium Pseudomonas sp.
102515 that could produce zeaxanthin diglucosidea, a prom-
ising antioxidant terpenoid that belongs to the family of

carotenoids, from the leaves of Taxus chinensis, and then am-
plified a carotenoid biosynthetic gene cluster of this strain in
Pseudomonas putida KT2440, resulting in the yield of zea-
xanthin diglucoside at 121 mg/L (Fidan and Zhan 2019).

Although it is technically available to express endophyte-
derived terpenoid biosynthetic genes in engineered strains, it
seems that the yield of terpenoids is still short of the commer-
cial expectations. It is expected that further improvement of
terpenoid production can be achieved through metabolic en-
gineering combined with protein engineering.

Endophytes with the ability to enhance their
hosts’ terpenoid production

Endophytes could not only produce terpenoids by themselves,
but also stimulate the terpenoid accumulation in their host
plants. For example, tanshinones, a golden group of diterpene
quinones with the pharmacological effects, like antitumor,
antioxidation, anti-inflammation, cardiovascular and cerebro-
vascular protection, are the major lipophilic ingredients of
Salvia miltiorrhiza Bunge (Danshen) (Dong et al. 2011). To
date, people have identified more than 40 tanshinones from
the chemical constitutes of S. miltiorrhiza, such as tanshinone
I-VI, cryptotashinone, isotanshinone I-II, and danshenol A,
but their biosynthetic pathways in S. miltiorrhiza are only
partially elucidated (Guo et al. 2016) (Fig. 3). In 2012, a
tanshinone-producing endophytic fungus Trichoderma
atroviride D16 was isolated from S. miltiorrhiza root, which
can produce tanshinones I and IIA in rich mycological medi-
um (Ming et al. 2012). One year later, Qin and colleagues
found that T. atroviride D16 could promote the cell growth
and tanshinone production in S. miltiorrhiza hair roots,
through the transcriptional regulation by the polysaccharide
fraction (PSF) secreted from T. atroviride mycelium (Ming
et al. 2013). According to further analysis via infrared (IR)
and nuclear magnetic resonance (NMR), the key components
in PSF responding for boosting tanshinone production were
mannose, glucose, and galactose (Wu et al. 2019). According
to the proteomics analysis of the S. miltiorrhiza hairy roots
exposed to PSF, the tanshinone biosynthesis induced by PSF
in S. miltiorrhiza hairy roots may be correlated with peroxide
reaction, Ca2+ triggering, jasmonic acid (JA) signal transduc-
tion, and protein phosphorylation, finally resulting in an
increasement of leucine-rich repeat (LRR) protein synthesis
(Peng et al. 2019). Another endophytic fungus Chaetomium
globosum D38 isolated from the roots of S. miltiorrhiza in-
duced its host to produce more tanshinones, especially for
dihydrotanshinone I and cryptotanshinone, through upregulat-
ing the expression of key genes involved in tanshinone bio-
synthetic pathway (Zhai et al. 2018).

There are some other examples to show how endophytes
promote the terpenoid production in their hosts. Alok Kalra
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and colleagues isolated a few nitrogen-fixing root-associated
and indole-3-acetic acid (IAA)–producing endophytes from
different parts of the medicinal plant Withania somnifera,
and found that they could induce their hosts to produce more
withaferin-A in roots, one of the major phytochemical
triterpenoid derivatives in W. somnifera, by inducing IAA
production and increasing the transcriptional activity of
withanolide biosynthesis genes in roots, especially MEP-
pathway genes (DXS and DXR) (Pandey et al. 2018). Zhang
and colleagues screened out an endophytic bacteria Bacillus
pumilus from the medicinal herb Glycyrrhiza uralensis Fisch.
They found that B. pumilus can improve G. uralensis growth
under drought stress through the modification of antioxidant
accumulation and enhance glycyrrhizic acid content by the
incremental expression of key enzymes, such as squalene syn-
thase, 3-hydroxy-3-methylglutaryl CoA reductase, and beta-
amyrin synthase (Xie et al. 2019).

In summary, cells or fragments of endophytes could play
the role of elicitors to induce the formation of bioactive com-
pounds, such as terpenoids, in plant or cell suspension cul-
tures. This endophyte-induced bioactive compound synthesis
in plant cells is considered through the signal transduction
process, which is composed of several steps including recog-
nition of elicitors, signal transduction, integration with tran-
scription factors, and gene activation (Zhai et al. 2017). In

detail, endophytic elicitors, such as fungal proteins, oligosac-
charides, and polyunsaturated fatty acids (Wu et al. 2019),
could activate the signal transduction pathways in plants, in-
cluding ion fluxes and Ca2+ signaling pathway, nitric oxide
(NO) signaling pathway, reactive oxygen species (ROS) sig-
naling pathway, salicylic acid (SA) signaling pathway, JA
signaling pathway, and their cross-talking. Then, the produced
signal molecules could integrate with transcription factors
which regulate the expression of bioactive compound–
associated functional genes (Zhao et al. 2005), leading to the
significant accumulation of bioactive compounds in plant
cells (Fig. 4).

