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Single-cell RNA cap and tail sequencing (scRCAT-
seq) reveals subtype-specific isoforms differing in
transcript demarcation
Youjin Hu 1,5,6✉, Jiawei Zhong 1,5, Yuhua Xiao1, Zheng Xing2, Katherine Sheu3, Shuxin Fan1, Qin An4,

Yuanhui Qiu1, Yingfeng Zheng1, Xialin Liu1, Guoping Fan4 & Yizhi Liu 1,6✉

The differences in transcription start sites (TSS) and transcription end sites (TES) among

gene isoforms can affect the stability, localization, and translation efficiency of mRNA. Gene

isoforms allow a single gene diverse functions across different cell types, and isoform

dynamics allow different functions over time. However, methods to efficiently identify and

quantify RNA isoforms genome-wide in single cells are still lacking. Here, we introduce single

cell RNA Cap And Tail sequencing (scRCAT-seq), a method to demarcate the boundaries of

isoforms based on short-read sequencing, with higher efficiency and lower cost than existing

long-read sequencing methods. In conjunction with machine learning algorithms, scRCAT-

seq demarcates RNA transcripts with unprecedented accuracy. We identified hundreds of

previously uncharacterized transcripts and thousands of alternative transcripts for known

genes, revealed cell-type specific isoforms for various cell types across different species, and

generated a cell atlas of isoform dynamics during the development of retinal cones.
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The extent of cellular heterogeneity across different tissues
and cell types has become increasingly apparent with the
development of genomics technology, especially single-cell

omics sequencing1–3. With the launch of initiatives such as the
Human Cell Atlas4,5, the regulatory mechanisms behind cell-
specific gene transcription have gained increasing attention,
including both transcript abundance and alternative isoform
usage6,7. RNA isoform variability includes intron inclusion, exon
skipping, and alternative choice of transcription start sites (TSSs)8

and transcription end sites (TESs)9,10. Alternative TSSs and TESs,
which can affect mRNA stability, translation, and localization9–13,
are considered the principal drivers of transcript isoform diversity
across tissues, and underlie the majority of isoform-mediated,
cell-type-specific proteomes14.

Previous studies have demonstrated the widespread hetero-
geneity of transcript isoforms with alternative 5′-TSS or 3′-TES
(also called alternative polyadenylation, APA) across different
tissues, resulting in the discovery of new transcripts with tissue-
or cell-type specificity, and allowing updates to transcript anno-
tations of reference genome12,15–17. Despite considerable success
in measurements made on bulk populations, current approaches
for identifying RNA isoforms and the dynamics of TSS/TES
choices in single cells are limited. Fundamentally, there is cur-
rently no genome-wide method for accurate, efficient, and
quantitative analysis of RNA isoforms in single cells. Most single-
cell transcriptome approaches are based on single-ended quan-
tification of RNA molecules (5′ or 3′) which give partial infor-
mation on one end but not the whole transcript3,18,19, resulting in
loss of important information about the other end12. Methods
based on single-cell full-length cDNA amplification such as
Smart-seq2 can detect the full-length cDNA, but its coverage at
both ends is low, and it is not possible to accurately distinguish
the start and end positions of different transcript isoforms of the
same gene20,21. Recently, approaches based on long-read RNA
sequencing technologies can identify RNA isoforms of thousands
of cells, but challenges still remain. For example, the current cost
for genome-wide quantification is too high, and the requirement
of several micrograms of cDNA input requires extensive PCR
amplification from picograms of mRNA of a single cell, which
inevitably results in higher PCR bias towards specific
isoforms12,17,22.

In order to address these problems, here we introduce a simple
and efficient approach based on well-established short-read
sequencing platforms to explicitly exploit transcription initiation
and termination sites for RNA isoforms in single cells. When
deployed in conjunction with optimized machine learning mod-
els, scRCAT-seq is more accurate, cost-effective, and efficient
than existing methods in profiling isoforms with alternative TSS/
TES choices.

Results
The accuracy of scRCAT-seq. To develop scRCAT-seq, we
adopted a strategy to capture the boundaries of transcripts at both
5′ and 3′ ends23. We first added a specific sequence tag (con-
taining the UMI and cell barcode) to both ends of full-length
cDNAs during reverse transcription and template switching, and
further amplified the cDNAs of each single cell based on a
modified Smart-seq2 protocol21. After tagmentation with Tn5
transposases, fragments containing the tags and single ends of the
cDNA (either 5′ or 3′ end) were captured by targeted PCR, and
cell barcodes (the same as sequencing indexes) were added to the
libraries during amplification. Libraries were sequenced PE150 on
standard Illumina sequencing platforms. To determine TSSs, we
mapped the reads with the tag to the genome and obtained the
mapping position of the fragments adjacent to the “GGG” added

during template switching. To determine TESs, we mapped the
reads with a poly-A tail to the genome, and obtained the mapping
sites of the fragments adjacent to the poly A (Fig. 1a). Peaks were
called using the CAGEr package24 and used to identify TSSs and
TESs of transcripts. Either UMI (contained in the tag) counts or
read counts were used to quantify the corresponding TSS/TES
ends. The protocol takes less than two days from cell picking to
having a final library ready for sequencing, and the cost for
library construction was 28 dollars per single cell in China,
similar to Smart-seq2.

