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Dengue virus (DENV) is one of the most geographically distributed pathogenic flaviviruses transmitted by
mosquitoes Aedes sps. In this study, the structure-antiviral activity relationships of Glycyrrhizic acid (GL) de-
rivatives was evaluated by the inhibitory assays on the cytopathic effect (CPE) and viral infectivity of DENV type
2 (DENV?2) in Vero E6 cells. GL (96% purity) had a low cytotoxicity to Vero E6 cells, inhibited DENV2-induced
CPE, and reduced the DENV-2 infectivity with the IC50 of 8.1 uM. Conjugation of GL with amino acids or their

methyl esters and the introduction of aromatic acylhydrazide residues into the carbohydrate part strongly in-
fluenced on the antiviral activity. Among compounds tested GL conjugates with isoleucine 13 and 11-ami-
noundecanoic acid 17 were found as potent anti-DENV2 inhibitors (IC50 1.2-1.3 uM). Therefore, modification of
GL is a perspective way in the search of new antivirals against DENV2 infection.

Dengue virus (DENV) is one of the most geographically distributed
pathogenic flaviviruses transmitted by mosquitoes Aedes sps. DENV re-
emerges in recent years and poses a threat to the health of the popu-
lation of more than 100 countries around the world, as considered one
of the greatest virus threats to mankind."* Over the past 50 years, the
incidence of Dengue fever has increased 30-fold as a result of its ex-
pansion into new countries. The number of cases of infection with
DENV in the world is 50-100 million people annually, including
250,000-500,000 cases of Dengue hemorrhagic fever and 24,000
deaths. The Dengue fever epidemic is a serious public health problem in
Indonesia, Malaysia, Myanmar, Sri Lanka, Thailand, Cambodia, the
Philippines, Laos, Vietnam, and India, where DENV infection is one of
the leading causes of hospitalization and death in children.>™

Due to the expanding geographic expansion of DENV and the
mosquitoes carrying Aedes sps., an increase in the frequency of epi-
demics, and the emergence of Dengue fever in new areas, WHO declares
DENV the main virus threat to humanity.® According to the antigenic
structure, DENV is close to the yellow fever virus and is divided into
four serotypes (DENV1-DENV4) that cause Dengue fever, Dengue he-
morrhagic fever and Dengue shock syndrome, which leads to death.
Infection with a one serotype of the virus provides long-term resistance

to this serotype, but does not lead to the development of immunity from
other serotypes.” DENV2 infection manifests itself as a hemorrhagic
fever, which is characterized by increased viremia, vascular perme-
ability and is characterized by high blood plasma levels of TNF, TNFR1,
TNFR2, IFN, CXCL8, CXCL9, CXCL10, CXCL11, CCL5, VEGFA and IL-
10.%° Despite the increasing number of outbreaks of Dengue fever in
the last decade, there are currently no licensed vaccines and specific
chemotherapy against this infection.'® Thus, the search of new antiviral
agents against DENV is one of urgent problems of medicinal chemistry
and virology.

One of the priority areas in the development of antiviral drugs is the
use as scaffolds plant’s derived natural compounds with established
antiviral activity and a new mechanism of antiviral action.'"'? The
chemical modification of available plant metabolites, the screening of
antiviral activity of modifiers, the study of the structure-activity re-
lationships and the choice of lead compounds are a necessary stage and
scientific basis for the creation of new effective antiviral agents for the
treatment and prevention of viral infections caused by pathogenic
viruses.

Glycyrrhizic acid (GL) (1) is the leading natural triterpene glyco-
side, promising as a basis for the development of new antiviral
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agents.'>'* GL inhibits a number of DNA and RNA viruses (Vaccinia,
New Castle, Vesicular stomatitis, varicella-zoster, Herpes simplex type
1, Herpes B), influenza viruses, cytomegaloviruses, hepatitis B and C.
GL is used clinically for the treatment of chronic viral hepatitis B and C
in Japan and China (SNMC preparations, Compound Glycyrrhizin In-
gecpion Injection, Compound Glycyrrhizin Ingecpion Tablets).'>'® GL
inhibits the reproduction of HIV-1 in the culture of MT-4 cells and is
suggested for long-term therapy for HIV-infected patients in combina-
tion with other anti-HIV drugs.'*'” GL also affects other cellular fac-
tors, such as protein kinase II, casein kinase II and transcription factors
(activating protein I and nuclear factor kB).'”

