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Introduction
Even if universal access to combination antiretroviral therapy 
(cART) has dramatically changed the face of human immuno-
deficiency virus (HIV) infection,1 HIV-associated central 
nervous system (CNS) complications are still challenging bed-
side clinical HIV practice and benchside NeuroAIDS research.2 
The repertoire of HIV-associated CNS disorders includes 
opportunistic infections (OIs), immune reconstitution inflam-
matory syndrome (IRIS), HIV-associated neurocognitive dis-
orders (HAND), collateral damage of cART on the brain 
(including toxicity or inadequate penetration), associated effect 
of cerebrovascular diseases,3 and accelerated aging.4

The classification of HIV-associated cognitive dysfunction 
underwent several nosological changes over time.5,6 In the past 
decade, the refined definition of HAND added to the classic 
entity HIV-associated dementia (HAD) less severe forms such 
as mild neurocognitive disorder and asymptomatic neurocog-
nitive impairment (ANI).6 This later raised a lot of controversy 

because it does not involve a patent impairment of patients’ 
functionality and is therefore difficult to diagnose in clinical 
settings, leading to overestimation of the rates of cognitive 
impairment.7–10 However, ANI is not a benign condition, as it 
is associated with an altered CNS biomarker profile11,12 and 
progression to symptomatic forms.13,14 A further challenge is 
to disentangle HAND from age-related and inflammation-
related diseases in the context of HIV.15

Central nervous system complications in the setting of HIV 
infection result both from a direct pathogenic effect of the 
virus and from the induced immune suppression, which facili-
tate new infections or promote reactivation of latent infections 
in the brain.

The current review aims to describe the direct impact of 
HIV on the brain as well as its relationship with other patho-
gens (bacteria, viruses, or parasites) from a practitioner’s per-
spective, to provide a general clinical overview, brief workup, 
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and, whenever possible, treatment guidance. A review of 
PubMed original and review articles was conducted to decipher 
the interplay between HIV, other pathogens, and host responses 
in the brain, their clinical relevance, and to identify therapeutic 
approaches.

The first part of the review will summarize HIV neuroinva-
sion, compartmentalization of HIV infection in the brain, and 
immune responses. Cerebrospinal fluid (CSF) viral escape and 
its clinical impact will be also discussed.

The second part will describe the current concepts in brain 
acute and latent infections in the setting of chronic HIV infec-
tion focusing on interactions between pathogens and host 
immune responses.

HIV Entry and Persistence in the Brain
There is evidence that HIV enters the brain early after acute 
infection.16 The mechanism of HIV entry is similar to that of 
other viruses, i.e., migration across the blood-brain barrier 
(BBB) via infected monocytes or blood lymphocytes using the 
“Trojan horse” model17 or through endothelial cells, as free viri-
ons.18 Infected monocytes will differentiate into perivascular 
macrophages after crossing the BBB. The macrophage lineage 
is the substrate for productive HIV infection within the CNS. 
Astrocytes can harbor HIV but do not support productive HIV 
replication; they may contribute to HIV-related brain damage 
through astrogliosis.19 Astrocyte activation triggered by HIV 
neurotoxic proteins induces production of high levels of gluta-
mate. Neurons are not infected directly by HIV, but elevated 
extracellular glutamate levels are able to cause neuronal bioener-
getic disturbances and subsequent neuronal injury.20 Local pro-
duction of chemokines and cytokines as result of HIV replication 
together with systemic inflammation and microbial transloca-
tion can also contribute to neuronal injury.21

There is clear evidence that HIV seeds in the brain and is 
able to evolve independently from the systemic compartment. 
Immune activation is evident in the brain soon after initial sys-
temic infection, even in settings with relatively reduced CSF 
HIV load and inflammation.22 The HIV compartmentaliza-
tion in CSF during primary infection, defined as independent 
HIV replication, was shown in 20% of HIV-infected patients 
using single genome amplification and phylogenetic analysis.23 
In the same study, sequestration of transmitted lineages within 
the CNS shortly after infection can serve as source for early 
CNS replication. It is uncertain if the source of compartmen-
talized HIV is the virus population seeded early in the brain or 
later during chronic infection.24,25 In terms of cell types associ-
ated with HIV compartmentalization, CCR5 viruses infecting 
macrophages and related cells (M-tropic) show more sequence 
diversity compared with viruses infecting T cells (T-tropic)26–28 
and are mainly found in patients with HAD.29 Human immu-
nodeficiency virus from the brain appears to represent a robust 
reservoir, able to replicate in the CNS, and rebound after inter-
ruption of cART.30