We anticipated false-positive events based on previously
reported false-positive TSSs/TESs, which resulted from factors
such as RNA degradation during processing, internal priming
and template-switching artifacts25 during reverse transcription, or
DNA artifacts during PCR amplification. To increase the
accuracy of mapping peaks to the TSSs/TESs of transcripts, we
decided to classify the peaks into TRUE or FALSE groups of
TSSs/TESs by employing machine learning algorithms (Fig. 1b).
We generated three groups of features based on the following
characteristics of the peaks: (1) The scRCAT-seq read distribu-
tion; (2) Location of the motifs which were associated with real
TSSs/TESs around the peaks; (3) Sequence motifs possibly
resulting in false-positive TSS/TES, such as the internal priming
sites (see “Methods”) (Supplementary Table 1). We implemented
four widely used machine learning models: logistic regression
classifier (LR), random forest (RF), and support vector machine
(Gaussian kernel SVM), and k-nearest neighbor (KNN). Perfor-
mance was assessed using accuracy on the spike-in RNA ERCC
transcripts, which has a ground truth. As expected, the majority
of the reads with tags were distributed at the terminal sides of
transcripts (Fig. 1c), though some appeared in the middle of the
transcripts, which contribute to the false-positive peaks (Supple-
mentary Fig. 1a).

The machine learning models significantly improved the
accuracy, and of the four tested models, RF showed the best
performance, improving the accuracy by 2.5- (38.3% versus
96.9%) and 3.9-fold (25.2% versus 99.6%) for TSS and TES,
respectively (Supplementary Fig. 1b), with sequencing depth of 4
million reads per sample (Supplementary Table 2). Similarly,
looking into ERCC data generated by other methods19,26, such as
C1 CAGE, C1 STRT, we also found high false-positive rates for
peaks identified as TSSs in these datasets (Supplementary Fig. 1c),
and applying the machine learning model increased the accuracy
to above 88.9% (Supplementary Fig. 1d), indicating that our
model can also be applied to other datasets that contain high
false-positive rates.

For further benchmarking, we assessed the performance of our
model on data derived from human embryonic stem cells (hESC),
for which TSSs and TESs are well annotated in the FANTOM5
database15 and PolyA_DB316, respectively. As genomic sequence
features can specify the locations of TSSs and TESs, we added 650
and 150 features reflecting functional motifs associated with the
choices of TESs and TSSs (see “Methods”). Using these databases,
with 70% of the data for training and 30% for testing, we found all
the models increased the prediction accuracy for TSSs and TESs,
up to 86.8 and 84.2% in the RF model (Fig. 1d). In total, after
pooling all 23 cells together and applying the machine learning
model, we identified 7777 TSS and 9204 TES peaks, which were
significantly enriched at annotated TSS and TES regions,
respectively (Fig. 1e). Over 83% of identified TSSs were located
within 10 bp of TSSs in FANTOM5, and over 72% of identified
TESs were within 10 bp of TESs in PolyA_DB3 (Fig. 1f, g). Of
note, functional motifs related to known TSSs/TESs were
enriched in 100-bp range around the TSSs/TESs identified in
this study, even located more than 1 kb away (Supplementary
Tables 3 and 4), suggesting that authentic and unannotated TSSs/
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TESs in hESCs were identified by scRCAT-seq. Further, we
extended the model to other scRCAT-seq datasets from single
cells of different sources, such as mouse ESC, mouse oocytes,
mouse Dorsal Root Ganglion neurons (DRG), human embryonic
kidney 293 cells (HEK293T), and human retinal pigment
epithelium (ARPE19) (Supplementary Table 5), and found
similar performance in the ability to identify authentic TSSs
and TESs (Supplementary Fig. 1e–g), suggesting that our model
can be applied to scRCAT-seq datasets of different cell types from
different species. Interestingly, the model can also improve
annotation of TSS/TES for long-read sequencing datasets, which
were derived from mouse oocytes in this study and mouse
cerebellum by others (Supplementary Fig. 1e).

To determine the importance of each group of features, we
calculated the performance drop after removal of one group at a
time from the feature set. This analysis showed that the most

important group was related to internal priming, consistent with
findings by other studies that internal priming is a major source
of false positives25,27,28 (Supplementary Fig. 1h). In summary, our
results indicate that scRCAT-seq together with machine learning
models can identify TSSs and TESs of transcripts with high
accuracy, allowing demarcation of transcription boundaries of
full-length isoforms.

The efficiency and sensitivity of scRCAT-seq. We calculated the
number of genes detected by scRCAT-seq to assess the efficiency
of the method. Compared to existing methods which can detect
only a single end of transcripts (5′-TSS or 3′-TES), scRCAT-seq
has significantly better or comparable performance in detecting
transcripts than methods such as C1 CAGE19, STRT-seq26 for
TSSs (Supplementary Fig. 2a), and BAT-seq29 for TES (Supple-
mentary Fig. 2b).
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Fig. 1 Overview of scRCAT-seq. a Schematic of the scRCAT-seq method. Full-length cDNA was synthesized by template-switching reverse transcription,
amplified by PCR, and tagmented with Tn5 transposases. The TAG added to both ends contains the UMI (unique molecular identifier) and CI (cell
identifier). Both 5′ and 3′ ends of the cDNA were captured and amplified by PCR, producing indexed libraries for pooled sequencing. Sequencing data were
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Source data file.
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We next compared the performance of scRCAT-seq to that of
Smart-seq2 and ScISOr-seq17,22 in profiling the full-length
transcripts of single cells. Compared to Smart-seq2, scRCAT-
seq is more cost-effective at profiling transcript ends due to its
higher efficiency in covering transcripts at both ends (Fig. 2a, b,
Supplementary Fig. 2c). In addition, we sequenced 6 single
oocytes with the PacBio Sequel platform, with 54,000 circular
consensus sequencing (CCS) reads per single cell (Supplementary
Table 6), which is higher than that reported previously17,22. By
normalizing the sequencing depth to the cost for both scRCAT-
seq and ScISOr-seq, we found that scRCAT-seq had a much
higher efficiency in capturing both ends of full-length isoforms
than ScISOr-seq. At an equal cost for 4 million PE150 short-reads

from Illumina, 7600 transcripts of 3122 genes were detected by
scRCAT-seq, while 1100 transcripts of 919 genes were detected by
ScISOr-seq (Fig. 2a, Supplementary Fig. 2d). Alternatively, by
directly comparing the cost, we found that scRCAT-seq only
requires 1/4.8 of the cost required by ScISOr-seq for coverage of
1000 transcripts (Fig. 2c).

