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Abstract: As the field of nanomedicine develops and tackles the recent surge in antibiotic resistance,
there is a need to have an in-depth understanding and a synergistic view of research on the
effectiveness of a metal nanoparticle (NP) as an antibacterial agent especially their mechanisms of
action. The constant development of bacterial resistance has led scientists to develop novel antibiotic
agents. Silver, gold and its bimetallic combination are one of the most promising metal NPs because
they show strong antibacterial activity. In this review we discuss the mode of synthesis and the
proposed mechanism of biocidal antibacterial activity of metal NPs. These mechanisms include
DNA degradation, protein oxidation, generation of reactive oxygen species, lipid peroxidation, ATP
depletion, damage of biomolecules and membrane interaction.

Keywords: antibiotic resistance; bactericidal; metal nanoparticles; Escherichia coli;
Staphylococcus aureus; cell membrane; DNA damage

1. Introduction

The continuous emergence of resistant strains of bacteria to current antibiotics is a serious
challenge in public health and threat to human existence. Thus, there has been strong impetus
to develop new bactericides. This makes current research in bactericidal nanomaterials of high
interest [1]. Antimicrobial resistance (AR) has been recognized as one of the major threats to global
health and economy. Its effect is non-discriminatory to geographical locations, race, age or social
status, thus putting at risk the gains of the Millennium Development Goals and threatens the
achievement of the Sustainable Development Goals. Based on this, the World Health Organization
(WHO) has considered some bacteria as high risk pathogens with a high focus on the ESKAPEE
pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli), which play a prominent role in this
global epidemic [2–4]. The inherent problem in AR is that it is a natural phenomenon but several
factors such as abuse and irrational use of antibiotics by humans have substantially expedited the
process, causing multidrug-resistant (MDR) infection, which substantially lessens the therapeutic
efficiency of antibiotics. This has given rise to severe consequences such as increased medical expenses,
an overburdened public health system, prolonged hospitalization and increased mortality rates [4,5].
The rate at which bacteria develops antibiotic resistance surpasses the discovery and development
of combative new antibiotics. The lead reasons are due to the bureaucracy of regulations, scientific
challenges, regulatory issues and inadequate profitability from the new products [6]. Evidently, it is
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important to explore innovative strategies to fight antimicrobial resistance infection. Owing to the
excellent antibacterial performance and high specific surface area, NPs have been commonly studied
by researchers globally as a hopeful antimicrobial agent. In addition, bacteria rarely develop resistance
to them due to the multifaceted antibacterial mechanism of NPs [7]. Metal nanoparticles (MNPs)
are significant nanomaterials with excellent physiochemical, photothermal, magnetic and electrical
properties [8–11]. They have been used as potent antimicrobial agents for bacterial infection detection,
diagnosis and treatment [10–13]. The antibacterial effect of MNPs is based strongly on their size, shape
surface chemistry and inherent constituents of their structure [14–16]. To date, various methods have
been used to synthesize MNPs of different shapes such as rods, stars, spheres, cubes, etc. [17–19].
Amongst metallic elements, gold and silver as “noble” metals have been the focus of various research
areas in recent years especially in biomedical applications for antibacterial activity. This is because of
their potential to decrease or eradicate the development of more resistant bacteria because they aim at
multiple biomolecules at once, preventing the development of resistant strains [20]. Several authors
have discussed the green synthesis of NPs and their biological applications. However, in this review,
the focus is on the synthesis strategies and possible antibacterial mechanism of specific MNPs such as
silver (Ag), gold (Au) and their bimetallic synthesized from plants. This is to give a synergistic view of
the efficacy of plant mediated MNPs for the prospect of antibiotic development.

2. Biogenic Synthesis

The common methodology used in the synthesis of metal colloidal dispersion is via reduction of
metal complexes. Prior to the need for green protocols, chemical agents such hydrazine hydrate and
sodium borohydride have been used as reducing and capping agents, but their toxic effects have made
them undesirable for biological applications. The biological approach to the synthesis of MNPs has
resulted in non-toxic, simple and stable green routes that leads to translational research.

Biological conventions for synthesis of silver nanoparticles (AgNPs) and gold nanoparticles
(AuNPs) are through the use of nature’s biolaboratory such as plant, microorganisms, alga,
carbohydrates and biopolymers [21,22]. They contain naturally occurring biomolecules that play
significant roles in the reduction and capping of NPs [23,24]. Thus, they are deemed a green, sustainable
and efficient route for the biosynthesis of NPs owing to their benign and environmentally friendly
nature. For biogenic synthesis, simply biological extracts are mixed with the metal salt solutions
and the effect of different parameters such as the concentration of the metal salt and extract, pH,
temperature, time and radiation are studied [25,26]. Biological extracts comprise of biomolecules like
terpenoids, enzymes, coenzymes, phenolics, alkaloids, amino acids, sugars, proteins, etc., that oxidize
metal salts from positive oxidation state to the zero oxidation state (Figure 1). These biomolecules in
turn determine the size and size distribution of MNPs. A strong reductant in biological extracts cause
a rapid reaction rate and facilitates the formation of smaller NPs. Thus, a narrow size distribution is
seen if there is a rapid reduction of metal salt by biomolecules, due to the formation of a new nuclei or
secondary nuclei. On the other hand, if it happens that the secondary nucleation is suppressed over
the primary one, a slow reaction may occur [27]. In addition, these biomolecules serve as a secondary
option to form a monolayer on the surface of NPs to prevent agglomeration [18].