Chemical modification of GL is a promising way of obtaining new
immune modulators and antiviral agents. Early we synthesized a series of
amides, amino acid and dipeptide conjugates, which exceed the natural
glycoside by anti-HIV activity.'®'? GL and its derivatives constitute the
first group of substances that inhibit the Marburg virus, which causes
acute hemorrhagic fever with a high level of lethality.>* The inhibitory
effect has been found for GL derivatives in vitro against SARS-associated
coronaviruses.”’ Among GL derivatives inhibitors of the Epstein-Barr
virus were found.?* Most recently, we detected inhibitory effects of GL
derivatives in vitro against influenza A/H1N1 virus.*>**

GL is also of interest as a scaffold for the preparation of potential
inhibitors of pathogenic flaviviruses like DENV, since it is reported
about the GL ability to inhibit DENV and yellow fever viruses at high
non-toxic concentrations.””. The antiviral activity of GL and its deri-
vatives is associated with the ability to potentiate Y-interferon pro-
duction in vitro and in vivo. The stimulating effect of GL was noted on
the secretion of IL-2, inducing the production of interferon by periph-
eral lymphocytes.'®'* The antiviral activity of GL derivatives against
DENV was not studied else.

In this study, we report firstly about the antiviral activity of GL
derivatives (2-21) (Fig. 1) to be conjugates with r- and p-amino acids
and their methyl esters and aromatic acylhydrizides against DENV2 and
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Fig. 1. Structure of GL and it’s derivatives (Compounds 2-21).
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the structure-antiviral activity regularities for those compounds.

GL derivatives used in the study were divided into 3 groups. Group I
(compounds 3-15) are GL conjugates containing three free amino acids
or their methyl esters residues. Group II (compounds 16, 17) is pre-
sented by GL conjugates containing amino components in the carbo-
hydrate part of glycoside. Group III includes acyl hydrazide (18-21)
with C30-methyl ester at the R position and residues at the R’ position
in GL derivatives.

GL was produced from its mono ammonium salt according to
Refs.?®?” and had a purity 96.0 + 1.0% (HPLC). Trimethyl ester (2)
was produced from GL by using diazometane.?® GL conjugates with
amino acids esters (3-12) were prepared by wusing N-hydro-
xybenzotriazole (HOBt), N,N’-dicyclohexylcarbodiimide (DCC) or 1-(3-
dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (DEC) as we
described previously.?° ! GL conjugates (10-12), containing p-amino
acids methyl esters, were synthesized according to Ref.?*, conjugates
(13-14) with free amino acids according to Refs.***. Compounds (16,
17) containing the residues of aspartic and 11-amino undecanoic acid
methyl esters in the carbohydrate part of GL were produced by using N-
hydroxysuccinimide (HOSu) and DCC.*>**> The analytical and spectral
data of GL derivatives 2-17 were identical to the literature data, the
purity of compounds was monitored by thin layer chromatography and
high pressure liquid chromatography (HPLC) (795% of purity) (in the
Supplementary Material, Supplemental Figs. 1-3).

To expand the library of GL derivatives for testing GL derivatives
18-21 were produced by the modification of GL with the introduction
of aromatic acyl hydrazide residues in the carbohydrate part. General
experimental details, analytical and spectral data (IR and 13¢) for new
compounds (18-21) are given in the Supplemental data. Bis-hydrazide
of GL 18 was obtained from GL trimethyl ester 2 by reflux with hy-
drazine hydrate in methanol with 77% yield. The ester methyl group in
the aglycone of compound 18 is retained, it was confirmed by the
presence of C-30 and OCHj shifts at 177.1 and 51.9 ppm in the *C NMR
spectrum. Aromatic acyl-hydrazides (19-21) were produced by the
reaction of 18 with aromatic aldehydes in ethanol at reflux for 3h and
target compounds were isolated by column chromatography (CC) on
silica gel (SG) with 72-74% yields. The structures of compounds 18-21
were confirmed by IR and **C NMR spectrum. In the **C NMR spectrum
of compounds 18-21 the carbon atoms of the new CH=N bonds are
detected at 146.2-148.6 ppm, and a set of signals of aromatic carbon
atoms appears in the weak field region (131.9-115.5 ppm). *C NMR
spectrum of bis-(pyridine-4-carbal)-hydrazide 21 contains shifts of
carbon atoms of pyridine residues in the weak field region
(142.7-121.4 ppm). The elemental analysis of all compounds corre-
sponded to the calculated data (see the Supplementary material).

The primary screening of cytotoxicity and antiviral activity of GL
and a number of its derivatives (compounds 3-21) was performed in
vitro against DENV2 (the strain 16681). Cytotoxicity and antiviral ac-
tivity were investigated in Vero E6 cell culture in supporting Dulbecco
modified medium (DMEM). An MTT cytotoxicity test for each com-
pound was performed in a Vero E6 cell culture in 96-well plates, as
described in our previous report.>® The cytotoxic (50%) concentration
(CC50) was calculated according to cell survival rate of treated cells
compared to mock cells using a computer program (John Spouge, NCBI,
NIH). GL (96% purity) was used in the study of antiviral activity as a
reference sample. It was established that for GL and its derivatives, the
CC50 exceeded 100 uM (Table 1).