In addition, we found that ScISOr-seq mainly detected the top
25% of highly expressed genes detected by scRCAT-seq, and
overlap with scRCAT-seq was better for higher expressed genes
(Fig. 2d, Supplementary Fig. 2e). Concordantly, scRCAT-seq
generated more consistent data, with a twofold higher overlap
ratio between single cells than ScISOr-seq (60% versus 30%)
(Supplementary Fig. 2f–h). Altogether, these results indicate that
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between scRCAT-seq (n= 10) and Smart-seq2 (n= 10) in terms of the ratio of reads covering the 5′ end of transcripts (5-bp range to the end).
Significance was computed using two-sided Wilcoxon test. The boxplot shows the median as center line, the interquartile range (IQR) as a box, the
whiskers indicate 1.5 × IQR and the outliers as points. c The cost of scRCAT-seq (n= 18) and ScISOr-seq (n= 8) for detection of 1000 transcripts.
Significance was computed using two-sided Wilcoxon test. The boxplot shows the median as center line, the interquartile range (IQR) as a box, the
whiskers indicate 1.5 × IQR and the outliers as points. d Violin plots comparing the expression level between genes detected by scRCAT-seq (n= 3) and
ScISOr-seq (n= 3). Gene expression levels were quantified by Smart-seq2 RPM value. Significance was computed using two-sided Wilcoxon test. e Barplot
showing the number of novel isoforms of annotated genes and novel, unannotated transcripts in mouse oocytes. The number of transcripts for each
category is indicated above the box. Error bars represent standard deviation of the mean (n= 3). f Barplot showing the number of novel isoforms of
annotated genes and novel, unannotated transcripts in mouse DRG. Error bars represent standard deviation of the mean (n= 3). g Venn diagram for novel
transcripts detected concordantly by scRCAT-seq, Smart-seq2, and ScISOr-seq. h Genome browser track for an example of a novel gene with alternative
polyadenylation sites on a different exon. i Gel image showing validation result of novel gene in (h). Experiments were repeated three times with similar
results. Source data are provided as a Source Data file.
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scRCAT-seq is a more cost-effective and reliable approach for
detecting both start sites and end sites of full-length transcripts at
single-cell level.

Identification of novel transcripts with scRCAT-seq. Leveraging
the capacity to demarcate the boundaries of transcripts, we set out
to identify novel isoforms, both alternative TSSs/TESs of anno-
tated genes and novel transcripts of unannotated genes. Data
derived from mouse oocytes, mouse DRG neurons, hESC and
HEK293T were used for benchmarking (Fig. 2e, f, Supplementary
Fig. 3a, b). For annotated genes, we identified both alternative
TSSs and TESs events, as evidenced by 5407 novel TSSs and 6100
novel TESs in oocytes (Fig. 2e), and 1271 novel TSSs and 3329
novel TESs in DRG neurons (Fig. 2f). In addition, 752 and 213
novel, unannotated transcripts were identified in oocytes and
DRG respectively. In total, 62% (469/752) of novel transcripts
detected by scRCAT-seq were validated by Smart-seq2, while 38%
(288/752) of them were further validated by ScISOr-seq (Fig. 2g),
indicating that scRCAT-seq can identify novel transcripts with
higher efficiency than ScISOr-seq. Further, Sanger sequencing on
individual full-length cDNAs was performed to validate the novel
transcripts (Fig. 2h–i, Supplementary Fig. 3c–f), and reveal
alternative splicing events within the full-length isoforms. For
example, Fig. 2h shows that scRCAT-seq and Sanger sequencing
revealed three novel isoforms differing in first exon choices,
which were not characterized by Smart-seq2 or ScISOr-seq
(Fig. 2h, i). In summary, scRCAT-seq can accurately identify not
only novel TSSs and TESs, but also unannotated full-length
transcripts in single cells.

Cell-type-specific transcripts revealed by scRCAT-seq. For
quantification of isoforms, we count the TSS and TES with either
read counts or UMI counts, as the two are highly correlated
(Pearson’s correlation coefficient of 0.99) (Supplementary
Fig. 4a). As the majority of public protocols for full-length cDNA
amplification only label cDNAs with UMI at one end, we first
used read counts (normalized as RPM, reads per million) for
benchmarking, to count TES and TSS consistently. By comparing
the observed value with the known abundances of ERCC mRNA
molecules, we found the measured abundances were highly
concordant with the ground truth, with a Pearson’s correlation
coefficient of 0.98 for both TSS and TES (Fig. 3a, Supplementary
Fig. 4b). For the annotated genes of the mouse genome, an
internal comparison between random pools of three single cells,
each from the oocyte population, gave a correlation coefficient of
0.96 and 0.94 for the quantification of TSS and TES, respectively
(Fig. 3b, Supplementary Fig. 4c). Further, we performed cell
clustering analysis based on isoform quantification to dis-
criminate different cell types, such as mouse DRG, mouse
oocytes, hESC and HEK293T (Fig. 3c, Supplementary Figs. 5a
and 6a), and identified isoforms differentially expressed between
different cells (Fig. 3d, Supplementary Fig. 5b, c). Comparing
DRG and oocytes, we identified 372 isoforms with different TSS
and common TES, and 614 isoforms with different TES and
common TSS (Fig. 3d, Supplementary Fig. 5b, c). Of note, there is
no difference in total expression of the corresponding genes; the
difference can only be observed at the isoform level, and isoforms
were expressed in a cell-type specific manner (Fig. 3c, Supple-
mentary Fig. 5d–f). In addition to read counts, we also tried to use
UMI for quantification, and similar results of isoform choices
between HEK293T and hESC were shown when we used either
read counts (normalized as RPM) or UMI counts (Supplementary
Fig. 6b–e).