Recent studies of biological extract mediated synthesis of NPs confirm the surface functionalization
of nanoparticles with biomolecules, which also improve their bactericidal activity. Thus, improved
antimicrobial activity of green synthesized MNPs are due to the biomolecules attached on the surface
of NPs [28–30]. Table 1 shows an analysis of the discussed plant synthesized NPs.
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Figure 1. Schematic representation for the green synthesis of metal nanoparticles using
different biomolecules.

2.1. Silver Nanoparticles

Silver is known for its inhibitory effect on various pathogenic bacteria found in medical and
industrial processes. Biosynthesis of silver nanoparticles has been shown as an easier and benign
method compared with chemical methods [31]. A unique property of AgNPs is their large surface area
and the fractions found on their surface atoms, which is significant in therapeutic applications [32,33].

Different parts of plant extracts have been used in the synthesis of AgNPs using silver ions
as substrates. Dhand et al. [34] reported the synthesis of highly stable crystalline spherical AgNPs
(20–30 nm) by exposing the hydroalcoholic extract of Coffea arabica to silver nitrate solution. They
reported smaller particle size with a higher concentration of silver nitrate at 0.1 M within 2 h of
synthesis at room temperature. The as-synthesized AgNPs had an inhibitory effect against E. coli and
S. aureus. Khali et al. [35] reported the synthesis of spherical AgNPs using the aqueous extract of the
olive leaf. They observed that smaller size NPs were recorded at an alkaline pH of 8 rather than an
acidic pH of 3. Aqueous extract of Ocimum sanctum and its bioactive compound, quercetin, were used
for the synthesis of spherical AgNPs by Jain and Mehata [36]. It was reported that quercetin produced
a smaller particle size of 11.35 nm and a narrow plasmon peak as compared to the whole leaf extract of
Ocimum sanctum with a particle size of 14.6 nm. This suggests that quercetin is a strong redundant
present in Ocimum sanctum. Leela et al. [37] studied different leaf extracts of plants, namely, Helianthus
annus, Basella alba, Oryza sativa, Saccharu icinarum, Sorghum bicolar, and Zea mays They found that
among all the tested plant extracts, H. annus had the strongest potential for rapid reduction of silver
ions. Shaik et al. [38] demonstrated the effect of a different volume of the Origanum vulgare extract
in the synthesis of a different size of AgNPs. Increasing the volume of the extract produced smaller
NPs, which had a bactericidal effect on both Gram positive (+ve) and Gram negative (−ve) bacteria.
Padalia et al. [39] used the aqueous extract of the Tagetes erecta flower to synthesis predominantly
spherical and hexagonal AgNPs. The as-synthesized AgNPs coupled with commercial antibiotics had
a better antibacterial effect than using the commercial antibiotics alone. In our group, we reported
the synthesis of spherical AgNPs using the aqueous extract of Combretum erythrophyllum leaf and
it was reported to have strong antibacterial activities against Staphylococcus species implicated in
dermatological infections [18]. Nouri et al. [40] used the aqueous extract of the Mentha aquatica leaf
extract to synthesize spherical AgNPs. The results showed the significant effect of the ultrasound
during the synthesis to produce smaller AgNPs (8 nm) with enhanced antibacterial activity by lowering
the minimum inhibitory concentration (MIC) as compared to those synthesized with the hydrothermal
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method. In recent times, bioinspired synthesis of polygonal AgNPs using the ethyl acetate fraction of
the alcoholic extract of pomegranate leaves has been reported. The ethyl acetate fraction had a smaller
particle size compared to that of the aqueous extract [41]. This suggests that the ethyl acetate fraction
had a strong redundant that produced smaller NPs.