Persistence of HAND in the Era of Antiretroviral 
Therapy
Almost half of the HIV-positive individuals have a certain 
degree of neurocognitive impairment (NCI),31 a proportion 
which is similar for young adults infected with HIV in early 
childhood.32 This proportion was not changed by the advent of 
cART.31 However, cART significantly reduced the proportion 
of HAD, whereas ANI accounts nowadays for most of the 
NCI cases.31,33

Early cART rapidly reduces the HIV burden in the CSF at 
a similar rate to plasma. Still, reduction or control of HIV rep-
lication in the brain by cART does not manage to eliminate the 
milder forms of NCI. This can be due to several factors such as 
ongoing low-grade viral replication and inflammation within 
the CNS,34 cumulative exposure and possible toxicity of 
antiretroviral and other medications,35–37 and the effects of 
comorbidities and neurodegeneration that occur with aging.38,39 
The decay of HIV from CSF in chronically infected patients is 
slow because of compartmentalized infection and accounts for 
severe forms of cognitive impairment.25 Persistent inflamma-
tion and immune activation in the setting of chronic HIV 
infection seems to be one of the mechanisms behind NCI. 
Central nervous system immune activation occurs with acute 
infection, escalates thereafter, and then decreases but is not 
entirely managed with cART.40 New and more subtle contrib-
utors to NCI were recently identified: disruption of bioener-
getic brain homeostasis, which could be an early event preceding 
functional deficits,41 and transport of infected cells between the 
CNS and the systemic lymph nodes by the subdural lymphatic 
drainage system,42 thus maintaining immune activation.43

As access to cART is currently available worldwide and 
treatment guidelines now recommend early treatment, would 
there be any additional risks for HIV-associated neurological 
problems? Will milder forms of HAND persist with early 
treatment44 or will neurocognitive functioning of early-treated, 
well-managed individuals be similar to the performance of 
HIV-uninfected persons?45

HIV in the Brain of Patients on Stable Antiretroviral 
Therapy
Cerebrospinal fluid HIV escape is the term used to designate 
the instances when HIV is detected in the CSF of patients on 
stable cART, despite suppression of plasma viruses below the 
limits of detection or CSF HIV load is at least 0.5 log higher 
than plasma HIV load.46–48 Three types of CSF escape have 
been defined49: (1) asymptomatic CSF escape, which is similar 
to plasma blips; (2) neurosymptomatic CSF escape, usually 
associated with virologic failure in CSF compartment and neu-
rocognitive worsening; and (3) secondary CSF escape. In this 
last situation, CNS viral replication occurs in the context of 
another infection or inflammatory process that causes an entry 
of inflammatory cells susceptible to HIV infection into the 
CSF.
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Asymptomatic CSF viral escape was diagnosed by screening 
in well-established cohorts or as part of other research studies. 
Its prevalence was estimated at 5% to 10% of cART recipients 
and was associated with immune activation.40,47 Although it 
was defined as asymptomatic, the persistence of detectable 
HIV CSF loads was associated with increased risk for depres-
sion.50 So far, asymptomatic CSF escape requires monitoring 
but not cART modification. Symptomatic viral escape earned 
more attention because of its dramatic presentation with new 
neurocognitive worsening in patients with good CD4 count 
and stable cART with undetectable or low-level plasma HIV 
load.51–53 Symptomatic CSF viral escape appears to question 
the strategy of protease inhibitor monotherapy.54–57 In this sce-
nario, there is clear evidence of compartmentalization of HIV 
in CNS, with viruses harboring resistance mutations.52,58 Even 
if the neurocognitive signs are very vivid, similar to HIV 
encephalitis, the CSF viral load remains moderate, suggesting 
the contribution of other mechanisms such as inflammation 
and immune dysregulation.48,59,60 In most patients, neurocog-
nitive symptoms subside after changing antiretroviral therapy 
but diffuse leukoencephalopathy may persist after clinical 
improvement.48 From a pharmacologic point of view, antiretro-
viral drug distribution and toxicity in the CNS needs to be 
considered in assessing the causes of symptomatic viral escape.61 
Nevertheless, because HIV CSF escape demonstrates the abil-
ity of HIV to independently evolve in the CNS despite cART, 
targeting the CNS reservoir through additional strategies will 
be highly important for HIV eradication and cure.62