To determine the antiviral activity, a screening study of the cyto-
pathic effect (CPE) reduction was initially conducted in Vero E6 cells
infected with the DENV2 virus (MOI of 0.01) in the presence of 10 uM
of the test compound. After 96 h of incubation, infected cells were
photographed using reverse phase contrast microscopy. Microscopic
photographs showed that GL and some of its derivatives at a con-
centration of 10 uM significantly reduce CPE in cells infected with
DENV2. GL had low cytotoxicity to Vero E6 cells,">® concentration-
dependently inhibited CPE and NS4B positive cells (70.5% inhibition)



L.A. Baltina, et al.

Table 1
Antiviral activity of GL derivatives against DENV2 in Vero E6 cells.

Compounds CPE Inhibition Cytotoxicity Reduction TI
reduction of NS4B- to Vero cells in virus- (CC50/
at 10 uM positive (CC50, uM)b infected 1C50)

cells (%) at cells (IC50,
10 uM? puM)©

1 ++ 70.5 =100 8.1 ~12.3

3 - - ND ND ND

4 - ND ND ND

5 - - ND ND ND

6 ++ 66.3 =100 4.5 =22.2

7 - - ND ND ND

8 - - ND ND ND

9 - - ND ND ND

10 + 53.1 ND ND ND

11 = - ND ND ND

12 - - ND ND ND

13 +++ 95.7 =100 1.3 =76.3

14 - - ND ND ND

15 ++ 68.5 ~100 2.2 ~46.5

16 + 35.8 ND ND ND

17 +++ 79.5 =100 1.2 ~80

18 - - ND ND ND

19 + 32,5 ND ND ND

20 - - ND ND ND

21 - - ND ND ND

ND - not detected.

2 Inhibitory rate = (1 — NS4B positive percentage in treated infected cells/
NS4B positive percentage in mock-treated infected cells) * 100.

> CC50, 50% cytototoxic concentration determined by the survival rate of
treated cells at different concentrations of each compound.

¢ IC50, 50% inhibitory concentration calculated according to NS4B positive
percentage in the presence of different concentrations of each compound.

post DENV-2 infection. The most active GL conjugates 6, 13, 15, and 17
(Table 1) proved the significant CPE reduction in the infected cells,
representing greater than 50% inhibition on the ratio of DENV2 NS4B-
positive cells of infected cells treated with 10 pM indicated derivatives.
The antiviral activity of GL and its active derivatives to reduce DENV2
CPE and infectivity was studied in a concentration-dependent manner
(0, 0.1, 1, 10 uM). GL and its active derivatives dose-dependently in-
hibited DENV2-induced CPE in Vero E6 cells. GL conjugate with iso-
leucine (compound 13) showed the highest inhibitory activity on
DENV2-induced CPE at the concentration of 10 uM (Fig. 2).

To assess the values of 50% inhibitory concentration (IC50), a
quantitative analysis of the inhibitory effect of GL and its active deri-
vatives on the infectivity of DENV2 was carried out in vitro by the im-
munofluorescence method.>® The infectivity of virus was determined as
the ratio of NS4B-positive cells to the total number of cells stained with
DAPI (4’,6-diamidino-2-phenylindole). This analysis has demonstrated
that GL and its active derivatives (6, 13, 15, and 17) reduced the
number of infected DENV-2 cells (viral NS4B-positive cells) in a dose-
dependent form. For example, the rates of NS4B-positive cells were
36.9%, 37.2%, 29.4%, and 1.6% in 0.1, 1 and 10 uM compound 13-
treated infected cells, respectively (Fig. 3). Meanwhile, the inhibitory
rate on DENV2 was 20.2%, and 95.7% by 1 and 10 uM compound 13,
respectively. In addition, human lung epithelial A549 cells were used to

DENV2 (MOI of 0.01)
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examine the antiviral activity of GL derivative 13 against DENV2
(Supplemental Fig. 4), in which GL derivative 13 exhibited the potent
anti-DENV2 activity in a cell-type independent manner. GL derivatives
13 and 15, containing free amino acids residues (Ile-OH) and (Tyr-OH),
and 17 with two long chain amino acid fragments, were found as highly
active against anti-DENV2 (IC50 values of 1.3-2.2 uM), as significantly
more potent than GL (IC50 of 8.1 uM) (Table 1). In addition, com-
pounds 13 and 17 exhibited the higher therapeutic index (TI,
TI = CC50/IC50) than 70, which was 6-fold greater than that of GL.
Tyrosine containing conjugate 15 was less active than 13 and 17.