2.2. Gold Nanoparticles

AuNPs are desired noble MNPs because of their possible usage in diverse fields of science and
engineering such as gene expression and therapy, catalysis, optics, nanoelectronics, nanomedicine
and disease diagnosis [42]. Increased toxicity concerns over chemical synthesis routes have drawn
considerable interest toward green synthesis of AuNPs. Muthukumar et al. [43] biosynthesized AuNPs
using the leaf extracts of Carica papaya and Catharanthus roseus. The mixture of both extracts produced
predominantly spherical AuNPs and they had increased antibacterial effects compared with the AuNPs
synthesized from the individual plant extract. Patra et al. [44] reported the formation of spherical AuNPs
with strong antibacterial effects when synergized with rifampicin and kanamycin. Similarly, other
researchers confirmed the synthesis of gold nanoparticles using different plant parts such as the stem
extract of Cannabis sativa (Indian hemp) [45], fruit extracts of Amomum villosum [46] and leaf and fruit
extract of Pistacia atlantica [47]. Hamelian et al. [48] reported the formation of AuNPs from the aqueous
extract of thyme. Awad et al. [49] reported the use of Olea europaea fruit extract and Acacia nilotica husk
extract mixture as a bioreductant for the synthesis of AuNPs, which showed a significant antibacterial
effect against K. pneumoniae, and Pseudomonas spp. As reported by Kumar et al. [50], Croton caudatus
Geisel leaf extract was able to reduce chloroauric acid in twenty-five minutes to form stable and
spherical AuNPs. The formation of gold nanowires was reported from the pulp extract of Beta vulgaris.
The mechanism for the formation of the nanowires was by Brownian motion; small NPs dissolved in the
solution, grew to larger ones and joined together via Brownian motion to form wire-like structures [51].
Very recently, Akintelu et al. [52] reported the synthesis of spherical and stable gold nanoparticles using
pulp of Garcina kola at pH 7. Similarly, Wongyai et al. [53] studied the biosynthesis of AuNPs using the
aqueous extract of Cryptolepis buchanani Roem to produce highly stable, small-sized AuNPs with a
uniform spherical shape at pH 7. The stability confirmed by the zeta potential analysis was −30.28 mV.

2.3. Ag-Au Bimetallic Nanoparticles

Bimetallic nanoparticles (BMNPs) technically excel their mono metallic counterparts due to their
improved electronic, optical and catalytic properties [54]. Aside from the morphological manipulations,
the variations in the molar ratio of different components offers a diverse dimension in adapting the
properties of BMNPs [54,55]. BMNPs, comes in various forms such as an alloy, core–shell and contact
aggregate (dumbbell or bamboo-like). This is seen in the surface plasmon resonance peak either as
a single (alloy) or multiple (core–shell/contact aggregate) [56,57] (Figures 2 and 3). Among a wide
range of BMNPs, silver and gold nanocompositions have gained significant advancement in drug
delivery and nanomedicine [58]. Elemike et al. [57] reported synthesis of the Ag-Au alloy using the
aqueous extract of Solidago canadensis. They observed the shape of the alloy to be similar to that of
AuNPs alone. This was also confirmed by the higher concentration of Au in the EDX spectra. In a
similar manner they also reported the synthesis of a nanoalloy Ag-Au BMNPs using the leaf extract of
Stigmaphyllon ovatum [59]. Gopinath et al. [60] employed the use of Gloriosa superba for the synthesis
of the Ag-Au nanoalloy. They observed that the BMNPs had a more efficient antibacterial activity
effect on Bacillus subtilis than individual NPs. This was proposed to be due to the synergistic effect of
the metals. Kumari et al. [61] reported the formation of nanoalloy Ag-Au BMNPs by using the juice
of pomegranate seeds as a bioreductant. Recent studies by Emma [62] reported the production of
nanoalloy Ag-Au BMNPs using a green approach by Arabic gum. It was observed that increasing
the reaction temperature from 25 to 70 ◦C resulted in a well dispersed and smaller bimetallic NPs,
which led to a size reduction from 6.5 to 3.1 nm. In another recent development, Gupta et al. [63] used
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aqueous leaf extract of Moringa oleifera for the biofabrication of the stable Ag-Au nanoalloy with a zeta
potential of −36.7 mV.
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Table 1. Biogenic synthesis of metal nanoparticles (MNPs) and bimetallic nanoparticles (BMNPs).

S/N Sample
Biogenic

source/Extraction
Method

Bioactive
Compound NPs Size

(nm) Shape Ref.

1 Coffea arabica

Seed/
Ethanolic

Extraction at 60 ◦C for
1 h

Phenolics Ag 20–30 nm
Spheres

and
ellipsoidal

[34]

2 Olive tree
Leaf/Aqueous

extraction by boiling
for 10 min

Oleuropein Ag 20–25 nm Spheres [35]

3 Ocimum sanctum and
quercetin

Leaf/Aqueous
extraction at 60 ◦C for

10 min
Quercetin Ag

14.6 nm
and

11.35 nm
Spheres [36]

4 Origanum vulgare
Leaf/Aqueous

extraction by reflux
by for 4 h

Alkaloids,
flavonoids,
terpenoids

Ag 2–25 Spherical [38]

5 Tagetes erecta (Marigold) Flower/Aqueous
extraction for 10 min

Flavonoids,
saponins Ag 46.11 nm Spheres [39]

6 Combretum
erythropyllum

Leaf/Aqueous
extraction at 90 ◦C for

1 h
Flavonoids Ag 5–26 nm Spherical [18]

7 Mentha aquatica
Leaf/Aqueous
extraction by

sonication

Polyphenols,
flavonoids 8 nm Spheres [40]

8 Punica granatum
Leaf/Ethanolic

extraction for 48 h at
room temperature

Polyphenols,
flavonoids Ag 20–40 nm Polygonal [41]
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Table 1. Cont.