CD8 T-cell encephalitis is a clinical entity that reflects a 
paradoxical response driven by immune activation reacting to 
low-level CNS HIV replication.43 Although the clinical neu-
rological symptoms are similar to those of CSF escape, the 
hallmark of CD8 encephalitis is the pathologic finding of dif-
fuse microglial hyperplasia and massive and diffuse perivascu-
lar and intraparenchymal infiltration by CD8 lymphocytes.63 
The pathogenic mechanism behind this entity is the exagger-
ated CD8 cytotoxic response that was initially linked not only 
to IRIS64 but also to other conditions such as concomitant 
minor infection, interruption of cART, or virologic escape.65 
CD8 encephalitis has been described through case reports and 
case series in recent years.65,66 As the confirmatory diagnosis is 
mainly histologic, a presumptive diagnosis of CD8 encephalitis 
is based on the following: (1) magnetic resonance imaging 
(MRI) findings of diffuse T2 and fluid-attenuated inversion 
recovery high signal intensities localized in both white and 
gray matter and unusual multiple linear gadolinium-enhanced 
perivascular lesions, (2) CSF findings of mildly elevated pro-
tein and pleocytosis (with >90% lymphocytes, predominantly 
CD8+) in a patient with stable antiretroviral treatment and 
neurocognitive worsening.65 The recommended treatment for 
this disease consists of glucocorticosteroids to counteract the 
vigorous inflammatory process, in addition to the adjustment 
of the antiretroviral regimen.65

General Concept: HIV is Not Lonely in the Brain
The nervous system is immunoprivileged because it benefits 
from a robust immunosurveillance system.67 Infections of the 
brain are less common than of other organs and occur when 
pathogens break down the BBB or cross it via immune cells 
using a Trojan horse model. Some neurotropic pathogens, such 
as herpes viruses, Toxoplasma gondii, and even Mycobacterium 
tuberculosis, once entered, are able to persist in the human nerv-
ous system for their entire life span. Immune suppression 
induced by HIV can alter the fragile balance between the path-
ogens and the host’s immune responses and leave the individ-
ual at risk for subsequent reactivation of latent infections and 
disease.

Moreover, HIV and its proteins facilitate the entry and/or 
reactivation of several pathogens in the brain by both enhanc-
ing adhesion to and invasion of the brain microvascular 
endothelial cells, as is the case for Cryptococcus neoformans,68 or 
by Tat-mediated activation of transcription, in the case of John 
Cunningham virus ( JCV).69

Thus, HIV itself or the subsequent alteration of immune 
responses can favor reactivation of or new infections of the 
brain. But, conversely, OIs generate inflammation that can 
increase the passage of HIV across the BBB or sustain the local 
production of HIV, sometimes despite systemic antiretroviral 
control.70 A pertinent question is how much HIV would be 
expected to be found in the CSF of a patient with various OIs 
and what is the degree of NCI in HIV-infected patients with 
brain OIs?

