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A higher‑order finite element 
reactive transport model 
for unstructured and fractured 
grids
Joachim Moortgat1*, Mengnan Li1, Mohammad Amin Amooie2 & Di Zhu3

This work presents a new reactive transport framework that combines a powerful geochemistry 
engine with advanced numerical methods for flow and transport in subsurface fractured porous 
media. Specifically, the PhreeqcRM interface (developed by the USGS) is used to take advantage of 
a large library of equilibrium and kinetic aqueous and fluid-rock reactions, which has been validated 
by numerous experiments and benchmark studies. Fluid flow is modeled by the Mixed Hybrid 
Finite Element (FE) method, which provides smooth velocity fields even in highly heterogenous 
formations with discrete fractures. A multilinear Discontinuous Galerkin FE method is used to solve 
the multicomponent transport problem. This method is locally mass conserving and its second order 
convergence significantly reduces numerical dispersion. In terms of thermodynamics, the aqueous 
phase is considered as a compressible fluid and its properties are derived from a Cubic Plus Association 
(CPA) equation of state. The new simulator is validated against several benchmark problems 
(involving, e.g., Fickian and Nernst-Planck diffusion, isotope fractionation, advection-dispersion 
transport, and rock-fluid reactions) before demonstrating the expanded capabilities offered by the 
underlying FE foundation, such as high computational efficiency, parallelizability, low numerical 
dispersion, unstructured 3D gridding, and discrete fraction modeling.

The past decades have seen a recognition of the importance of (geo-) chemical and (micro-) biological reac-
tions in the subsurface environment and how those reactions are intricately coupled to fluid flow and even the 
geomechanical properties of the host medium. As two examples: (1) fluid flow paths in heterogeneous porous 
media determine what rock minerals encounter what fluid compositions and thus affect the degree of rock-fluid 
reactions , which may differ from (smaller and more homogeneous) batch reaction experiments, and (2) rock 
dissolution and precipitation due to geochemical reactions can locally change the porosity and permeability of 
a rock matrix as well as fracture apertures and thus impact fluid flow.

As a result of the aforementioned, interest is growing in multiphysics simulators that can simultaneously 
model a wide variety of coupled processes. As the topic of interest in this work, geochemistry initially used 
to be modeled mostly as a local batch-reactor process with limited to no transport modeling1,2. However, 
ever more physics has been included in more recent codes such as PHT3D3, HPx4, and OpenGeoSys5, which 
all use Phreeqc6 as the geochemistry engine. Other codes with native geochemistry include CrunchFlow7–9, 
PFLOTRAN10, TOUGHREACT​11,12, ORCHESTRA​13, eSTOMP14, MIN3P15, and HYDROGEOCHEM16. This list 
is not exhaustive but includes the most widely used reactive transport models that were, moreover, compared 
in a comprehensive benchmarking study17,18. Most of these codes now allow for three-dimensional problems, 
four allow for multiphase and variable density flow, and three use continuous Galerkin FE methods that allow 
for unstructured grids.

In this work, we build on those achievements to include further capabilities that were initially developed 
primarily for hydrocarbon (oil and gas) reservoirs and have not been used in reactive transport modeling of 
hydrogeology problems. Specifically, the transport of water, hydrocarbons, nitrogen, carbon dioxide, tracers, 
and any dissolved chemically reactive species is updated with a higher-order Discontinuous Galerkin (DG) FE 
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method19,20. Powerful features of this method are that it provides strict local mass conservation at the grid-cell 
level, it is massively parallelizable, the discontinuous formulation is a natural choice for heterogenous layered 
and fractured formations, and finally it has low numerical dispersion21.

The flow problem is discretized by a Mixed Hybrid Finite Element (MHFE) method22, which simultaneously 
(and to the same order of accuracy) solves for globally continuous pressure and velocity fields. Mixed FE methods 
are known to have low grid sensitivity20,23. Their other main strength is to provide accurate velocity fields24, par-
ticularly for heterogeneous and fractured domains25,26. These features also allow for an efficient discrete fracture 
model based on cross-flow equilibrium27–33.

The combined DG and MHFE methods34 are implemented for any mixture of affine elements, i.e., triangles 
and quadrilaterals in two dimensions (2D) and hexahedra, tetrahedra, and prisms in 3D, which allows for natural 
discretization (gridding) of complex formation architectures. Moreover, these methods automatically allow for 
full permeability and dispersion tensors, unlike all but one of the aforementioned reactive transport models16. 
We do not use adaptive-mesh-refinement and the computational cost of constructing unstructured grids is 
negligible compared to the total simulation times.

To couple these well-established numerical methods for flow and transport to an equally mature geochem-
istry engine, we follow a similar approach as in3–5,35 and take advantage of the useful PhreeqcRM interface36. 
Stand-alone Phreeqc can model a wide range of equilibrium and kinetic reactions with results generally agreeing 
with the other reactive transport codes in the aforementioned benchmark study17,18. Its main limitation is its 1D 
transport model, but this was alleviated by the PhreeqcRM interface, which allows the full capabilities of Phreeqc 
to be efficiently coupled to any flow and transport simulator.