Compared to ScISOr-seq, scRCAT-seq has 10-fold lower
variance, making isoform quantification much more accurate

(Fig. 3f). Of note, as CCS read counts of ScISOr-seq are positively
correlated with the number of reads of scRCAT-seq, scRCAT-seq
could potentially improve upon performance of ScISOr-seq in
accurately quantifying alternative isoforms with lower cost
(Supplementary Fig. 4d). For example, with scRCAT-seq data,
we can quantify the cell-type specific expression of the isoforms of
Nsf, which were identified by scRCAT-seq in DRG and oocytes
but not by ScISOr-seq due to the limited number of reads
(Supplementary Fig. 4e, f).

Dynamics of isoform choices during human photoreceptor
cone development revealed by high-throughput scRCAT-seq.
We next employed scRCAT-seq to profile a much larger number
of single cells by adopting the 10x Genomics droplet platform,
which has been widely used for RNA profiling of thousands of
single cells in parallel. Single cells within a heterogeneous popu-
lation were labeled by cell barcodes at one end (5′- or 3′-) of the
full-length cDNAs, with 10x Chromium Single Cell 5′ and 3′ kits,
respectively. Libraries were generated and sequenced, and data
were processed following the scRCAT-seq protocol. Cell subtypes
were identified based on 5′- or 3′-transcriptome analysis, and
TSSs/TESs of isoforms within each cell were called and assigned
to the corresponding cell subtypes. Then, the major TSSs and
major TESs were matched to define the major isoforms of each
subtype at a population level (Fig. 4a). By doing so, the cost per
single cell was reduced to <0.8 dollar per single cell.

For benchmarking, we tested the pipeline with 14,196 single
cells, including hESC, HEK293T, ARPE19, mESC for TSS
analysis, and human retinal organoids for both TSS and TES
analysis. The RF algorithm trained with hESC performs well with
an accuracy of around 80% (Supplementary Fig. 7a). The majority
of TSS and TES identified were near the annotated TSS and TES
(Supplementary Fig. 7b–f). Novel TSSs and TESs within known
genes and previously unannotated genes were also identified. For
example, we identified thousands of novel TSSs in HEK293T,
hESC, APRE, and mESC (Supplementary Fig. 7g). Within
9802 single cells of human retinal organoids, 6628 novel TSSs,
3780 novel TESs, and 259 novel genes were identified
(Supplementary Fig. 7h).

In total, 3407 and 6395 single cells were collected for 5′-TSS
and 3′-TES analysis, respectively, randomly distributed into six
subtypes (Fig. 4b, Supplementary Fig. 8a). Based on the
expression pattern of marker genes, the six subtypes were
matched to RPC, photoreceptor precursor (PR Precursor),
Interneuron precursor (IN precursor), photoreceptor cone, retinal
ganglion cells (RGC), and horizontal cell (HC) (Supplementary
Fig. 8b, c). We further looked into the differences in TSS/TES
choices between different subtypes, and dynamics of isoform
switching during cone development from RPC. Pseudotime
analysis on RPC, photoreceptor precursor, and photoreceptor
cone data confirmed the trajectory from RPC to photoreceptor
precursors, and then to cones (Fig. 4b, c, Supplementary Fig. 8d).
By comparing RPC and photoreceptor cone, we found 234 genes
and 296 genes switched to proximal and distal TSSs respectively,
and 109 genes and 77 genes switched to proximal and distal
polyadenylation sites respectively (Fig. 4d). TSS switching seems
to be more frequent than TES switching, and the two events are
not significantly correlated during cone development (Fig. 4e).

To assess the dynamic switching of major isoforms during cone
development, we divided the trajectory of cone differentiation
from RPC into six stages, with stages 1–3 corresponding to the
time course for transition from RPC to PR precursors, and stages
5–6 from PR precursors to cone. The subtypes identified by TSS
data and TES data at each stage were highly similar, suggesting
TSS data and TES data matched well at similar subtypes
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(Supplementary Fig. 8e). Major TSSs/TESs of the cells at each
stage were determined by binning all the single cells together and
calculating the ratio of the major isoform in RPC to that in cones
for each gene (Fig. 4e, f). We observed that major isoforms
(mainly TSS) switch gradually in the majority of genes, and in
most cases, the two isoforms reach equal levels when RPCs turn
into photoreceptor precursors (Fig. 4f, Supplementary Fig. 8f, g).
A representative example is Cyclin D1 (CCND1), which has two
isoforms (CCND1a and truncated CCND1a) that differ in TES
choice. Its major isoform switches at the later RPC stage before
turning into PR precursors: The proximal isoform of CCND1a
(truncated CCND1a) is expressed in RPC, and the distal isoform
(CCND1a) is expressed in PR precursors and cone (Fig. 4g).
Previous studies have shown that truncated CCND1a is the major
isoform expressed in cancer cells and promotes cell proliferation
and cell-cycle progression30. The isoform switch from truncated
CCND1a to CCND1a may suggest that CCND1 mediates
differential cell-cycle properties between RPC and PR precursors.
Consistent with this hypothesis, our recent study showed that
CCND1 plays a critical role in promoting the G1–S transition of
the cell cycle during retinal neurogenesis31. In summary,
scRCAT-seq can be performed in a high throughput manner to
profile thousands of single cells, to identify differential isoform
choices among various cell subtypes within a tissue, and to reveal
the dynamics of isoform switching during cell fate transitions.