The HIV RNA is found more frequently in the CSF of 
patients with neurological diseases compared with those with-
out neurological diseases,71,72 usually at lower levels than in 
plasma.73 However, higher CSF than plasma HIV RNA was 
detected in patients with brain infections involving macrophage 
activation: tuberculous meningitis (TBM), cryptococcal menin-
gitis (CNM), and neurotoxoplasmosis.71,74 In contrast, patients 
with progressive multifocal leukoencephalopathy (PML) have 
less local inflammation and a reduced HIV replication in CSF 
when compared with patients with HIV encephalopathy and 
patients with non-PML OIs.75

Whether HIV replication in the brain is independent of 
replication in plasma of patients with OI is still a matter of 
debate. The finding of high levels of divergent human immu-
nodeficiency virus 1 (HIV-1) quasispecies, higher viral loads in 
opportunistic neurological infections that are independent of 
plasma viral load and CD4 count,72,76 and different viral kinet-
ics of HIV-1 in the CSF77 implies that there is a local source of 
HIV in the brain that could influence both neurological disease 
occurrence and outcomes.

There are few data on cognitive impairment in patients 
with neurological OIs. An exploratory cross-sectional study of 
long-term neurocognitive outcomes following recovery from 
opportunistic brain infections in HIV-positive adults found 
that the T gondii encephalitis and PML survivors had the 
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highest cognitive deficits.78 This is not unexpected consider-
ing the significant brain damage usually associated with these 
two neurological OIs. Tuberculous meningitis survivors were 
not part of this analysis. The most impaired cognitive domains 
were psychomotor, learning, and memory for neurotoxoplas-
mosis survivors and psychomotor and speed of information 
processing for PML survivors. Patients with OIs without sig-
nificant brain destruction, such as CNM, may present a spon-
taneous decline in HIV CSF viral load77 following acute 
infection and may also improve their cognitive function after 
an initial significant short-term decline.79 Interestingly, a 
recent study described significant deficits in neurocognitive 
function in advanced HIV/AIDS individuals with positive C 
neoformans antigenemia in CSF but with no meningitis that 
improved after initiation of preemptive fluconazole treatment 
and cART.80

All these data, taken together, suggest that quantification of 
HIV RNA in CSF is clinically useful, particularly in patients 
with neurological disorders. Comprehensive workup in HIV-
infected individuals with severe immune suppression should 
include screening of latent brain pathogens, diagnosis, and ini-
tial efficient treatment of the OIs. Also, antiretroviral regimens 
with good CSF penetration must be considered, primarily in 
patients with higher CSF viral loads, advanced HIV disease, 
and CNS disorders associated with significant macrophage 
activation.81 However, timing of the antiretroviral treatment in 
the context of a neurological OI is problematic due to the risk 
of life-threatening IRIS.

IRIS—the Evil Side of cART
Immune reconstitution inflammatory syndrome in the CNS is 
emerging as an important neurological complication, particu-
larly, as cART is becoming widely available. Currently, there 
are guidelines for prevention, diagnosis, or treatment of the 
CNS manifestations of IRIS,82,83 and several excellent reviews 
provide an overview of clinical and epidemiologic features, 
pathophysiological mechanisms, available therapy, and preven-
tive strategies.84–86 Herein, the aim is to provide brief guidance 
in understanding, recognizing CNS-IRIS, and appropriately 
addressing it.

Severe immune suppression is typically an essential condi-
tion setting the scene for IRIS. Immune reconstitution inflam-
matory syndrome is usually related to a certain pathogen and 
therefore the clinical features of IRIS will reflect the underly-
ing pathogen-related signs and symptoms. There are two 
instances of IRIS based on the two distinct temporal patterns 
of disease, namely, “unmasking IRIS” and “paradoxical IRIS.” 
In unmasking IRIS, after cART initiation, a new OI is revealed 
with an important inflammatory component. In paradoxical 
IRIS, the OI was previously diagnosed and treated with good 
response, and there is a paradoxical clinical deterioration that 
also has a prominent inflammatory component. Paradoxical 
IRIS is a challenge because it has to be disentangled from other 

causes of clinical deterioration such as resistant strains, treat-
ment toxicity, and nonadherence to treatment or a different 
medical condition.