The ultimate goal of this and future work is to combine the full capabilities of Phreeqc with those of our 
in-house simulator, Osures, which in addition to the previously discussed finite element methods for flow and 
transport has several other features such as (1) a broad suite of thermodynamic phase stability and phase-split 
algorithms for multiphase multicomponent mixtures of water, oil (including several liquid hydrocarbon phases), 
gas (and supercritical fluids), and asphaltenes, (2) both Peng-Robinson37 and Cubic Plus Association (CPA) 
equations of state (EOS)21,38 with the latter improving the phase behavior calculations for the aqueous phase, 
(3) no limitations on compressibility and density changes, (4) composition dependent capillary pressures, (5) 
a thermodynamically consistent model for multiphase multicomponent Fickian diffusion that relies on a full 
matrix of composition-dependent diffusion coefficients30,39,40. This work presents the first step towards this goal, 
in which only an aqueous phase is considered, but allowing for compressibility and density changes.

The following sections first discuss implementation details of this new reactive transport model before pre-
senting a range of numerical experiments to validate this approach and demonstrate its novel features and 
strengths.

Formulation
Flow and transport.  In this section the governing equations are provided in a general multiphase and mul-
ticomponent formulation in which all phases are treated equally (e.g., allowing for compressibility and density 
changes).

The transport equations are written in terms of molar conservation of each component i out of nc total 
number of components, including all reacting and non-reacting components (defined in more detail in the next 
subsection):

with φ [·] the porosity, ci [mol/m3] the molar density of component i (total molar density in the case of mul-
tiphase mixtures), Fwelli [mol/(s m3)] a source or sink of component i (e.g., a contaminant spill site or a way 
to prescribe inflow and outflow conditions), and Freacti [mol/(s m3)] the source or sink of component i due to 
geochemical reactions.

The component flux Ui contains both the advective and dispersive contributions. In the most general case of 
nph number of phases that are labeled by α = 1, . . . , nph , Ui is given by

with ci,α [mol/m3] the molar density of component i in phase α , �uα [m/s] the fiducial Darcy velocity

in which pα [Pa] is the phase pressure, �g is the gravitational vector, and �α [m s/kg] = �α(Sα) is the phase mobil-
ity, ρα [kg/m3] the phase mass density, Sα [·] the phase saturation, and K [m2] the full permeability tensor. The 
diffusive term f (φ, τ)Sα�Ji,α is discussed in detail below.

For a fully compressible multiphase system, the pressure (of a reference phase) evolves as41, 42:

(1)φ
∂ci

∂t
+∇ · �Ui =Fwelli + Freacti , i = 1, . . . , nc ,

(2)�Ui =

nph
∑

α=1

(

ci,α�uα + f (φ, τ)Sα�Ji,α
)

, i = 1, . . . , nc ,

(3)�uα =− �αK(∇pα − ρα�g), α = 1, . . . , nph

(4)φCf
∂p

∂t
+

nc
∑

i=1

νi(∇ · �Ui − Fwelli − Freacti ) = 0,
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with Cf [Pa
−1] the total fluid compressibility of the multiphase mixture, and νi [m3/mol] the total partial molar 

volume of each component. The algorithm to compute these parameters for multiphase mixtures is highly 
non-linear43.

For the case of a single aqueous phase the expressions for compressibility and partial molar volumes are con-
siderably simpler, and nph = 1 , α = w , ci,α = ci , �α = �w = 1/µw with µw [m s/kg] the water viscosity, Sw = 1 , 
and pα = p (no capillary effects).

Geochemical reactions.  When several species react through a number of different reactions, the concen-
trations of each of the species are not independent. For example, in the equilibrium reaction H2O ⇋ H+ +OH− , 
if one mole of H2O reacts, the increase in H+ and OH− concentrations equals the decrease in H2O concentra-
tion. A mathematical consequence is that not all species concentrations need to be transported explicitly. One 
can split the total number of species into a subset of independent primary components and a set of secondary 
components that can be constructed from the primary ones44. The process has been described in the literature18 
but is perhaps best illustrated by example.

Consider a typical mixture in the context of geological carbon dioxide ( CO2 ) sequestration consisting of seven 
species dissolved in water: CaCO3 , Ca2+ , CO2−

3  , H+ , OH− , H2CO3 , HCO−
3  that interact through the following 

four equilibrium reactions:

If we denote concentrations by square brackets, changes in concentrations (time-derivatives) by, e.g., [CaCO3]
′ , 

and rates R1, . . . ,R4 for the four reactions (positive in the leftward direction), the evolution of all concentrations 
can be solved from

The first four equations define the primary species CaCO3 , HCO−
3  , H2CO3 , OH− , while the last three equations 

involve the secondary species H+ , Ca2+ , CO2−
3  , as well as defining the (conservation of) total concentrations of 

those elements across all species. Following common notations18 and writing �j=1,...,3 for the total concentrations, 
Cj=1,...,3 for the secondary species, and Ci=1,...,4 for the primary species, Eqs. (13)–(15) can be written succinctly 
in terms of the stoichiometry coefficients νij as

From the definitions Eqs. (13)–(15) it is clear that the total concentrations (or ‘total components’) are conserved 
in the reacting system and thus a natural choice as primary variables in the molar conservation Eq. (1) for species 
transport. More generally, all problems of interest involve water itself and we usually choose tot(H) and tot(O) 
as two of the total concentrations. We will refer to the number of total or primary components that need to be 
transported as np and note that those are, in a sense, ‘bookkeeping’ quantities, whereas we will continue to use 
nc for the total number of actual molecular species in the mixture.