Discussion
scRCAT-seq, based on short-read sequencing, offers a cost-
effective and efficient approach to identify and quantify RNA
isoforms in single cells. The accuracy of TES and TSS peaks called
by scRCAT-seq is substantially improved when coupled to a
machine learning algorithm that filters out the noisy false-positive

peaks. Previously, machine learning has been successfully used to
predict differential alternative splicing32,33, but none of them
have been developed for the purpose of identifying authentic
demarcations of RNA isoforms to elucidate the transcriptomic
complexity of single cells. Furthermore, the model trained in this
study also improves the accuracy of other methods to over 90%,
as evidenced by the ERCC data from C1 CAGE19,26 and C1
STRT26, indicating that our model can be applied to other
datasets that contain previously unrecognized high false-positive
signals. As a result, the accuracy of our approach for quantifi-
cation of alternative isoforms is very high, as the measured
abundances are highly concordant with the ground truth, with a
Pearson’s correlation coefficient of 0.98. In summary, scRCAT-
seq provides an unprecedented opportunity for detection of
previously unannotated genes and unidentified alternative TSSs
and TESs, as well as for quantitation of cell-type specific RNA
isoforms.

Another clear advantage of scRCAT-seq is its efficiency. Based
on short-read sequencing, scRCAT-seq can identify TSSs and
TESs simultaneously from sequencing data derived from a single
library, enabling investigation of both transcription initiation and
polyadenylation in a large number of single cells. Compared with
methods which capture only single ends of RNA transcripts,
either the TSS or TES, scRCAT-seq is demonstrably better for
elucidating transcriptome complexity.

Compared to Smart-seq2, which is mainly used to profile full-
length cDNAs of single cells, our approach has much higher
efficiency in demarcating the boundaries of transcripts, due to the
fact that reads of scRCAT-seq are mainly located at the ends of
the transcript while Smart-seq2 reads are mainly located in the
middle. Our study also suggests that scRCAT-seq and Smart-seq2
can complement with each other to better illustrate the full-length
cDNAs of single cells. Compared to the recently developed long-
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read sequencing-based method ScISOr-seq, which can profile full-
length transcripts for a group of single cells17,22, our approach
requires 1/4.8 of the cost to detect the same number of tran-
scripts, with higher efficiency. In addition, ScISOr-seq requires at
least 1 μg of cDNA input, necessitating extensive amplification of
cDNA with unavoidable PCR bias due to the requirement for
extra PCR cycles. This results in a decrease in the number of
covered transcripts (a few hundred per single cell) and a lower
transcript overlap ratio among single cells. In contrast, scRCAT-
seq only requires 0.1 ng of cDNA to achieve sufficient coverage of
thousands of genes. Most importantly, it is still challenging to use
ScISOr-seq to quantify the isoforms differentially expressed
between single cells, as accurate quantification requires deep

sequencing that is currently too expensive for many labs. In
contrast, our method can accurately quantify the transcripts (r=
0.98) at an affordable cost for most labs. Due to the high accuracy
and efficiency of scRCAT-seq in identifying transcript ends,
scRCAT-seq also offers an efficient pipeline for full-length char-
acterization of novel isoforms after targeted construction of full-
length cDNA libraries, simply by PCR from the terminal sites
identified by scRCAT-seq in single cells. In summary, the per-
formance of scRCAT-seq is a significant improvement upon that
of ScISOr-seq in terms of cost, efficiency, and accuracy of both
identification and quantification of RNA isoforms.

In this study, we provide two strategies to implement scRCAT-
seq. The first is performed on microfluidic platforms to profile
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thousands of single cells at a time, with a cost of only 0.8 dollar
per single cell. Instead of assessing all the isoforms for every single
cell, it profiles the major isoforms for subtypes of single cells at
population level, and is suitable for characterizing the differential
usage of major isoforms between subtypes for a large number of
heterogeneous single cells. The second strategy is performed on
each single cell separately, with low throughput (hundreds of
single cells at a time) and relatively high cost (28 dollars per cell).
This strategy is suitable for assessing the differential choices of
TSS/TES between individual single cells, especially in studies with
limited number of samples, such as oocytes and preimplantation
embryos.

Like all technologies, scRCAT-seq has its limitations. First,
the initial accuracy of TSS and TES identification is dependent
on the effective cloning of full-length cDNA. Although we
adapted a widely used method Smart-seq2 to obtain cDNA,
other protocols with better performance may be substituted to
get full-length cDNA in the future. Second, in some cases, for
genes with both multiple TSSs and multiple TESs, it becomes
difficult to establish one-to-one matches between the TSS and
TES, which may limit the capability to link TSS and TES. A
possible solution is to ligate the two ends after cDNA amplifi-
cation, and construct the libraries with both TSS and TSS and
sequence them on the same reads23, which we are working on
now. Third, scRCAT-seq alone cannot identify the differences
in exon splicing, especially for unannotated transcripts.
Whereas the information of full-length isoforms of novel genes
can be revealed by PCR using primers targeted to transcript
ends identified by scRCAT-seq, in this study we multiplexed
only a small number of example genes. However, profiling full-
length transcripts with higher multiplexing can be done by
complementing ScISOr-seq downstream of scRCAT-seq, in
order to efficiently profile the targeted amplified full-length
cDNA libraries. Including the scRCAT-seq approach to initially
identify isoforms of interest will help increase the efficiency of
ScISOr-seq, with lower cost.

In conclusion, we believe that this robust and cost-effective
approach is an ideal technology for comprehensive and sys-
tematic assessment of RNA isoform dynamics across hetero-
geneous single cells and biological conditions. Not only can it
help define cell types with specific isoform expression patterns,
but it can also help establish a multi-faceted mammalian cell atlas
in conjunction with other methodologies to identify tissue-
specific epigenetic elements, genotypes, and cis-elements. Its cost-
effectiveness and efficiency allow it to be widely implemented and
it may play important roles in projects such as the Human
Cell Atlas.