The CNS-IRIS has a wide frequency ranging from 9% to 
47% of individuals with a CNS OI who start antiretroviral 
therapy and is associated with a mortality rate of 13% to 75%.86

The conceptual model of IRIS pathophysiology is built on 
the interplay between the pathogen and the host immune 
responses.85 The pathogen load is high in the setting of 
advanced HIV infection, especially if the OI is disseminated, 
untreated, or specific treatment is suboptimal or has just 
started. This scenario is typical for M tuberculosis IRIS and 
cryptococcal IRIS. Altered immune responses following 
cART might occur due to several mechanisms. Exuberant res-
toration of antigen-specific responses can occur as result of a 
rapid recovery of highly differentiated CD4 lymphocytes after 
cART initiation.87 However, disruption of regulatory T-cell 
number or responses might lead to excessive inflammation.88 
The suppression of T-regulatory cells may activate compensa-
tory activation of macrophages as part of the innate immune 
system with excessive inflammatory responses after immune 
restoration.89

Thus, both the high burden of microbial antigen and the 
globally disturbed immune responses could determine an 
excess of pro-inflammatory cytokines in blood and CSF90–93 
and subsequently extreme clinical manifestations.

The usual CNS-IRIS pathogens are M tuberculosis, C neo-
formans, and JCV but IRIS should be suspected in relation to 
other CNS infections, too. The CNS-IRIS caused due to M 
tuberculosis and C neoformans has been better studied especially 
because these conditions are associated with the highest mor-
tality rate.94,95 There seem to be premorbid scenarios for IRIS 
such as a paucity of cerebrospinal inflammation prior to 
antiretroviral therapy for cryptococcal IRIS and higher levels 
of inflammatory markers at baseline for TBM IRIS.94 
Progressive multifocal leukoencephalopathy IRIS, driven by 
accumulation of CD8 cytotoxic cells,96 especially the paradoxi-
cal form, is hard to diagnose because it is difficult to distinguish 
PML IRIS from the natural course of PML. Some specific 
neuroimaging signs can support the PML IRIS diagnosis, 
namely, the presence of inflammatory signs and gadolinium 
enhancement on MRI and an elevated lactate to creatinine 
ratio by spectroscopy.97 Toxoplasmic encephalitis IRIS has 
been reported seldom, mainly as unmasking form.98,99

Treating CNS-IRIS is as difficult as diagnosing it. A good 
approach would be to screen severely immune suppressed 
patients for CNS OI pathogens (eg, C neoformans antigen) 
with consecutive preemptive treatment to lower the probabil-
ity of unmasking IRIS.86,100 Despite particular aspects of 
CNS-IRIS determined by the causative agent, there are some 
common practical points for the management of paradoxical 
CNS-IRIS. (1) Remember that paradoxical IRIS is a diagno-
sis of exclusion.101 (2) Ensure CSF pathogen load is reduced 
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before cART initiation. This can be achieved by prolonged 
induction therapy or higher dose initial consolidating therapy. 
In the particular case of C neoformans, cART should be started 
once the CSF cultures are sterile.102 (3) Delay cART initiation 
if CNS-IRIS is a threat. The current recommendations are to 
start cART after at least 4 weeks for CNM103 and after 8 weeks 
for TBM.104 (4) The use of anti-inflammatory medication is 
beneficial. Systemic corticosteroids are recommended for 
severe forms of IRIS, in the absence of contraindications, and 
are more commonly indicated for mycobacterial-associated 
and fungal-associated IRIS than for viral-associated IRIS.105 
(5) Stop cART only under exceptional circumstances. A tem-
porary discontinuation of cART might be considered if there 
is a persistent or severely depressed level of consciousness, 
severe neurological disability, and no improvement with 
corticosteroids.86

The Not So Usual Suspects
Occasionally, rather unexpected microorganisms are responsi-
ble for neurological conditions that clinically resemble those 
caused by more commonly encountered pathogens, especially 
in the setting of HIV infection. These events justify an exten-
sive differential diagnosis workup. This can be difficult in a 
resource-limited setting, albeit more relevant because severe 
immune suppression is more common. In the current section, a 
few circumstances when the “usual suspects” behave differently 
or a “classical” clinical presentation unravels an uncommon 
pathogen will be discussed.