The different symbols ci versus Ci refer to different unit systems: Phreeqc typically expresses all concentrations 
per kilogram or liter of water, whereas Eq. (1) involves intrinsic molar densities ( [mol/m3] ). In coupling the trans-
port and geochemistry, a unit conversion is made between Osures and Phreeqc that involves the (temperature, 

(5)CaCO3 ⇋ Ca2+ + CO2−
3 ,

(6)HCO−
3 ⇋ CO2−

3 +H+,

(7)H2CO3 ⇋ CO2−
3 + 2H+,

(8)H+ +OH−
⇋ H2O.

(9)[CaCO3]
′ = − R1,

(10)
[

HCO−
3

]′
= − R2,

(11)[H2CO3]
′ = − R3,

(12)
[

OH−
]′
= − R4,

(13)[tot(H)]′ =
(

[H+] + [HCO−
3 ] + 2[H2CO3] − [OH−]

)′
= 0,

(14)[tot(Ca)]′ =
(

[Ca2+] + [CaCO3]
)′
= 0,

(15)[tot(CO3)]
′ =

(

[CO2−
3 ] + [CaCO3] + [HCO−

3 ] + [H2CO3]
)′

= 0.

(16)�j = Cj +

4
∑

i=1

νijCi , νij =

(

0 1 2 − 1
1 0 0 0
1 1 1 0

)

.
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pressure, and composition dependent) aqueous phase mass density as computed from the CPA EOS38 (equiva-
lently, PhreeqcRM can be provided with [mol/l] concentrations together with a mass density).

Just as in most other reactive transport codes, a (sequential non-iterative) operator splitting approach is 
adopted in which the flow-transport problem is solved first without considering reactions, followed by the 
equivalent of a batch reaction calculation for each grid-cell (or node in the case of higher-order methods). More 
implementation details are provided below.

Diffusion of chemical species.  Molecular diffusion, as defined in irreversible thermodynamics, is driven 
fundamentally by gradients in chemical potentials. Under the assumptions of negligible temperature and pres-
sure diffusion an expression is obtained in terms of gradients in compositions, which is the commonly used gen-
eralized Fick’s law. Thus, while total concentrations, as the conserved quantity, are a suitable choice for advective 
transport they are not natural variables for the diffusive flux45. The following equations are therefore for the nc 
physical species.

Diffusion of particles through a porous medium is affected by the geometry and connectivity of the pore 
network, and is different from diffusion in open space. The longer pathways in a porous medium are represented 
empirically in Eq. (2) by the factor f (φ, τ) [·] , which is a function of porosity and tortuosity τ [·] . The simplest 
option is f (φ, τ) = φ.

Both molecular diffusion and mechanical dispersion are considered, e.g., �Ji,α = �Jdiffα,i + �J
disp
α,i  . Mechanical 

dispersion is computed from

with the coefficients given by the tensor

with dl,α [m] and dt,α [m] the longitudinal and transverse phase dispersivities, respectively, and �I the identity 
matrix. There are only nc − 1 independent equations because by definition 

∑

i Ji = 0 , such that Jnc = −
∑nc−1

i=1 Ji . 
The nc − 1 equations for Fickian molecular diffusion are:

with xα,i [·] the phase compositions (molar fractions) and DFick
α,ik [m2/s] a full matrix of composition-dependent 

diffusion coefficients as derived from irreversible thermodynamics30, 39, 46.
It can easily be shown47 that only considering diagonal (‘self ’) diffusion coefficients violates molar balance, 

because the commonly used Ji ∼ −Di∇xi cannot simultaneously satisfy 
∑

i Ji = 0 and 
∑

i xi = 1 . Specifically, 
for nc species we have 

∑nc
i=1 xi = 1 , which means that 

∑nc
i=1 ∇xi = 0 . In other words, the compositional gradi-

ents are not all independent and one can be expressed in terms of the others. Choosing the last component, for 
instance, we have

The diffusive fluxes are also not all independent because, by definition (i.e., diffusion being the deviation of indi-
vidual species fluxes from the average advective flux) 

∑nc
i=1 Ji = 0 . Similar to Eq. (20), we choose to express the 

diffusive flux of the last component in terms of the other fluxes Jnc = −Dc∇xc = −
∑nc−1

i=1 Ji = −
∑nc−1

i=1 Di∇xi . 
Inserting ∇xnc from Eq. (20) that requires

For Eq. (21) to be true for any composition xi requires all Di = Dnc , i.e. all diagonal diffusion coefficients have to 
be the same. In other words, molar conservation is only guaranteed either for a single scalar diffusion coefficient 
for all components (which is not justified by experimental data) or requires a full matrix of multicomponent 
diffusion coefficients.