Although the outline of endophyte-induced plant terpenoid
synthesis has made important progress, the detailed mecha-
nisms are not declared yet. For example, how the various
signaling molecules regulate the expression of transcription
factors during the endophyte-induced accumulation of terpe-
noids in medical plants is scarcely investigated. Han and col-
leagues proved that class I TGA transcription factors com-
bined with methyl jasmonate could increase the production
of triptolide and two sesquiterpene pyridine alkaloids, but
the detailed mechanism has not been revealed (Han et al.
2020). Moreover, novel endophyte-derived elicitors, signal
molecules, transduction pathways, transcriptional factors
linking with in situ terpenoid metabolism, and the docking

Fig. 2 The biosynthetic pathway of HupA. a The proposed biosynthetic
pathway of HupA in members of the Huperziaceae. b The heterogeneous
expression of HupA synthetic genes from endophytes in microbial cell

factory. LDC, lysine decarboxylase; CAO, copper amine oxidase. Solid
arrows indicate the established relationships, and dashed arrows indicate
hypothetical relationships
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processes between elicitors and the corresponding receptors
are not elaborated. Benefiting from the technological develop-
ment in synthetic biology and botany, plant synthetic biology
is regarded as another hot spot (Nemhauser and Torii 2016).
Nonetheless, the development of plant synthetic biology is
still at an initial stage due to the insufficiency of

quantificationally standardized components and incompatibil-
ities between standardized components and plant system
(Patron et al. 2015). In the future, researchers should focus
on the studies of the key transcription factors related to the
endophytic elicitors. Only when key transcription factors
screened out can they be transferred to the corresponding

Fig. 3 Partial pathways for
tanshinone biosynthesis and
chemical structures for some
representative tanshinones. CPS,
copalyl diphosphate synthase;
KSL, kaurene synthase-like;
CYP, cytochrome P450
monooxygenase
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medical plants or other model plants to increase the accumu-
lation of the secondary metabolites greatly. In addition, de-
spite that a variety of synthetic sensors has been used in the
study of plant endogenous signaling pathways, complex ge-
netic circuits have not been realized in plants. So future plant
synthetic biology development depends on a large degree of
basic research breakthrough.

Biotransformation of terpenoids
by endophytes

Besides the function of terpenoid biosynthesis directly or in-
directly, endophytes have the potential with the function of
terpenoid decoration to change their structures and bioactiv-
ities. Currently, some endophytes have been utilized to pro-
duce useful enzymes, which have significant regio- and ste-
reo-selectivities, for the production of terpenoid derivatives
(Corrêa et al. 2014).

Ginseng is an important pharmaceutical herb belonging
to Araliaceae family. It has been utilized in Chinese med-
icine for thousands of years. Ginsenosides are the most
valuable and major active triterpenoids in ginseng species
with the therapeutic effects of anti-tumor, anti-age, and
hepatitis therapeutic effectiveness. The biosynthetic path-
way of ginsenosides has been elucidated (Wang et al.
2020) (Fig. 5a). They are composed of major ginsenosides
(Rb1, Rb2, Rc, Rd, Rg1, etc.) and rare ginsenosides (Rg3,
Rh1, Rh2, F2, compound K, etc.). Compared with major
ginsenosides, rare ginsenosides (deglycosylated

ginsenosides) are more pharmaceutically active, because
they have relatively smaller sizes and are easily able to
penetrate cell membranes (Xu et al. 2003). Considering
that rare ginsenosides are too few to be purified from
most natural ginseng plants, it is of great significance to
study the conversion of major ginsenosides into rare
ginsenosides (He et al. 2019). It was found that
ginsenoside Rb1, the main active ingredient of Panax
Notoginseng , could be deglycosyla ted to form
ginsenoside F2 and compound K by the glucosidase of
the endophytes Fusarium sp. YMF1.02670 and
YMF1.02193 (Luo et al. 2013) (Fig. 5b). Yin and col-
leagues screened out 32 β-glucosidase-producing endo-
phytes from Platycodon grandiflorum, among which
Luteibacter sp. JG09 can effectively convert ginsenosides
Rb1, Rb2, Rc, and Rd into rare ginsenosides F2 and com-
pound K, and convert ginsenoside Rg1 into rare
ginsenoside Rh1 (Cui et al. 2016) (Fig. 5b). The maxi-
mum production rate of ginsenosides F2 and compound K
reached 94.53% and 66.34%, respectively. Later on, they
successfully isolated another β-glucosidase-producing en-
dophytic bacterium Burkholderia sp. GE 17-7 from
P. ginseng roots with the capability of converting
ginsenoside Rg3 from Rd1 (Fu et al. 2017) (Fig. 5b).
Accordingly, further studies to identify and modify vari-
ous β-glucosidases from endophytes have the potential to
effectively increase ginsenoside bioproduction.