Toxoplasma gondii is a parasite that may reactivate in the 
brain of individuals with advanced HIV and generate brain 
abscesses. Therefore, empiric treatment for Toxoplasma infec-
tion should be considered in HIV-infected patients with focal 
neurological signs and brain abscesses on neuroimaging even 
before an extensive differential diagnosis workup. Nonfocal 
presentation of brain toxoplasmosis is rare. A diffuse form of 
toxoplasmic encephalitis might resemble HIV-related demen-
tia with acute106 or subacute presentation.107 Another interest-
ing presentation of T gondii infection in severe immune 
suppressed patients was subacute meningitis in a cohort study 
from Indonesia.108 The authors tested retrospectively for T 
gondii (serology and polymerase chain reaction) all archived 
samples from a well-characterized cohort of 64 HIV-infected 
patients presenting with subacute meningitis in a referral hos-
pital in Indonesia and found CSF T gondii DNA in 32.8% of 
the tested samples. The mortality rates were highest in the 
DNA T gondii–positive group that did not receive treatment 
for toxoplasmosis. Therefore, the authors recommend includ-
ing toxoplasmosis in the differential diagnosis of HIV-infected 
patients with subacute meningitis and potentially administer-
ing empiric treatment for toxoplasmosis.

Several neurological presentations can be caused by neuro-
logical opportunistic diseases that occur concomitantly. Such 
is the case of a patient with HIV and well-diagnosed Kaposi 

sarcoma, disseminated cytomegalovirus (CMV), and neuro-
toxoplasmosis, who presented with encephalitis secondary to 
compartmentalized CMV infection in the CSF.109

Epstein-Barr virus (EBV) in the brain of HIV-infected 
patients is mainly associated with primary brain lymphoma—a 
diffuse, large-cell non-Hodgkin lymphoma of B-cell origin. 
An atypical case of progressive neurocognitive worsening, peri-
odic seizures, and psychiatric symptoms lead to an initial diag-
nosis of HIV encephalitis but was later found to be an 
HIV-associated lymphoproliferative disorder with unusual 
morphologic features.110 Another interesting case report was 
that of a patient with HIV symptomatic viral escape presenta-
tion that turned out to be EBV encephalitis.111 The patient had 
gradual NCI; while on stable cART with excellent CD4 count, 
HIV RNA in plasma was 700 copies/mL and in CSF 7000 cop-
ies/mL. The EBV DNA in CSF was positive and EBV enceph-
alitis was confirmed also by brain biopsy. The patient improved 
after adjusting the cART regimen and 6 months of valganci-
clovir treatment. This case emphasizes the need to search for 
additional causes of brain disorders, even with typical diagnosis 
scenarios.

Measles subacute encephalitis is an example of an unusual 
neurological complication of measles that was reported by our 
group and occurred as clusters during two consecutive measles 
epidemics in Romania in parenterally HIV-infected children 
and adolescents with severe immune suppression (1997-1998 
and 2006-2007).112 Myoclonus was the characteristic symp-
tom, followed by rapidly progressing motor deficits, cognitive 
decline, coma, and exitus. The presence of measles virus was 
confirmed by immunocytochemistry. Interestingly, the HIV 
RNA levels in CSF were strikingly low compared with plasma, 
in the absence of antiretroviral treatment (2.31 ± 0.23 vs 
4.22 ± 1.31), possibly due to the inhibitory effect of measles 
virus on HIV.113 This effect was previously reported114 but not 
in the CSF. The mechanism of HIV suppression is, in addition 
to severe lymphopenia, an increased production of molecules 
that are able to suppress HIV replication, such as 
β-chemokines,115 especially for CCR5-tropic HIV.116

Latent Pathogens Still Suspect for NCI
So far, we discussed neurological conditions with clinical vivid 
symptoms, mostly in individuals with advanced HIV and the 
role of HIV as culprit or facilitator for these conditions. As 
cART is becoming widely available and early treatment will 
hopefully be offered in the future to most of the HIV-infected 
individuals, will latent infections be a threat for their neurocog-
nitive functioning?