In terms of implementation, for diffusion problems Phreeqc is instructed to output not only the np concentra-
tions �j but also the nc concentrations Ci and Cj (this requires more memory, but not more computational effort). 
Eq. (19) is then updated for each ‘real’ species across each grid face in the domain, and the contributions to the 
molar densities of np total components follows from the stoichiometry (using Eq. (16)). An operator splitting 
step is used in the implementation: first the diffusive fluxes are computed as described, then, in updating Eq. (1) 
the divergence of the diffusive flux is essentially treated as a sink-source term of the total number of moles of ci 
entering or leaving the grid cell through all its faces in a given time-step.

Nernst–Planck electromigration.  Electrochemical migration refers to electrostatic forces coupling to 
charged particles that diffuse at different rates, which causes charge imbalance. Electric fields can force charged 

(17)�J
disp
α,i = −cα

nc−1
∑

k=1

�Ddisp
α ∇xα,k ,

(18)�Ddisp
α = dt,α |�uα |�I + (dl,α − dt,α)

�uα�u
T
α

|�uα|
,

(19)�Jdiffα,i = −cα

nc−1
∑

k=1

DFick
α,ik ∇xα,k ,

(20)∇xnc = −

nc−1
∑

i=1

∇xi .

(21)
nc−1
∑

i=1

(Dnc − Di)∇xi = 0.
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particles to diffuse when there are no compositional gradients or even diffuse from low to high concentrations, 
due to interaction with other species. Similar effects have been observed even in charge-neutral non-ideal mix-
tures such as hydrocarbon fluids48. Because the flux of one species can depend on the compositional gradients in 
all other species, this is another reason that a full matrix of diffusion coefficients is required.

The following expression has been used to model both Fickian ( JFicki  ) and electrochemical ( JEKi  ) diffusion in 
the absence of externally induced currents and advective fluxes49:

with qk the species charge, Ci concentrations, and summations over all dissolved species. Eq. (22) is a simplified 
form of the Nernst-Planck equation.

To be consistent with the molar balance equation (1) and allowing for variable aqueous densities (compress-
ibility), Eq. (22) is written in terms of aqueous phase molar density c and molar fractions xi = ci/c , similar to 
Eq. (19), as

which assumes that diffusion coefficients have already been corrected for porosity and tortuosity effects.
As discussed in the previous section, this type of relation for diffusion in multicomponent mixtures is physi-

cally inconsistent. However it can be a reasonable approximation (when off-diagonal diffusion coefficients are 
small) and is implemented in this work as an option to allow comparisons to other reactive transport codes that 
rely on this formulation.

Implementation.  The numerical implementation of the mathematical framework described in the previous 
sections relies heavily on operator splitting, which permits choosing the most suitable numerical method for 
each subproblem. First, diffusive fluxes (Eqs. (17)–(19)) are computed using compositions, molar densities, and 
advective fluxes from the previous time-step. Second, the flow problem Eqs. (3)–(4) is simultaneously solved for 
pressures and fluxes by the implicit MHFE method. Third, the transport equations (Eqs. (1)–(2)) are updated by 
the DG method, using the previously computed diffusive fluxes. Other than the interpretation of total compo-
nents (Eq. (16)) and the implementation of the Nernst-Planck Eq. (23) for electromigration, the implementation 
is identical to prior (non-reactive) works20, 32, 33, and is thus not repeated here in further detail.

After the transport equations have been updated for all components, PhreeqcRM is invoked to update the 
geochemistry. The geochemistry computations alter the compositions of reactive species, which is indicated 
by the Freacti  term in Eq. (1). As discussed above, PhreeqcRM is requested to output both the total component 
concentrations that are advected in Eq. (1) as well as all the physical species concentrations that are used to com-
pute the diffusive fluxes (Eqs. (17)–(19)). The diffusive flux contributions of each species to the total component 
transport is derived using the stoichiometry as in Eq. (16).

The full reactive transport step is followed by an EOS-based update of fluid properties (molar and mass 
densities, compressibility, viscosity), as well as rock properties (porosity, permeability, fracture apertures) when 
dissolution and precipitation reactions are considered. For multiphase problems this would also involve phase 
stability and phase split computations that are iteratively coupled to the PhreeqcRM geochemistry update.

Explicit, implicit, and adaptive implicit Euler time-discretizations have been implemented, where the adap-
tive method uses an implicit update for grid cells that have a small Courant-Friedrichs-Lewy (CFL) time-step 
constraint50 and an explicit update elsewhere33. The advantage of implicit methods is that they are uncondition-
ally stable and thus allow for larger time-steps. However, implicit methods are also known to exhibit excessive 
numerical dispersion. Moreover, (1) larger time-steps imply bigger changes in concentrations, which results in 
numerical convergence issues for PhreeqcRM, and (2) rock-fluid interactions and kinetic reactions are quite 
sensitive to time-step sizes. For these reasons, unless a fully coupled approach is used, an explicit transport update 
appears to provide the most accurate results (smaller time-steps also reduce the decoupling errors inherent to 
any operator splitting approach). The cost of using relatively small time-steps can be alleviated by (1) faster 
convergence of the non-linear geochemistry (similar to phase-split computations), and (2) the more trivial par-
allelization of an element-wise explicit transport and geochemistry update. The numerical examples, presented 
next, therefore all rely on the common implicit-pressure-explicit-composition (IMPEC) scheme.