S/N Sample
Biogenic

source/Extraction
Method

Bioactive
Compound NPs Size

(nm) Shape Ref.

9 Carica papaya and
Catharanthus roseus

Leaf/Aqueous
extraction at room

temperature

Papain,
α-tocopherol,

alkaloids,
flavonoids

Au 6–18 nm
Spherical,
Triangle,

hexagonal
[43]

10. Citrullus lanatus rind
(Watermelon)

Fruit/Aqueous
extraction for 10 min

by boiling

Citrulline,
proteins,

carotenoids
Au 20–140 nm Spheres [44]

11 Cannabis sativa (Indian
Hemp) Cortex and Xylem

Stem /Aqueous
extraction for 10 min

by boiling

Cannabinoids,
terpenes,
phenolics

Au
12–18 nm

and
20–40 nm

Spheres,
rod,

Triangle,
hexagonal

[45]

12. Amomum villosum
(Cardamom)

Fruit/Aqueous at
100 ◦C for 1 h via

autoclave
*** Au 5–10 nm Spheres [46]

13 Pistacia atlantica
(Leaf and

fruit)/Aqueous by
boiling for 30 min

*** Au 50–60 Spheres [47]

14 Thyme Leaf/Aqueous by
boiling for 30 min *** Au 6–26 nm [48]

15 Olea europaea fruit extract
and Acacia nilotica husk

Fruit and
husk/Aqueous

extraction at room
temperature

*** Au 44.96 nm Spheres [49]

16 Croton caudatus Geisel
Leaf/Aqueous

extraction at 50 ◦C for
10 min

*** Au 20–50 nm sphere [50]

17 Beta vulgaris
(Sugar beet)

Pulp/Aqueous
purification *** Au 50 nm Nanowires [51]

18 Garcina kola
Pulp/Aqueous

extraction by boiling
for 40 min

*** Au 18–38 nm Spheres [52]

19 Cryptolepis buchanani
Tea/Aqueous

extraction at 60 ◦C for
15 min

Flavonoids,
alkaloids,

saponins, tannins
Au 11.1 nm Spheres [53]

20 Solidago canadensis Leaf/Aqueous
extraction at 80 ◦C

Flavonoids,
quercetin,
saponins

Ag-Au 15 nm Spheres [57]

21 Stigmaphyllon ovatum Leaf *** Ag-Au 14.9 nm Spheres [59]

22 Gloriosa superba
leaf/Aqueous

extraction at 60 ◦C for
50 min

Superbine,
colchicine,

phytosterils,
stigmasterin

Ag-Au 10–20 nm Spheres [60]

23 Pomegranate Seed/Aqueous
extraction Phenolics Ag-Au 12 nm

Spheres
Rods

Pentagonal
[61]

24 Arabic gum

Stems and branches
of Arabic Senegal

tree/Aqueous
dissolution

Arabinose,
rhamnose,

glucoronic acid,
arabinogalact-an–
protein complex

Ag-Au 3.1 nm Spheres [62]

25 Moringa oleifera
Leaves/Aqueous

extraction at 80 ◦C for
15 min

Niazimicin,
4-(α-L-

rhamnosyloxy)
benzyl

isothiocyanate,
β-sitosterol-3-O-β
-D-glucopyranoside

Ag-Au 11–25 nm
Spheres

Triangles
Hexagonal

[63]