Among group I GL derivatives, conjugates 3-5 and 7-12 with amino
acid methyl esters at the R and R’ positions were less active than GL
against DENV2. Only conjugate 6 containing Met-OMe fragments
showed a significant inhibition on the in vitro replication of DENV2 and
its IC50 (4.5uM) was less than for GL. The anti-DENV activity of con-
jugate 6 could be linked with the introduction of Met-OMe at the R
position of triterpene part, in which an S-methyl thioether side chain of
methionine might form NH---S H-bonds with the residues of DENV2
target protein. Conjugates 13 and 15 containing Ile-OH and Tyr-OH at
the R and R’ positions refined anti-DENV activity (IC50 of 1.3-2.2 uM),
but conjugate 14 with Phe-OH dropped the anti-DENV activity. The
finding inferred that the —OH group of tyrosine plays the important role
in donating or accepting a hydrogen bond with the residues of viral
target protein. A weak inhibitory activity on CPE test and NS4B-positive
cells was found for compound 16 with a free triterpene COOH group and
Asp(OMe)-OMe in the carbohydrate portion of GL. However, compound
17 containing 11-amino undecanoic acid methyl ester exhibited the
potent efficacy on inhibiting the DENV2 replication (IC50 of 1.2 uM).
Those results indicated that 11-amino undecanoic acid methyl ester at
the R’ position in the carbohydrate part of GL had a more effective in-
teraction with the antiviral target(s) than conjugate 16. GL derivatives of
group IIT (18-21) lost the antiviral activity against DENV2. A weak in-
hibition (32.5%) of NS4B in DENV2-infected cells was found for com-
pound 19 containing aromatic hydroxyl group. Therefore, the struc-
ture—-antiviral activity study indicated that GL conjugates with three free
amino acids (compounds 13, 15) and long chain amino acid residue in
the carbohydrate part (compound 15) exhibited higher anti-DENV ac-
tivity compared to group III derivatives. Thus, the presence of hydroxyl
group at the R position of triterpene part or free carboxyl groups of
amino acids are important for interacting with antiviral target(s).
Meanwhile, GL derivatives 13, 15, and 17 are compounds with the sig-
nificantly improved antiviral activity against DENV2 infection, sug-
gesting that isoleucine, tyrosine, or 11-amino undecanoic acid methyl
ester at the R’ position of the carbohydrate part also interconnected with
the other part of active side of antiviral target(s).

We concluded that this study was the first report to display struc-
ture-anti-DENV activity relationships of GL derivatives, revealing that
the modification of GL by the conjugation with amino acids and the
introduction of aromatic acyl hydrazide residues into the carbohydrate
part strongly influenced on the antiviral activity of GL against DENV2.
Among GL derivatives tested, GL compounds 13> and 17°° have been
identified as potent DENV2 inhibitors. Thus, the conjugation of GL
derivatives with amino acids is a perspective way to produce potent
DENV2 inhibitors. The second way to potentiate GL activity is its
modification with the introducing of long chain amino acids in the

Fig. 2. Inhibition of DENV2-induced cyto-

GL conjugate with isoleucine (compound 13, pM)

pathic effects by GL conjugate with iso-
leucine (Compound 13). Vero E6 cells were

0.1 1 10

infected with DENV2 at a MOI of 0.01 and
immediately treated with the indicated
concentrations of compound 13. Images of
DENV2-induced cytopathic effect were
photographed 96 h post infection by phase-
contrast microscopy.
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DENV2 ((MOI of 0.01)

GL conjugate with isoleucine (compound 13, pM)
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Fig. 3. Inhibition of DENV2 infectivity by
GL conjugate with isoleucine (Compound
13). Vero E6 cells infected with DENV2

NS4B positive cells 0.1

1 10

NS4B positive cells/total cells

(MOI of 0.01) were analyzed using im-
munofluorescence staining with anti-DENV2
NS4B antibodies after a 96-h treatment with
the indicated concentrations of compound
13. ZENV2 infectivity was discovered by the
ratio of DENV2 NS4B positive cells (top) to
total cells stained with DAPIL.

carbohydrate part of the molecule keeping triterpene COOH group free.
Highly active GL derivatives will be the subject of extensive research on
antiviral activity and the study of the mechanisms of antiviral action
against DENV2 by using docking studies and their interaction with
DENV2 targets like NS2B-NS3 protease, NS3 helicase, and NS5 RNA-
dependent RNA polymerase.
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