Numerical experiments
This section provides validation tests of the new model presented in this work by modeling three benchmark 
studies6, 49, 51. These examples cover a range of aqueous equilibrium reactions, tracer transport, isotope frac-
tionation, electrochemical migration, Fickian diffusion, mechanical dispersion, and fluid-rock cation exchange 
reactions. Additional numerical experiments illustrate the improved features in this formulation.

Example 1: transient electromigration benchmark.  This benchmark problem49, 51 consideres a mix-
ture of H+ , NO−

3  , Na+ , Cl− (primary), and OH− (secondary) components in a small 100× 100µm element 1D 
grid with a constant composition Dirichlet boundary condition (BC) on the left and no-flow Neumann BC on 
the right boundary. Na+ and Cl− BC and initial conditions are the same (0.1 mM), but NO−

3  ( 10−3 mM) and OH− 
( 10−7 mM) BC values are a hundred times lower than the initial domain concentrations, while the pH on the 

(22)Ji = JFicki + JEKi = −Di∇Ci + DiCiqi

∑

k Dkqk∇Ck
∑

k Dkq
2
kCk

(23)Ji = −cDi∇xi + Dixiqi

∑

k cDkqk∇xk
∑

k Dkq
2
kxk

,
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boundary and inside the domain are 6 and 4, respectively. Nernst-Planck diffusion is modeled, without advec-
tion, for a period of one hour. Further details are provided in the comparative benchmark study49.

The physics of this problem is that H+ and NO−
3  diffuse towards (and out of) the left boundary where their 

concentrations are significantly lower. However, because the diffusion coefficient for H+ ( 9.31× 10−9 m2/s ) 
is about five times higher than that of NO−

3  ( 1.9× 10−9 m2/s ) and H+ leaves through the left boundary more 
rapidly, this sets up electrochemical migration of Na+ , Cl− to maintain charge balance, even though there is no 
initial gradient in the compositions of those species. Fick’s law does not capture this effect, which would result 
in violating electroneutrality.

The original benchmark study49 compared results from Phreeqc, CrunchFlow, and MIN3P, finding good 
agreement. Figure 1 compares Phreeqc results to those from the new reactive transport simulator presented in 
this work, Osures, demonstrating that we can match this benchmark problem perfectly when using the same 
lowest-order approximation (FV).

Example 2: tracer isotope diffusion.  This benchmark problem has a similar set-up as the previous 
example, but with NO−

3  replaced by 22Na+ , which is treated as a separate species with the same diffusion coef-
ficient as Na+ ( 1.33× 10−9 m2/s ). Both left and right boundaries now have a constant concentration Dirichlet 
BC, which is the same for pH (7), 22Na+ ( 10−6 nM), and OH− ( 10−4 nM), but five times higher for Na+ and Cl− 
on the left boundary (0.5 mM) than on the right boundary (0.1 mM). In other words, a fixed gradient in Na+ 
and Cl− is imposed. The problem is modeled until a steady state is reached.

A more detailed discussion is provided in the literature49, but the key point is that the different diffusion 
coefficients (and fluxes) of each species again cause non-linear electrochemical coupling effects, which cause 
significant isotope fractionation for 22Na+ even though its concentrations are fixed at the same value on the 
boundaries. This effect is demonstrated in Fig. 2, which also shows excellent agreement with Phreeqc simulation 
results (modeled again with a lowest-order discretization).

Example 3: advection‑dispersion transport and cation exchange.  This third benchmark is Exam-
ple 11 in the Phreeqc 3.0 manual6, which has been modeled extensively with multiple reactive transport models 
that use the Phreeqc geochemical engine, such as PHREEQM-2D, UTCOMP-PhreeqcRM, and PHT3D3, 35, 52–54. 
2.5 pore volumes (PV) of a calcium-chloride solution (with 0.6 mM Ca and 1.2 mM Cl ) are injected into a 8 
cm long cation exchange column (discretized by a 40 element 1D grid) that is initially saturated with a sodium-
potassium-nitrate solution (1 mM Na , 0.2 mM K , and 1.2 mM NO−

3  ) in equilibrium with an exchanger with 1.1 
mM capacity.

The complexities in this example, as compared to the previous ones, are the rock-fluid reactions as well as 
velocity dependent mechanical dispersion (Eq. (18)).

The physics of the problem is that Cl− is a conservative tracer (arriving at the outlet after one pore volume 
injected (PVI) in the absence of dispersion) while the injected Ca2+ exchanges with the Na+ in the column until 
it is used up (around 1.5 PVI). The potassium is released later ( ∼ 1.75 PVI) because it is a stronger exchanger 
(larger logK  ). Only after all Na+ and K+ have been released does Ca2+ show up in the effluent at its injected 
concentration. Further discussion, including comparison to an analytical solution for the Cl− breakthrough 
curve, is provided in the literature6.