*** Not available.
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3. Bacterial Resistance and Mutations

Antimicrobial resistance is a natural, intrinsic phenomenon, which can also be acquired or
transferred in an effort to escape the actions of antimicrobial agents. Bacterial species have capabilities
to resist or reduce the effect of antibiotic due to their natural inherent functional or structural
features. [64,65]. The evolution of drug resistance occurs in a minimum of three phases namely,
acquisition, expression and selection for microbes expressing those resistance genes. Foremost, bacteria
gain resistance to one or more drugs by transduction, transformation and conjugation, which happens
via horizontal gene transfer (HGT). Such antimicrobial agents threatened by HGT are β-lactams,
fluoroquinolones, etc. [65–68]. Another way in which bacteria acquire a resistance gene is through
spontaneous mutation of existing genes [69,70]. Multiple drug resistance (MDR) happens when bacteria
with an existing drug resistance gene acquires resistance to another drug [65]. Secondly, in defense
against exposure to antimicrobials, bacteria express the resistance gene [67]. Thirdly, resistance becomes
prevalent when there is a suitable environment of growth for microorganisms that express resistance
genes against the antibiotic. This conditional/selective pressure happens when the microorganisms
are exposed to the antibiotic without elimination either by bactericidal or bacteriostatic effects of
the antibiotic itself [64,66]. Use of a time-dependent antibiotic with long half-life and poor patient
compliance can create the selective pressure that aids drug resistance, and the likelihood of occurrence
is increased by prolonged use of the antibiotics. The likelihood of developing resistance increases
when antimicrobial drugs are used for a longer duration [67,71]. Bacteriostatic drugs, which do not kill
bacteria but inhibits them, gives an opportunity for the regrowth of some bacterial cells and thus they
develop resistance when exposed to the drug. An insufficient number of doses or missed scheduled
doses (as a result of poor patient compliance) gives ample time for the development/acquisition of
resistance genes [72].

Bacteria utilize several mechanisms for resisting antimicrobials. Of such, the mechanism is
the decreased uptake and increased efflux of the drug from the bacterial cell. This happens by the
transmembrane efflux pump that prevents the antimicrobial agent from attaining the toxicity level
within the bacterial cell [7,71]. The low sensitivity of P. aeruginosa and E. coli to antibiotics is due to
their drug efflux system. Both are Gram negative bacteria having a distinct outer membrane enclosing
a periplasmic space. This periplasmic space contains a peptidoglycan cell wall that envelopes an inner
membrane (Figure 4). It was reported that the drug efflux pump of P. aeruginosa contains an inner
membrane H+/drug antiporter protein bound to a linker protein in the periplasmic space, which itself
is bound to an outer membrane channel protein [73]. An over expression of these efflux proteins was
seen in P. aeruginosa. This is usually seen when there is a mutation of the regulatory protein that is
required to suppress genes coding for efflux proteins [73]. E. coli also uses the mechanism of drug
efflux. It expresses a minimum of at least nine pumps whose energy source to expel different types of
antibiotics is the transmembrane proton gradient. Thus, conferring multidrug resistance to E. coli. This
drug efflux system is commonly seen in Gram −ve bacteria because their additional outer membrane
consists of a lipopolysaccharide compared with Gram +ve bacteria with a peptidoglycan cell wall
surrounding only a single plasma membrane (Figure 4). This explains why Gram −ve bacteria are
less susceptible to many antibiotics compared with Gram +ve bacteria [20,67,73]. Other mechanisms
of antibiotic resistance are by enzymatic inactivation of the antibiotic, covalent modification of the
drug, mutation of antibiotic targets, protection of targets, etc., as seen in the case of methicillin resistant
Staphylococcus aureus (MRSA) and Klebsiella pneumoniae [67,69,73].
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Few studies have reported the resistance of bacteria to MNPs and has been attributed to
the development of extracellular substances that leads to agglomeration and precipitation of the
MNPs [74–77]. Recently, the exposure of E. coli 013, E. coli CCM 3954 and P. aeruginosa to subinhibitory
concentrations of AgNPs was studied. Several interactions with the AgNPs led to the development of
antibiotic resistance. The continuous exposure provided time for the bacteria to develop a counter
mechanism against the effect of the AgNPs. This was achieved by the secretion of flagellin, an adhesive
protein of the bacteria flagellum, which reduces the stability of the AgNPs and causes its aggregation
and precipitation. Thus, preventing the entry of the AgNPs into the bacteria cell and therefore loss of
antibacterial activity [78]. Formation of the biomolecule corona is another mechanism through which
bacteria develop resistance to MNPs. This often happens in the physiological environment such as the
gastrointestinal tract, lungs and wounds. The produced biomolecule corona hinders the binding of the
nanoantibiotic to the pathogenic bacteria [79]. In addition, resistance to bactericidal effects of MNPs
has been reported to occur due to the ability of the bacteria to alter its surface charge as a defense
mechanism. This is done by altering the phospholipid structure, which changes the electrical charge
on the surface of the bacteria [80,81]. However, recent studies of the inhibitory role of the pomegranate
rind extract against the production of flagellin offers the significance of plant mediated MNPs as a
means of combatting antibiotic resistance [78].

4. Overview of the Bactericidal Mechanism

There are diverse proposed mechanisms through which MNPs exert a bactericidal effect and
combat antimicrobial resistance against Gram −ve and Gram +ve bacteria. Noble MNPs such as Au,
Ag and its bimetallic are known to act as potent broad-spectrum antimicrobial agents. The bactericidal
effect of these MNPs usually results from mechanisms such as release of metal ions, cell wall and
membrane damage, intracellular penetration and DNA damage, generation of reactive oxygen species
(ROS), lipid peroxidation, ATP depletion and damage of biomolecules.