An interesting study on HIV-infected individuals from the 
CHARTER (CNS HIV Antiretroviral Therapy Effects 
Research) cohort found that patients with serologic evidence of 
past syphilis (but not neurosyphilis) without any other con-
founding medical conditions to be more cognitively impaired 
(with a greater number of impaired domains and a higher 
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global deficit score), compared with a matched HIV group 
without evidence of syphilis.117 Moreover, patients with prior 
neurosyphilis had higher CSF HIV RNA indicating secondary 
CSF HIV escape probably through persistent immune activa-
tion after syphilis treatment.118 A more recent study among 
HIV-infected individuals with early syphilis found a high pro-
portion of neurosyphilis that was correlated with HIV RNA 
levels and cART.119 Therefore, the authors stressed the need 
for CSF-penetrating cART regimens in all patients with early 
syphilis.

Another fascinating multifaceted pathogen with brain 
tropism is T gondii, which is also associated, in its latent 
form, with behavioral changes120 and psychiatric condi-
tions.121 The underlying mechanism is alteration of the 
dopaminergic neuromodulation system with increased dopa-
mine release.122 Our group described increased cognitive 
deficits in HIV and/or Toxoplasma coinfected individuals.123 
Interestingly, we found that latent toxoplasmosis contributes 
to NCI in young adults, regardless of their HIV status. 
Another study found an association between latent 
Toxoplasma and NCI, with increased risk for coinfected indi-
viduals with higher CD4+ T-cell counts.124

Cytomegalovirus latent infection has been linked to 
immune dysregulation, inflammation, and senescence.125,126 
Cytomegalovirus affects the CNS in multiple ways, such as 
replication-mediated cell injury127 and brain vascular endothe-
lium disease,128,129 that could be associated with adverse neu-
rocognitive outcomes. In chronic HIV-infected individuals on 
stable cART, the levels of CMV antibodies were associated 
with cardiovascular risk and neurocognitive performances, and 
these findings were moderated by age.130

Herpes viruses and other latent pathogens are more likely 
to reactivate in HIV-infected adults than in the general 
population. Therefore, even with excellent control of HIV 
replication and restoration of immune responses, inflamma-
tion and immune activation associated with latent patho-
gens might contribute directly to NCI or by associated 
secondary HIV escape. There is so far no effective strategy 
to control these latent infections and to reduce their impact 
on cognition.

Hepatitis C virus (HCV) has not only been associated with 
numerous symptoms affecting everyday functioning (fatigue, 
depression) but also with NCI even in subjects without evi-
dence of hepatic decompensation. Hepatitis C virus can be 
present in brain131 and determine immune activation that was 
hypothesized to be the underlying mechanism of NCI.132 In 
HIV/HCV coinfected individuals, the added contribution of 
HCV to NCI is debated. Some studies found HCV as inde-
pendent contributor to NCI133–135 and also to increased risk for 
death.136 Other studies that carefully excluded other confound-
ing conditions did not find an added effect of HCV to NCI.137 
However, effective treatment of HCV was associated with 

improved outcomes138 and is therefore critical for decreasing 
HIV-associated neurological morbidity.

Conclusions
Human immunodeficiency virus enters the brain and is able to 
alter the CNS immune environment allowing reactivation of 
latent or entry of new pathogens. Neurocognitive impairment 
can be associated with HIV directly or through other uncon-
trolled or latent infections. The approach to CNS infections in 
the setting of chronic HIV infection has to address the balance 
between opportunistic pathogens, host immune responses, and 
HIV burden. There is a need for a holistic approach as HIV 
can be both the culprit and the facilitator for brain damage. 
Some practical points from a practitioner’s perspective in a 
patient with CNS symptoms are as follows: search for HIV in 
the CSF and treat, search for other pathogens irrespective of 
finding high burden of HIV in CSF, and appropriately plan the 
management of coexisting infections with respect to HIV 
treatment. Latent brain infections can contribute to NCI. If 
neither HIV nor other pathogens explain the neurological 
problem, search for toxic, metabolic, vascular, or aging-related 
factors.
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