Figure 3 shows that the Osures results agree well with Phreeqc. Differences are entirely due to varying degrees 
of numerical dispersion. The Osures FV simulations closely match the advection-dispersion Phreeqc results (left), 
which also uses a lowest-order transport update. DG simulations show less numerical dispersion than both the 
Osures and Phreeqc FV results. For advection-only, Phreeqc simply shifts concentrations from one grid cell to the 
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Figure 1.   Example 1. Concentrations of H+ , NO−
3

 , Na+ , Cl− , and OH− (the latter ×104 ) throughout 1 cm 
domain after one hour. Computed with Phreeqc (symbols) and Osures (solid lines).
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next, which does not involve an actual discretized transport equation and does not result in significant numerical 
dispersion (though the profiles do exhibit slightly spread-out fronts that sharpen on finer grids). The Osures FV 
simulation exhibits considerably more numerical dispersion. A higher-order DG simulation on a 400 element 
grid is shown to eliminate the numerical dispersion and match the Phreeqc data. A more detailed analysis of 
these differences in accuracy, and associated numerical dispersion, are presented in the next example.

With these three benchmark examples providing confidence that Phreeqc was successfully coupled to a new 
FE flow and transport framework, the next examples demonstrate the novel and powerful features that this 
approach provide.

Example 4: higher‑order DG for reactive transport, convergence analyses, and paralleliza-
tion.  The majority of reactive transport codes rely on lowest-order methods for flow and transport. Earlier 
work35 found that a higher-order total variation diminishing (TVD) approach resulted in unphysical oscillations 
in concentrations and argued that this might be inherent to higher-order modeling of reactive transport, though 
PHT3D3 also has a TVD option. In this work, both first and second order Discontinuous Galerkin methods are 
adopted, with the former being equivalent to a FV approach (with element-wise-constant properties and an 
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Figure 2.   Example 2. Steady state concentration (after 24 hrs) of 22Na+ ( ×10−2 ), H+ , and OH− computed with 
Phreeqc (symbols) and Osures (solid lines).
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Figure 3.   Example 3. Concentrations of potassium, sodium, chloride, and calcite in effluent of 8 cm long cation 
exchange column during 2.5 PV of flooding. Computed with Phreeqc (symbols) and Osures (solid lines) on a 40 
element 1D grid with (a) and without (b) mechanical dispersion. Higher-order DG results are computed on the 
same 40 element grid for the advection-dispersion simulation but on a finer 400 element grid for the advection-
only case to match its numerical dispersion free Phreeqc results.
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upwind numerical flux). In this example, we clearly demonstrate the power of these higher-order methods in 
producing accurate results on coarser grids, and achieving high computational efficiency.

We consider the same cation exchange problem without physical dispersion to focus on the numerical disper-
sion that is an artifact of discretization errors. FV and DG simulations are performed on 7 levels of grid refine-
ment: 40× 1 , 80× 2 , 160× 4 , 320× 8 , 640× 16 , and two coarser 10× 1 , 20× 1 grids (the latter 2 for DG only). 
The Phreeqc simulation is redone on a 640 element 1D grid to serve as the ‘true’ solution of perfect piston-like 
step-functions to compare all others to.

Figure 4 presents spatial concentration profiles at 50% PVI of the Cl− tracer and Ca2+ , which exchanges with 
Na+ in the column and exhibits a delayed front. Qualitatively, it is clear that the FV simulations are consider-
ably more dispersed than for DG. The inset in Fig. 4 demonstrates that the FV simulation on the finest 640× 16 
grid has the same numerical dispersion as the coarsest 40× 1 DG simulation and have still not converged to the 
Phreeqc profile. Interestingly, the Ca2+ profiles, which are a result of both advective transport and geochemical 
rock-fluid reactions, are less dispersed.

To demonstrate the advances that higher-order methods can bring to reactive transport modeling more 
clearly, Fig. 5 explores the numerical errors, specifically the L2 norms, more quantitatively. A log-log plot of 
numerical errors versus characteristic grid sizes ( �x ) for all simulation shows the convergence rate of each 
method. The convergence rate (slope) for DG computed through this numerical experiment is 2.5 higher than 
that for the FV simulations, i.e. even more than the factor 2 expected from theory (linear versus quadratic 
convergence).

Why is this important? That is illustrated in Fig. 5b for the computational costs (CPU time) of all simula-
tions versus their accuracy (as expressed by the L2 norms). The figure makes the critical point that even though 
a higher-order method requires more CPU time on a given grid it allows for far coarser grids than a lower-order 
methods to achieve the same accuracy. The dotted lines illustrates how a 7.5 second DG simulation can achieve 
the same accuracy as a 3.2 hour FV simulation on a much finer grid, i.e. a three orders of magnitude improve-
ment in computational efficiency (the same degree of speed-up was found in a similar analysis for multiphase 
multicomponent gas-oil simulations in an earlier work21). Given the notoriously high computational cost of 
reactive transport simulations, this is a major advancement in the state-of-the-art.