Methods
Single-cell isolation. The experiment was performed on 4–6-week-old C57BL/6
mice of both genders. All animal procedures complied with relevant ethical reg-
ulations for animal testing and research, were conducted in approval of the
Institutional Animal Care and Use Committee (IACUC) of the Zhongshan Oph-
thalmic Center of Sun Yat-sen University (2018-171). Mice were maintained under
standard conditions (12 h light and dark cycles, with sufficient food and water). To
obtain single DRG neurons, euthanasia was performed by CO2 and cervical dis-
location, L4-L5 DRG from mice of both sides were dissected and dissociated into
single cells. Single DRG neurons were manually picked by using a micro-capillary
pipette. Single cells were incubated into a 0.2-ml thin-wall PCR tube containing 4 μl
Smart-seq2 lysis buffer according to the published protocol21,34. To obtain
postovulatory-aged oocytes, female mice were administered intraperitoneal injec-
tions of 10 IU pregnant mare serum gonadotropin and 10 IU human chorionic
gonadotropin 48 h later. Cumulus-oocyte-complexes (COCs) were collected 24 h
after human chorionic gonadotropin injections from the oviductal ampullae. All
cumulus cells were removed from the oocytes enzymatically by trypsin treatment
(Sigma-Aldrich) for 2 min and oocytes were subsequently washed in DMEM
medium containing 10% fetal bovine serum (FBS) (Sigma-Aldrich). Oocytes were
picked into a 0.2-ml thin-wall PCR tube contains 4 μl Smart-seq2 lysis buffer as
described before.

scRCAT-seq library construction for a single cell. The full-length cDNA was
generated through reverse transcription with transcriptase III and the RT primer
(5′-AAGCAGTGGTATCAACGCAGAGTN8[16 bps of cell barcode]T30VN-3′),
followed by PCR amplification according to the Smart-seq2 protocol21, with the
minor modification that Superscript II was replaced by Superscript III to improve
the yield of cDNA. ERCC RNA spike-in Mix which contains 92 transcripts
(Thermo Fisher) was added and processed in parallel with poly-A RNA. After
purification, 0.1 ng cDNA was used for tagmentation with the Nextera XT DNA
sample preparation kit (Illumina) and fragments of both ends of the cDNA were
selectively amplified by using the P5 index primer (5′AATGATACGGCGACCAC
CGAGATCTACAC[8 bps of index]TCGTCGGCAGCGTCAGATGTGTATAAGA
GACAGGTGGTATCAACGCAGAGT) and the P7 index primer (5′CAAGCAGA
AGACGGCATACGAGAT[8 bps of index]GTCTCGTGGGCTCGG) as shown in
Fig. 1a. Library are purified using 1.8× Agencourt AMPure XP beads (BECKMAN
COULTER), and then loaded on an E-Gel 2% SizeSelect, and fragments of a length
of 200–300 bp bases were selected. Simultaneously, 0.1 ng of cDNA was used to
generate standard Smart-seq2 libraries and sequencing for validation. Library was
assessed by using Agilent Bioanalyzer 2100, and sequenced on Illumina Xten
platform in PE150 model. The rest of the cDNA of mouse oocytes and DRG
neurons were used for PacBio ISO-seq for comparison in parallel.

Single-cell ISOr-seq. Single-cell ISO-seq was performed on PacBio Sequel plat-
form. Full-length cDNA of eight single cells were mixed together to reach the total
amount of 2 μg for each flowcell. PacBio library construction is done by using
SMRTbell Template Prep Kit (PacBio cat#100-991-900), and sequenced using
SMRTcells (PacBio cat#101-008-000), with eight single samples per SMRTcell.

Culture of cell lines. E14Tg2a mESC line was maintained in 2i medium, consisting
of DMEM supplemented with 15% FBS, 0.1 mM β-Mercaptoethanol (Sigma), 1000
U/ml LIF (Millipore), 1 μM PD0325901, and 3 μM CHIR99021 (both from Sell-
eckchem). The feeder-free E14Tg2a mESC line was cultured on 0.1% gelatin. 0.05%
Trypsin/EDTA was used to passage the cells at the confluency of 80%. Human ESC
line H9 was kindly provided by Stem Cell Bank, Chinese Academy of Sciences.
Undifferentiated hESCs were cultured in Essential-8 (E8) medium (Invitrogen) on
Vitronectin (VTN-N)-coated 6-well plates. When reaching over 80% confluency,
cells were passaged using Versene (Invitrogen) and split normally twice a week.
ARPE19 and HEK293T were cultured in a medium consisting of DMEM sup-
plemented with 5% FBS, nonessential amino acids, and penicillin-streptomycin.
0.05% Trypsin/EDTA was used to passage the cells at the confluency of 80%.

HESC-derived retinal organoid differentiation. To initiate retinal differentiation
from hESC, colonies were dissociated into small cell clusters with dispase (2 mg/
ml), and allowed to reaggregate in a medium which was gradually switched from
E8 to neural induction medium (NIM: DMEM/F12 [1:1], 1% N2 supplement,
MEM nonessential amino acids, penicillin-streptomycin, and 2 mg/ml heparin
sulfate) over 4 days. On day 6, recombinant human BMP4 (50 ng/ml) was added
into NIM medium to increase the efficiency of retinal differentiation, which was
diluted by a half-medium change every third day. Cell aggregates were attached to
6-wells plates on day 7 with medium containing 10% FBS. On day 16, neural
rosettes were dislodged from plates with 10 μl tip manually and henceforth
maintained in retinal differentiation medium (RDM: DMEM/F12 [3:1], 2%
B27 supplement, MEM nonessential amino acids, and penicillin-streptomycin) to
allow the formation of retinal organoids. From day 30, culture medium was sup-
plemented with 10% FBS, 100 mM taurine, 2 mM GlutaMAX, and 0.5 mM retinoic
acid for long-term retinal organoid culture.

Cell dissociation for 10x. Retinal organoids were dissociated using Accutase at 37
°C for 30 min, while hESC and mESC were dissociated using Accutase at 37 °C for
5 min to acquire a single-cell suspension. After being strained through the cell
strainer, collected cells were resuspended in PBS containing 0.04% bovine serum
albumin. scRNA-seq libraries were prepared following manufacturer’s instructions
(single-cell gene expression 3′ V3 or 5′ kit of 10x Genomics). In brief, single cells
were partitioned into GEM followed by cell lysis, reverse transcription of RNA,
cDNA amplification, and library construction steps. Libraries were sequenced on
Illumina HiSeq 2500 platforms.