4.1. Cell Membrane: Lipid and Protein Interaction

Metal NPs gradually discharge metal ions that is able to cross the membranes and disrupt cellular
processes from inside the cell [82]. Different adhesion pathways are available for the attachment of
NPs to the cell wall and membrane. These barriers serve to protect the microorganism against external
threats and to maintain homeostasis while still permitting the transport of nutrients inside the cell.
The classification of bacterial is based on the differences in the structure of their cell wall. The cell
wall (envelope) of Gram −ve bacteria has a minimum of two layers of lipopolysaccharides. On the
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other hand, that of Gram +ve bacteria is basically thicker. Gram +ve bacteria has a thick layer of
peptidoglycan within their cell walls while Gram −ve bacteria have a thin layer of peptidoglycan with
an extra outer membrane embedded lipopolysaccharide. This additional membrane in Gram −ve
bacteria means that there is also an extra membrane layer termed periplasm (Figure 4). Several research
works have reported that Gram +ve bacteria are more resistant to MNPs mechanisms of action [83–87].
This is due to the different cell wall structure. In Gram −ve bacteria, such as E. coli, a 1–3 µm layer
thick of lipopolysaccharides cover the cells, in addition to 8 nm thick layer of peptidoglycans. This
facilitates the passage of ions from NPs into the cell whereas Gram +ve bacteria like S. aureus have a
thicker peptidoglycan layer, which stretches over 80 nm with covalently bound teichoic and teichuronic
acids. The damage to the cell membrane of bacteria that happens from the interaction between the
cells and MNPs becomes more harmful to the Gram-negative bacteria. This is due to the absence of
a thick protective layer of peptidoglycan as seen with Gram +ve bacteria Furthermore, Gram −ve
bacteria susceptibility to MNPs is due to their negatively charged lipopolysaccharide. This causes
an attraction to the positive ions released by most MNPs. The consequent effect is an accumulation
of ions that leads to intracellular damage. However, it is known that both Gram +ve and Gram −ve
bacteria have a negatively charged cell wall that allows for interactions between the cell wall and the
MNPs or its ions [88]. A study of Gram −ve Salmonella typhimurium revealed that a mosaic of anionic
surface domains present on the cell wall in an abundant measure [89]. Thus, increased toxicity is
observed when a high concentration of NPs binds to these negative anionic domains. Additionally,
through mathematical calculations and electrophoretic mobility study, it was found that E. coli is
more negatively charged and rigid than S. aureus [90]. The outer membrane comprising of proteins
and lipids is the first barrier encountered by AgNPs. Silver forms a complex with electron donors
like nitrogen, oxygen, sulphur atoms or phosphorus in the interactions with the proteins in the outer
membrane. This interactions leads to the inactivation of proteins and membrane bound enzymes of the
bacterial cell wall [91–93]. The bactericidal mechanism of AgNPs biosynthesized with turmeric against
E. coli O157:H7 and Listeria monocytogenes was elucidated by Alsammarraie et al. [94]. Microscopic
images of cells treated with AgNPs showed cell membrane damage with irregular shapes, protrusions
and fragmentations. The cytoplasmic membrane of both cells was separated from their cell walls and
completely damaged. This led to their rupture and release of cell constituents due to the physical
impacts of the AgNPs. In addition, deposits of AgNPs were seen around severely damaged bacterial
cells, both in the cell membrane and cytoplasm of the bacteria, especially in E. coli O157:H7 (Figure 5B).
The treated cell shown in Figures 5D and 6D reveals a big hole and fragmented cell membrane that
resulted in a totally lysed cell. Figure 5D further reveals severe shrinkage cytoplasmic constituents’
leakage of E. coli O157:H7. The TEM and SEM micrographs confirm that the antibacterial activity
of biosynthesized AgNPs by turmeric was obviously bactericidal and not bacteriostatic. SEM-EDS
analysis showed that a strong signal of elemental Ag was present in the treated cells confirming that
AgNPs were responsible for the observed damages in the cells. The Fourier transform infrared (FTIR)
microspectroscopic method was used to study the bactericidal mechanism of garlic acid (Ga) conjugated
AuNPs (AuNPs-Ga) against Plesiomonas shigelloides and Shigella flexneri [95]. The results were analyzed
by a principal component analysis (PCA). There were two regions of interest in the PCA. Firstly was
the biochemical print region for stretching vibrations of esters found in lipids (1800–1000 cm−1), amide
I and II groups belonging to peptides and proteins (1655–1637 cm−1), P=O stretching of nucleic acids
(1250–1220 cm−1 and 1084–1088 cm−1) and the typical bands for polysaccharides and carbohydrates
(1200–900 cm−1). Secondly was the wavenumber from 3000 to 2850 cm−1 that is attributed to known
functional groups of specific amino acid side chains and membrane fatty acids. The PCA plot revealed
the differences in the spectra of the treated and untreated bacterial cells. Each of the representative
loading plots had a change in their lipid, protein and cellular phosphorylation signal [95–98]. Significant
changes in the lipid and protein signal signifies a destruction of the cell membrane and biochemical
alteration of the bacteria cells.
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4.2. Free Radical Generation