Figure 5c also shows decent (though not optimal) parallel scaling of our new reactive transport model, using 
the OpenMP shared-memory capabilities of PhreeqRM on an 8-core Intel Core i9 processor. The scaling analysis 
is made somewhat non-trivial by Intel’s use of variable clock speeds (Turbo Boost), ranging from 2.4 GHz to 
4.4 GHz for this processor, depending on load and associated internal temperatures; hyper-threading provides 
another ∼ 20% improvement when using 16 threads, achieving optimal scaling of the geochemistry. A important 
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Figure 4.   Example 4. Concentration profiles at 50% PVI of Cl− (a, b) and Ca2+ (c, d) from FV (a, c) and DG 
(b, d) simulations on 40× 1 , 80× 2 , 160× 4 , 320× 8 , and 640× 16 grids. Phreeqc (phr) results are for a 640 
element 1D grid. The inset compares 640× 16 FV and 40× 1 DG simulations. For clarity, only the left half of 
the column is shown for Ca2+.
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advantage of our DG transport update is that it is local, i.e., each grid cell is updated independently, making it 
trivially parallelizable. The MHFE method involves a global pressure solve, which is currently not effectively 
parallelized and results in a weaker scaling of the full simulator. Distributed memory parallelization (MPI) for 
larger scale problems on cluster environments is a work in progress.

Example 5: unstructured triangular, quadrilateral, hexahedral, and tetrahedral grids.  Apart 
from the low numerical dispersion and parallelizable features of the DG transport, perhaps the most obvious 
advantage of FE methods is that they are a natural choice for problems that benefit from unstructured grids. To 
demonstrate the robustness of our proposed MHFE-DG methods for reactive transport on unstructured grids, 
we model the same cation exchange problem on 4 different grid types: triangular (770 elements grid), tetrahedral 
(15,894 element cylinder), and poor-quality (for demonstration purposes) quadrilateral ( 20× 100 ) and hexahe-
dral ( 10× 10× 100 ) grids with physical dimensions of 8 cm ( ×8 cm) ×40 cm. The potassium (semi-transparent 
colors) and chloride (contours/surfaces) concentrations are shown in Fig. 6 after 80% PVI for both DG and FV 
simulations, with the latter again exhibiting far more numerical dispersion. Otherwise, the simulation results on 
all grid types are the same.

This example simply validates the generalization of Phreeqc capabilities to a higher-order FE approach on 
any type of 2D and 3D unstructured grids. Unstructured grids allow one to honor the true geometry of both 
laboratory scale problems, such as heterogeneous and perhaps fractured cylindrical core samples, as well as 
complex geological formations. Truly unstructured grids (e.g., tetrahedral) can also avoid the many severely 
pinched elements and dead cells that can plague the logically cartesian corner–point grids that are commonly 
used in industry simulators to accommodate legacy finite difference formulations.

Example 6: discrete fractures.  As a last example, we consider the most complicated problem of reactive 
transport with rock-fluid interactions in an unstructured 3D domain with multiple connected and disconnected 
discrete fractures. The domain represents a 100× 50× 10 m3 deposition that was deformed over geological time 
into an anticlinal structure and subsequently tectonically fractured. The matrix permeability has a log-normal 
distribution between 50 and 200 md. and 25% porosity. Five connected and two disconnected discrete fractures 
each have an aperture of 1 mm. and permeability of 108 md. The domain is discretized by 9,150 irregular hexa-
hedra, as illustrated in Fig. 7.

In terms or reactive transport, we consider the mixing of two South American waters (IW1 and PW1) with 
compositions and other properties described in the literature35, 55. IW1 is injected uniformly from a perforated 
vertical well at the lower-left corner and water is produced from the diagonally opposite corner. The waters 
contain 26 dissolved species that interact through the following equilibrium reactions:

(24)H2O ⇋ H+ +OH−,

(25)CO2−
3 +H+

⇋ HCO−
3 ,

(26)Na+ + CO2−
3 ⇋ NaCO−

3 ,
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Figure 5.   Example 4. L2 errors of FV and DG simulations on 7 levels of grid refinement. Errors (a) are 
normalized by the largest L2-norm, which is for a FV simulation on a 40× 1 element grid. Given the different 
error ranges for FV versus DG (note the log-log scales), the former are shown for the 5 finest grids (starting with 
40 elements) and the latter for the 5 coarsest grids (starting from 10 elements). The computational cost of all 
simulations is plotted (logarithmically) versus the corresponding numerical error (b). OpenMP parallel scaling 
is shown for up to 8 cores/threads and one example of 16 threads on 8 cores with hyper-threading (HT) (c).
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Figure 6.   Example 5. Potassium and chloride concentrations after 80% PVI for cation exchange simulations on 
2D and 3D unstructured grids.

Figure 7.   Example 6. Magnesium concentrations after 5%, 10%, 25%, and 100% PVI in a discretely fractured 
formation. The fractures, permeability field, and domain geometry are illustrated in the inset. Fracture locations 
are also shown in the 25% and 100% PVI panels.
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Moreover, the rock has a cation exchange capacitance of 1.1 mmol/kg and is initially at equilibrium with the 
initial PW1 water. The exchange reactions within the dissolved species are:

The concentrations of Ca2+ , Mg2+ , Ba2+ , Sr2+ and HCO−
3  are higher in the IW1 injection water than the initial 

PW1. As the two waters mix, the accumulation of metal cations drives many of the equilibrium reactions in the 
rightward direction. Isosurfaces of all the cations show similar trends, with magnesium concentrations shown 
in Fig. 7 at 5%, 10%, 25%, and 100% PVI as the two waters mix and cations exchange with the rock. Not surpris-
ingly, fluid flow is highly channelized through the connected fractures with little effect from the disconnected 
ones, and the introduced water reaches the opposite side of the formation after only 10% PVI.

