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Abstract
Cachexia is a multifactorial metabolic syndrome characterized by weight and skeletal 
muscle loss caused by underlying illnesses such as cancer, heart failure, and renal fail-
ure. Inflammation, insulin resistance, increased muscle protein degradation, decreased 
food intake, and anorexia are the primary pathophysiological drivers of cachexia. 
Cachexia causes physical deterioration and functional impairment, loss of quality of 
life, lower response to active treatment, and ultimately morbidity and mortality, while 
the difficulties in tackling cachexia in its advanced phases and the heterogeneity of 
the syndrome among patients require an individualized and multidisciplinary approach 
from an early stage. Specifically, strategies combining nutritional and exercise inter-
ventions as well as pharmacotherapy that directly affect the pathogenesis of cachexia, 
such as anti-inflammatory, metabolism-improving, and appetite-stimulating agents, 
have been proposed, but none of which have demonstrated sufficient evidence to date. 
Nevertheless, several agents have recently emerged, including anamorelin, a ghrelin re-
ceptor agonist, growth differentiation factor 15 neutralization therapy, and melanocor-
tin receptor antagonist, as candidates for ameliorating anorexia associated with cancer 
cachexia. Therefore, in this review, we outline cancer cachexia-associated anorexia and 
its pharmacotherapy, including corticosteroids, progesterone analogs, cannabinoids, 
anti-psychotics, and thalidomide which have been previously explored for their effi-
cacy, in addition to the aforementioned novel agents, along with their mechanisms.
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1  |  INTRODUC TION

Cancer cachexia (CC) is a multifactorial syndrome characterized by a 
progressive decline in body weight, malnutrition, diminished skeletal 
muscle mass, frequent loss of fat mass, and impaired functional capac-
ity.1 CC has been associated with increased treatment-related toxicity, 
hospitalization, and reduced survival in patients with cancer.2 In addi-
tion, CC is highly prevalent and is described to affect up to 80% of pa-
tients with advanced cancer, predominantly those with solid tumors.3

Recently, several societies have come together to propose rec-
ommendations to manage CC, including the European Society of 
Oncology (ESMO),4 the American Society for Clinical Oncology 
(ASCO),5 and the European Society for Clinical Nutrition and 
Metabolism (ESPEN).6 These guidelines highlight the impact of CC 
on patients' quality of life (QoL), prognosis, strategies for manage-
ment in clinical practice, and the healthcare burden of cachexia. 
Thus, our knowledge of the pathophysiology of CC has been 
greatly enhanced in recent years. Unfortunately, the treatment of 
CC has not evolved enough to yield a pharmacological agent able 
to deal with cachexia effectively. Due to its multifaceted features, 
there may never be a silver bullet for CC because, in more than four 
decades since the first drug was investigated, we are still finding 
new pathways and are trying new compounds to tackle CC.7

Although the main cause of weight loss, a key hallmark of CC, 
is the wasting of skeletal muscle and adipose tissue, reduced food 
intake due to anorexia is also directly and profoundly involved in the 
process of CC. The critical role of anorexia in the development and 
progression of cachexia should not be underestimated. Furthermore, 
anorexia precedes tissue wasting, emphasizing the need for early 
intervention.8 Cancer cachexia-associated anorexia has been im-
plicated in the suppression of orexigenic neurons and activation of 
anorexigenic neurons in the hypothalamus by tumor-induced cyto-
kines, dysregulation of serotonin pathways, and alterations in the en-
docannabinoid system, which can be exacerbated by the side effects 
of cancer therapies, reduced activity, and tumor-induced compres-
sion or obstruction of the gastrointestinal tract.9–12 More recently, 
evidence has emerged indicating that the stress-responsive cytokine 
Growth differentiation factor 15 (GDF-15) and the incretin hormone 
Glucagon-like peptide 1 (GLP-1) exert effects on the hindbrain, 
thereby regulating appetite.13–17 Therefore, perturbations of those 
cytokines, hormones, and neuropeptides are the focus of many drug 
interventions in cancer cachexia-associated anorexia.

This narrative review focuses on the pathogenesis of cancer 
cachexia-associated anorexia and the pharmacotherapies discussed 
in recent ESMO, ASCO, and ESPEN guidelines4–6 in the context of 
the pathogenesis of anorexia, as well as addressing some novel and 
promising anorexia therapies.