Data processing of next-generation sequencing data. TSS and TES raw data
were extracted and processed separately. For TSS data, reads with the sequencing
tag 5′-GTGGTATCAACGCAGAGTACATGGG-3′ were selected, and TSO
sequences 5′-GTGGTATCAACGCAGAGTACAT-3′ were trimmed away. Then,
these reads were aligned to human genome (hg38) or mouse genome (mm10) with
STAR35 (version 2.7.3a) with parameters (--outFilterMultimapNmax 1 --out-
FilterScoreMinOverLread 0.6 --outFilterMatchNminOverLread 0.6). Uniquely
mapped reads were kept. Reads that aligned to the ribosomal RNA region were also
discarded.

For the TES data, we first processed to remove 3′ adaptor sequences with
cutadapt36 (version 1.18), and then extracted paired reads with R1 having a 3′ Tag
and R2 having at least 10 poly-A sequences at the 3′ side. Poly-A sequences at the
end of R2 were further trimmed. By using STAR with parameters described above,
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reads were aligned to human genome (hg38) or mouse genome (mm10). Reads
mapped to multiple sites, with low-quality alignment, and aligned to mitochondrial
or ribosomal RNA region were discarded.

For Smart-seq2 data, raw reads past quality control were aligned by STAR using
the parameters as described above. Only reads that uniquely mapped to hg38 or
mm10 were retained and read count on each gene in each sample was computed
using HTSeq37 (version 0.11.2). Differentially expressed gene analysis was
performed using SCDE38 (version 2.10.1).

For comparison, we downloaded BAT-seq data, C1 STRT data, and C1 CAGE
data. For the BAT-seq data, we picked 192 mouse ES cells. For the C1 STRT data,
80 mouse brain cells from the single-cell dataset were randomly picked. For the C1
CAGE data, we picked 92 mouse ES cells. Same strategies were used with small
modification to process BAT-seq, C1 STRT data, and C1 CAGE data. For all data,
we converted bam files to bed files with BEDtools39 (version 2.27.1). For 5′ end
data, we extract the 5′ end from bed files for further analysis. Likewise, we extract
the 3′ end from bed files for 3′ end data.

Data processing of ScISOr-seq data. Circular consensus reads (CCS) were
obtained from the raw data of subreads Bam files by using PacBio Sequel SMRT-
Link 7.0 Soft, with the default setting of parameters: minLength 10, maxLength
21000, minReadScore 0.75, minPasses 3. Then, reads were considered Full-length,
non-concatemer (FLNC) if they contained 5′ and 3′ primers in addition to a poly-A
tail. Primer and poly-A tails were removed by cutadapt36. Further, FLNC reads
were aligned to reference genome mm10 using Minimap240 (version 2.17) with
parameters (-t 30 -ax splice -uf --secondary=no -C5 -O6,24 -B4). CCS count on
each gene in each sample was computed using HTseq. The output Sam files were
fed into Cupcake ToFU to collapse the mapped FLNC reads into unique tran-
scripts. Scripts are available at https://github.com/Magdoll/cDNA_Cupcake.
Eventually, isoforms were identified and filtered using SQANTI2 (version 7.4.0)
against mm10 transcriptome annotation.

Peak calling. To identify TSSs and TESs, we used the CAGEr (version 1.24.0)
package in R. Peaks were called using distclu (threshold= 3, nrPassThreshold= 1,
thresholdIsTpm= TRUE, removeSingletons= FALSE, keepSingletonsAbove= 10,
maxDist= 20). The position of dominant TSS/TES in each peak was set to
represent the position of peak. TSS and TES annotation reference was based on
gencode release_M18, and peaks mapped between 2 kb upstream the annotated
TSSs and 2k downsteam the annotated TESs were considered to belong to the said
gene. We then extracted 5′-end and 3′-end of all annotated transcripts and con-
verted to bed files with a custom R script, and the distance between the called peaks
and the nearest annotated TSS/TES was calculated by a custom script.

Machine learning analysis. To predict peaks as real or false TSSs/TESs, we
employed four widely used supervised classification models: LR, RF, KNN, and
SVM models41–43.

Input and data preprocessing. With the peaks as the input, we generated three
major types of features, which were related to the characteristics of the peaks. First,
features related to read distributions along the whole transcript, such as the peak
abundance, peak width, height of the peak etc. were generated. We applied
necessary normalization steps including minmax, and quantile normalization to
these raw features to make them in the range of [0, 1] before feeding them to the
machine learning models. Second, features related to the appearance of strand-
specific motifs related to authentic TSSs/TESs were included. For TSS peaks, we
searched for BREu (SSRCGCC), TATA-box (TATAWAWR), and BREd
(RTDKKKK) motifs upstream, allowing up to 2 mismatches. Genomic sequences
located up to 50 nt upstream were extracted, and parsed by a custom python script
to calculate the frequency and location of each motif, and 150 (3 × 50) features
were generated. For TES, we searched for 2 canonical polyadenylation signals
(AATAAA and ATTAAA) and 11 non-canonical polyadenylation signals
(AAGAAA, AATAGA, AATACA, AATATA, AATGAA, AGTAAA, ACTAAA,
GATAAA, CATAAA, TATAAA, and TTTAAA), and generated 650 (13 × 50)
features within 50 nt sequences around the peaks. Third, features related to false-
positive peaks such as the internal priming sites during reverse transcription, and
internal sites for template switching, were generated with a customized python
script.

Last, we assigned the label “TRUE” for peaks corresponding to authentic TSSs/
TESs annotated in FANTOM5 database15 and PolyA_DB316, and the label
“FALSE” for peaks that were not annotated. The machine learning models were
trained on these labels with the features described above.