(27)Na+ +H+ + CO2−
3 ⇋ NaHCO3,

(28)Na+ +H2O ⇋ NaOH+H+,

(29)Mg2+ + CO2−
3 ⇋ MgCO3,

(30)Mg2+ +H+ + CO2−
3 ⇋ MgHCO3,

(31)Mg2+ +H2O ⇋ MgOH+ +H+,

(32)Ca2+ + CO2−
3 ⇋ CaCO3,

(33)Ca2+ + CO2−
3 +H+

⇋ CaHCO+
3 ,

(34)Ca2+ +H2O ⇋ CaOH+ +H+,

(35)Ba2+ + CO2−
3 ⇋ BaCO3,

(36)Ba2+ + CO2−
3 +H+

⇋ BaHCO+
3 ,

(37)Ba2+ +H2O ⇋ BaOH+ +H+,

(38)Sr2+ + CO2−
3 ⇋ SrCO3,

(39)Sr2+ + CO2−
3 +H+

⇋ SrHCO+
3 ,

(40)Sr2+ +H2O ⇋ BaOH+ +H+.

(41)Na+X− +H+
⇋ H+X− +Na+,

(42)2Na+X− + Ca2+ ⇋ Ca+X−
2 +Na+,

(43)2Na+X− +Mg2+ ⇋ Mg+X−
2 +Na+,

(44)2Na+X− + Ba2+ ⇋ Ba+X−
2 +Na+,

(45)2Na+X− + Sr2+ ⇋ Sr+X−
2 +Na+,

(46)K+X− +H+
⇋ H+X− + K+,

(47)2K+X− + Ca2+ ⇋ Ca+X−
2 + K+,

(48)2K+X− +Mg2+ ⇋ Mg+X−
2 + K+,

(49)2K+X− + Ba2+ ⇋ Ba+X−
2 + K+,

(50)2K+X− + Sr2+ ⇋ Sr+X−
2 + K+.
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The chemistry of the problem is discussed in further detail in the cited references, which also present simula-
tions on one-dimensional grids with CMOST and CMG-STARS55 and one and two-dimensional structured grids 
with UTCHEM-iPhreeqc35. The purposed of this example (and the previous) is to show that we can extend such 
reactive transport capabilities to unstructured 3D and discretely fractured grids, while significantly reducing 
numerical artifacts (grid sensitivity and numerical dispersion) by the use of higher-order FE methods. Using 
parallel capabilities on a 28-core cluster, the simulation completed in under an hour.

Conclusions and future work
This work presents a first step in using advanced (Mixed Hybrid and Discontinuous Galerkin) higher-order 
FE methods to model reactive transport problems, particularly those that involve strong heterogeneities in 
rock properties (including discrete fractures) and non-trivial domain geometries, which benefit from unstruc-
tured gridding. The MHFE method is known to provide superior velocity fields on such grids20, 23, 24, while DG 
has the advantages of strict mass conservation at the element level, trivial parallelization, and low numerical 
dispersion21, 56. To adopt these methods for reactive transport problems, a sequential coupling to the PhreeqcRM 
geochemistry engine was implemented.

Multiple benchmark problems from the literature were used to validate and compare this new modeling 
framework to a range of other reactive transport codes for problems involving both equilibrium and rock-fluid 
reactions, and for different transport mechanisms, such as advection, Fickian diffusion, Nernst-Planck diffu-
sion, and mechanical dispersion. Another set of numerical experiments demonstrate advanced capabilities on 
unstructured triangular, quadrilateral, hexahedral, and tetrahedral grids with heterogeneous rock properties and 
connected and disconnected fractures. Perhaps most importantly, we demonstrate quantitatively how the higher-
order convergence rate translates into computational efficiency improvements of up to three orders of magnitude, 
with another order of magnitude gain from parallelization on consumer grade shared-memory processors. 
Further efficiency gains may be achieved by not updating the geochemistry in grid cells where concentrations 
have not changed after a transport update (e.g., far away from an invading fluid front). The latter approach is also 
used successfully in avoiding costly phase-split computations in multiphase multicomponent flow problems57.

The first implementation of higher-order FE reactive transport modeling presented in this work only consid-
ers the rock solid and a single aqueous phase. Future work will extend this framework to allow for water, oil, and 
gas phases. For such multiphase problems, iterations will be required to guarantee thermodynamic equilibrium 
by matching the species chemical potentials (or fugacities) computed by Phreeqc for the aqueous phase to those 
from the full multiphase problem. The objective is to allow the use of accurate equations of state, such as cubic-
plus-association38, that consider the self-association of polar water molecules as well as cross-association with 
molecules such as CO2 . The latter is of particular interest in the context of geological CO2 sequestration58. Con-
versely, the effect of salinity on, e.g., CO2 solubilities in water, pH changes, and CO2-rock interactions requires 
consideration of aqueous geochemistry.

The development and adoption of reactive transport simulators, while matured significantly in recent years, 
is arguably in an earlier stage than the innumerable numerical methods and simulators for non-reactive flow and 
transport used in, e.g., hydrogeology and petroleum engineering. This work is intended to help further bridge 
that gap in marrying state-of-the-art geochemistry with modern FE reservoir simulation tools.
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