Biological molecules such as lipids, proteins and nucleic acids are adversely affected by free
radicals. This causes alteration of the normal redox status and lead to increased oxidative stress [99].
Although, oxidative stress is a normal cellular process that occurs in several phases of cellular signaling
however, extreme oxidative stress can be detrimental. Literature has showed that MNPs can trigger
cellular oxidative stress [100–102]. These free radicals are either in the form of reactive oxygen species
(ROS) or reactive nitrogen species (RNS). They result from either endogenic sources (endoplasmic
reticulum mitochondria, peroxisomes, etc.) or exogenic sources (heavy metals, pollution, transition
metals and specific drugs) [99].

When cells are exposed to stress, they show defensive responses via enzymatic or non-enzymatic
mechanisms [102,103]. Damage to the DNA, cell wall, proteins and lipids usually occurs when
the defense mechanism is overpowered by oxidative stress. Free radicals such as singlet oxygen,
hydrogen peroxide (H2O2) and hydroxyl radical (-OH) are released when the defense mechanism is
weakened by the oxidative stress. All these can lead to lipid oxidation, which inhibits or kills bacteria
growth. Cell membranes can easily be disrupted by both endogenic and exogenic ROS [104,105].
Chakraborty et al. [106] evaluated the antimicrobial effects of Thevetia peruviana mediated AgNPs on
E. coli. The as-synthesized AgNPs showed an effective inhibitory effect against E. coli with an inhibition
zone of 20 mm. This suggests that the antibacterial potency of the AgNPs might be related to the
membrane structure of the bacteria. Electron spin spectroscopy (ESR) was used to investigate if the free
radical production from AgNPs formed at pH 7 after 48 h of reaction time is related to the antimicrobial
activity. The results showed that the growth inhibition was due to the formation of free radical species
from the surface of AgNPs, which altered the permeability of the outer membrane and inactivated the
respiratory function of the bacteria.

Soo-Hwan et al. [107] showed that the mechanism of bactericidal effect of AgNPs against S. aureus
and E. coli was by the production of ROS due to increased membrane permeability and the inactivation
of lactate dehydrogenase, which eventually led to protein breaks. More protein leakage occurred
in the membrane of E. coli compared with that S. aureus. This observed difference was possibly
attributed to the thickness of the peptidoglycan layer of S. aureus [107]. Gomaa [108] corroborated
these results in the study of the bactericidal mechanism of AgNPs with respect to S. aureus and E. coli.
The growth curve was measured, followed by an estimation of the protein and reducing sugar leakage.
Furthermore, lethal ROS and respiratory chain dehydrogenase activity were evaluated. The study
showed that 50 mg/mL AgNPs completely inhibited the growth of bacterial cells and damaged the
bacterial membrane permeability, depressing the activity of some membranous enzymes, which
eventually led to bacteria cell death. In this study, Dye 20, 70-dichlorofluorescein diacetate (DCFH-DA)
was used to measure the ROS. It was observed that after 6 h incubation of the E. coli and S. aureus
with AgNPs, there was a significant increase in ROS production however, this was not observed in the
control groups. Significantly, AgNPs are stress inducers for bacteria.

Qayyum et al. [109] expanded their study to Gram negative (K. pneumoniae, P. aeruginosa and E. coli)
and Gram positive (S. mutans and S. aureus) strains. The results showed that green AgNPs produced
ROS after 4 h of incubation with the bacterial cells. It was observed that increased contact time of
the AgNPs with the bacterial cells led to increased production of the ROS. Additionally, the quantity
of ROS increased several times compared to that of the control group for both Gram positive and
Gram negative bacteria. However, more ROS production was observed in the treated Gram negative
E. coli bacterial cells compared to treated Gram positive S. mutans bacterial cells [110]. ROS formed
as a result of bacterial interactions with AgNPs that causes damage to the bacterial cell membrane,
protein structure and intracellular systems. In studying the conditions and mechanism of antibacterial
activity of silver nanoparticles (AgNPs) against E. coli O157:H7 (CMCC44828), it was also established
that the presence of oxygen generated more ROS, which led to increased antimicrobial activity [111].
The mechanism of antibacterial activity of AgNPs against multidrug resistant P. aeruginosa was studied
by using H2DCF-DA staining and fluorescence microscopy [112]. It was observed that there was an
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increasing intensity in the fluorescence of the bacteria treated with AgNPs with increased time while
the untreated bacteria had a weak fluorescence (Figure 7). In a similar manner, the fluorescence of the
treated bacteria increased with increased concentration of AgNPs in a 1 h exposure period (Figure 8).
Thus, it was deduced that AgNPs induced an excess generation of ROS in multidrug resistant (MDR).
This was based on a time and concentration dependent manner.Pharmaceutics 2020, 12, x FOR PEER REVIEW 12 of 20 
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Figure 7. Changes of reactive oxygen species (ROS) production in AgNPs-treated multidrug-resistant
Pseudomonas aeruginosa at different time intervals under fluorescence microscopy with ×400
magnification. Notes: (A) the untreated P. aeruginosa without observable fluorescence. (B–F)
Fluorescence observation of the bacteria treated with AgNPs at different points of 0.5, 0.75, 1, 1.5 and 2
h, respectively, indicating that AgNPs induce ROS production in a time-dependent manner) adapted
with permission from [112], Dove Medical Press, 2019. Abbreviations: AgNPs—silver nanoparticle;
ROS—reactive oxygen species.
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untreated P. aeruginosa without observable fluorescence. (B–E) Fluorescence observation of the bacteria
exposed to 5.625, 11.25, 22.5 and 45 µg/mL AgNPs, respectively, adapted with permission from [112],
Dove Medical Press, 2019. Abbreviations: AgNP, silver nanoparticle; ROS, reactive oxygen specie.
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4.3. DNA Damage