Training models. The data were randomly split into a training set (70%) and a test
set (30%). The test set was used to evaluate the model fit. We utilize the popular
open-source python machine learning library scikit-learn to train the models. A
fivefold cross-validation was conducted on the training set to select hyperpara-
meters. Specifically, we tried to find the best hyperparameter sets for each machine
learning algorithm in TES/TSS data through two rounds of GridSearchCV. In the
first round, we used coarse-grained search to find the best range of hyperparameter
sets, and then use fine-grained search to find the best hyperparameter set based on

the previously found range. After that, the best hyperparameter sets are used to
train the machine learning algorithms using the whole training set data. All models’
performance was evaluated with accuracy, and we selected the model with the best
performance.

Assessing performance of the models. Once the models were properly trained,
we used them to predict the real data, including the TSSs and TESs. The perfor-
mance was estimated by Accuracy (Acc).

Acc ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ;
where TP is true positives, TN is true negatives, FP is false positives, and FN is false
negatives.

In order to determine the ability for the model to be generalized across datasets
derived from various cell types, we obtained a trained model using hESC data, and
measured its performance on several other datasets, such as TES/TSS data from
human HEK293T and ARPE, mouse DRG and oocyte, and mESC.

Quantification of cell-type-specific isoforms. Expression values for each peak
(TSS/TES) were quantified as reads per million (RPM) generated by CAGEr. To
identify cell-type-specific isoforms, the major TSS/TES positions of genes co-
expressed between the two types of cells are compared by intersecting the bed files
of each with BEDtools39. Genes with either alternative TSS or alternative TES
between the two were selected. Then, the differential expression analysis on the
RPM value of the major isoform of each cell type between the two was performed
with DESeq244 (version 1.26.0).

Sequencing full-length cDNA of target genes. Primers were designed according
to the coordinates of TSS/TES identified by scRCAT-seq. Full-length cDNA of all
isoforms of a target gene was amplified by PCR from the cDNA pool of single cells
generated with Smart-seq2. Briefly, 1 ng full-length cDNA was used to perform 35-
cycle PCR with Premix TaqTM (TaKaRa). PCR products were purified with
QIAquick Gel Extraction Kit (Qiagen) and Sanger-sequenced with corresponding
primers. All assays were performed for three individual single-cell samples. PCR
primers used for novel genes are listed in Supplementary Table 7. The original
uncropped gel images are presented in Supplementary Fig. 9.

Data processing of droplet-based single-cell RNA sequencing data. The 10x
droplet sequencing data were processed using the Cell Ranger (version 3.1.0)
pipeline from 10x Genomics. In brief, reads were demultiplexed and aligned to the
GRCh38 or mm10 genome. UMI counts were quantified to generate a gene-
barcode matrix. Cells were filtered to remove those containing less than 200 genes.
Genes that were detected in less than 3 cells were also removed. Further analyses of
these cells were performed using the Seurat45 (version 3.1.0) R packages, as
described in the tutorials (https://satijalab.org/seurat/). Briefly, cells were normal-
ized using LogNormalize and multiplied by a scale factor of 10,000. HVGs (high
variable genes) were identified and used for further analysis. Shared cell states were
identified using integration procedure in Seurat.

Dimensionality reduction was performed using principal component analysis
(PCA). Statistically significant PCs were identified using the Jackstraw function.
The score of cells in those significant PCs was used to build a k-nearest neighbor
(KNN) graph. The Louvain algorithm was used for identifying cell clusters in KNN
graph. Uniform manifold approximation and projection (UMAP) dimensionality
reduction was used to project these populations in two dimensions. Pseudotime
analyses of organoids were performed using the Monocle246 (version 2.12.0) R
package. Differentially expressed genes among RPC, PR precursor, and Cone were
identified using FindAllMarkers function and used as input for temporal ordering
of those cells along the differentiation trajectory.

Dynamics of the isoform choices were evaluated by a trajectory-based
calculation of the ratios of the major isoforms, which were mainly expressed either
in RPC or in Cone. First, the pseudotime trajectory was divided into six stages,
which correspond to the continuous transition from RPC (stages 1–3) to PR
precursor (stages 3–6), and then to cone (stages 5–6). Second, the bam file for all
the single cells was first converted to a bed file, the cell barcodes and UMI for the
single cells were added into the bed file as two columns. Further, the bed file was
split into six small subfiles corresponding to six stages by using the cell barcodes of
the single cells. The major TSS and major TES of each gene were assessed and
matched to identify the major isoform for each cell type. Third, differential choices
of major isoforms between RPC and cone were identified. The dynamic transition
from major isoform of RPC to major isoform of cone was assessed by calculating
the ratio of the two isoforms at the six stages, where isoforms were quantified by
counting the end with alternative choices.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All sequence data generated in this study are available at Gene Expression Omnibus
(GEO) with the accession number GSE134311. Published data from BAT-seq29, C1
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STRT47, and C1 CAGE19 were downloaded from GEO (BAT-seq accession number:
GSE60768; C1 STRT accession number: GSE60361) or DDBJ database (C1 CAGE
accession number: PRJDB5282). FANTOM5 BAM files were downloaded from https://
fantom.gsc.riken.jp/5/datafiles/reprocessed/. In total we downloaded seven samples:
ARPE19, HEK293T, hESC, adult retina, mESC, mouse dorsal spinal cord, and ovary.
PolyA_DB3 annotations were downloaded from https://exon.apps.wistar.org/PolyA_DB/
v3/misc/download.php. The data supporting the findings of this study are available from
the corresponding authors upon reasonable request. Source data are provided with
this paper.

Code availability
All custom computer code used in this study is freely available at https://github.com/
huyoujinlab/scRCAT-seq. The workflow for processing scRCAT-seq data is provided as
a Supplementary Software file.
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