Endophytes have potential biotransformation activities on
many other terpenoids. For example, ursolic acid is a
pentacyclic triterpenoid with the anti-inflammatory, anti-

Fig. 4 The process of endophyte-induced secondarymetabolite synthesis in plant cells. (1) Recognition of elicitor; (2) signal transduction; (3) integration
with transcription factors; (4) gene activation; ROS, reactive oxygen species; JA, jasmonic acid; SA, salicylic acid; NO, nitric oxide
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Fig. 5 The proposed biosynthetic pathway of ginsenosides. a Key
enzymes and intermediates involved in ginsenoside biosynthesis. b
Examples of biotransformation of ginsenosides by endophytes. SS,
squalene synthase; SE, squalene epoxidas; DDS, dammarenediol-II

synthase; PPDS, protopanaxadiol synthase; PPTS, protopanaxatriol syn-
thase; CYP450, cytochrome P450 monooxygenase; UGT, uridine di-
phosphate glycosyltransferase. Green compounds represent major
ginsenosides; blue compounds represent rare ginsenosides
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microbial, and antiviral activities. Some of its derivatives are
very important for the structure-activity relationship study, but
they are hard to be obtained through the chemical modifica-
tion of ursolic acid since ursolic acid has limited active sites.
Thanks to the investigation on endophytes, the fungal endo-
phytes isolated from H. serrata, Pestalotiopsis microspora,
and Umbelopsis isabellina were reported to be able to trans-
form ursolic acid to new compounds by structural modifica-
tion through maybe the cooperation of transferases and ester-
ases (Fu et al. 2011a, b). A second example is on the
gentiopicroside (GPS), a monoterpenoid glucoside whose
pharmacological properties could be activated after the enzy-
matic or acidic hydrolysis (Zeng et al. 2014). An endophytic
fungus Penicillium crustosum 2T01Y01, isolated from a me-
dicinal plant Dendrobium candidum Wall. ex Lindl., had a
high GPS-transforming ability, and could produce three
known and four novel deglycosylated GPSs (Zeng et al.
2014). It was proposed that the GPS metabolic pathways in
P. crustosum 2T01Y01 mainly include deglycosylation, hy-
drolyzation, cyclization, reduction and hydrogenation, or ox-
idation and decarboxylation. The authors speculated that the
deglycosylation by the β-glucosidase existing in the fungus
might be the initiation step, but the enzymes involved in the
other steps need to be elucidated.

In summary, endophytes can be efficiently used for the
biotransformation of natural compounds through their special
enzymes. The biotransformation reactions mainly include hy-
droxylation, hydrolysis, reduction, oxidation, epoxidation, O-
methylation, ring-expansion, isomerization, and methyl mi-
gration reactions. Considering that rational design and direct-
ed evolution of enzymes could accelerate the improvement of
their specificities, stabilities, and/or efficiencies, these strate-
gies could be used to ultimately improve the conversion effi-
ciencies of biotransformational enzymes in the future.

Conclusions and future perspectives

Endophytes are a treasure trove of terpenoid biosynthesis
through direct or indirect manners. Nevertheless, investi-
gations on endophyte-related terpenoid synthesis are still
in their infancy. To achieve their commercial applications
in industries, several serious challenges should be over-
come. Firstly, the lifestyles and genetic systems of most
endophytes are poorly understood, which have hampered
our in vivo genetic manipulations. Secondly, the heterol-
ogous expression of endophyte-derived genes within the
normal microbial cell factories is usually in face with
instability, low enzymatic activities, misfolding, incorrect
post-translational modification, a mass of crosstalk be-
tween the endogenously primary metabolism and the arti-
ficial metabolic pathways, and so on (Kusari et al. 2014b).
Thirdly, if the target endophytes prefer to make steady

functions in plant-associated microbiomes through physi-
cal and/or metabolic interactions, their in vitro monocul-
tures might be in face with the gradual reduction in ter-
penoid yields. With the development of the multi-omics
approaches and bioinformatics, exploring, identifying,
and characterizing the genetic and metabolic elements in-
volved in the terpenoid synthesis in endophytes have been
advancing. With further development and the combination
of enzyme engineering, pathway optimization, molecular
techniques, and some other modern technologies,
endophytic-derived terpenoid bioproduction could be
boosted furthermore.
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