The DNA of any organism stores genetic information about the cell. Damage to the DNA can
either result in mutation or cell death. Cui et al. [113] studied the mechanism of the bactericidal effect
of AuNPs on E. coli (ATCC 11775) through transcriptomic and proteomic approaches. The antibacterial
mechanism of AuNPs was found to be due to (i) a change in membrane potential and inhibition of
ATPase activities that led to a decrease in ATP level thus a reduction in metabolism and (ii) inhibition
of the subunit of ribosome for tRNA binding. Their finding showed that the bactericidal action was
not due to ROS. This might be novel to developing bactericidal MNPs, which aims at the energy
metabolism and transcription of bacteria without generation of ROS species that could be harmful to
the mammalian host of the bacteria. The antibacterial mechanism of AgNPs on the clinical isolates of
P. aeruginosa and S. aureus was studied by Abbas et al. [114]. This was done by analyzing the effect of
AgNPs on the bacterial genome by estimating the amplification of AgNPs treated or untreated bacteria
with DNA by real-time PCR. The results by real-time PCR showed damage in the DNA of P. aeruginosa.
This was exemplified by the delay in the amplification of the exoA gene in the treated sample compared
to the control sample. In addition, this also lowered amplification efficiency in AgNPs bacteria as
compared with the untreated bacteria. This clearly shows that the mechanism of the bactericidal effect
of biosynthesized AgNPs on E. coli and S. aureus can been attributed to DNA cleavage activity [115].
DNA as the genetic information unit of all livings organisms is fundamental to functional existence. An
alteration in the genetic composition opens the pathway to malfunctioning and eventually cell death.
In recent times the DNA cleavage ability of Rosa canin-AgNPs was investigated using agarose gel
electrophoresis [116]. A difference in band was observed in the treated plasmids with AgNPs compared
to that of the control DNA (Figure 9). It was noticed that plasmid pBR322 changed from Form I into
Form II for Lanes 2–4. Furthermore, at a concentration of 200 mg/L for 90 min, the AgNPs served as
chemical nucleases by cleaving the DNA Form I into Form III (lane 5). Conclusively it can be said that
the AgNPs exerted a bactericidal effect by cleaving the genome of the pathogenic microorganism.
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200 mg/L of Rc-AgNPs (90 min incubation) Rc = Rosa canin, adapted with permission from [116],
Elsevier, 2019.

5. Conclusions and Future Perspectives

Green synthesis of nanoparticles can serve as a future direction in biomedical nanotechnology
for the development of effective antimicrobial compounds. It has been established in the literature
that MNPs exhibit strong antibacterial activity. Multiple pathways simultaneously activated by NPs
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make their exposure to bacteria cells effective and this is promising to combat antibiotic resistance.
The production of ROS, cell wall penetration, DNA damage and metabolite binding are mechanisms
evasive to bacteria’s defense systems. Most research in the biosynthesis of MNPs uses the whole
plant extracts as a bioreductant and stabilizer. However, identification of the pure biomolecule or
compound responsible will help optimize the synthesis and its antibacterial application. This will
provide an opportunity to understand the bactericidal mechanism of MNPs at the molecular level.
To address the emerging number of multiple-drug resistant bacterial strains, more clinical strains
should be tested rather than evaluation of traditional strains from microbial collections. Relentless
efforts from researchers in advancing NPs synthesis and its applications have offered the possibility to
future alternatives in biomedical applications, pharmaceutical, theragnostic and therapeutics. Aside
from this, the studies showed that MNPs have a potential to be the choice solution in antibacterial
applications in the near future.
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