2  |  C ANCER C ACHE XIA

There are three stages of CC progression: (1) pre-cachexia 
represented by early metabolic changes (e.g., anorexia and glucose 

intolerance) and involuntary body weight loss ≤5%, (2) cachexia 
encompassed by unintentional loss of body weight more than 5%  
in the past 6 months or either body mass index (BMI) lower than 
20 kg/m2 or presence of sarcopenia with weight loss more than 
2%, and (3) refractory cachexia defined by uncontrolled stage of 
catabolism with no response to anti-cancer treatment and life 
expectancy of less than 3 months.1 It is important to mention that 
the rate of progression is intrinsically related to the type of cancer, 
levels of systemic inflammation, initial body weight at diagnosis, 
food intake, associated pharmacological treatment, and genetic 
alterations.18,19 Thus, body weight loss is a characteristic feature of 
CC, together with being important for its staging, which is caused 
by increased catabolism of skeletal muscle and adipose tissue and 
anorexia. It should also be mentioned that while anorexia can cause 
CC on its own, metabolic changes in skeletal muscle and adipose 
tissue can also cause CC even in the absence of anorexia.

Skeletal muscle mass is maintained by a refined balance between 
muscle protein synthesis and muscle protein breakdown, which de-
pends on neuromuscular and metabolic regulation that, when dis-
rupted, favors catabolism and leads to muscle wasting. In addition, 
antineoplastic agents may cause significant changes in protein turn-
over, proliferation, and differentiation of muscle as well as mitochon-
drial function. Changes in skeletal muscle mass due to anti-cancer 
therapy have been shown to reach up to 10% in patients under-
going chemotherapy lasting for about 3 months.20,21 Considering a 
healthy age-related muscle loss of 1% per year after the fifth decade 
of life, these losses may represent a tremendous decline in skele-
tal muscle mass that can be representative of one decade of life.22 
Meanwhile, altered adipose metabolism in CC is characterized by 
increased lipolysis, decreased lipogenesis, and browning of white 
adipose tissue. Tumor-derived compounds such as interleukin-6 
(IL-6) and parathyroid hormone-related proteins (PTHrP) induce the 
expression of mitochondrial uncoupling protein 1 (UCP1) in brown 
adipose tissue, leading to inefficient energy expenditure, and fur-
ther hypercatabolism.23,24 The pathogenesis of skeletal muscle and 
adipose tissue wasting in CC is closely associated with the activation 
of chronic cancer-induced systemic inflammatory responses in the 
host (cytokines such as interleukin-1 [IL-1], IL-6, and tumor necro-
sis factor [TNF]).25,26 Furthermore, cancer-induced factors such as 
proteolysis-inducing factor (PIF), lipid mobilizing factor (LMF), and 
PTHrP exacerbate tissue catabolism.27 Meanwhile, tumor-induced 
cytokines not only have wasting effects on skeletal muscle and 
adipose tissue but are also deeply involved in the development of 
anorexia in CC by inhibiting the appetite-promoting and stimulat-
ing the appetite-suppressing pathways in the appetite center of the 
hypothalamus.9

3  |  ANORE XIA IN THE CONTE X T OF 
C ANCER C ACHE XIA

Cancer cachexia-associated anorexia is a significant unmet clinical 
problem with up to 60% of cases with advanced cancer, causing a 
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serious impact on QoL, therapeutic response, and even survival of 
cancer patients.28–30 As mentioned earlier, multiple mechanisms are 
involved in the development of anorexia, including cytokines, altera-
tions in neuropeptides or neurotransmitters such as leptin, ghrelin, 
and serotonin, and the endocannabinoid system.31 A deep under-
standing of these underlying mechanisms is, therefore, essential 
for the development of effective treatments for cancer cachexia-
associated anorexia.

3.1  |  Appetite regulation in the central 
nervous system

3.1.1  |  Hypothalamus

The hypothalamus is the key regulator of appetite in the cen-
tral nervous system (CNS).32 In the arcuate nucleus (ARC) of 
the hypothalamus, there are two neuronal populations with 
opposing effects on food intake: Neuropeptide Y (NPY)/
agouti-related peptide (AgRP) as orexigenic neurons, while 
pro-opiomelanocortin (POMC)/cocaine-  and amphetamine-
regulated transcript (CART) as anorexigenic neurons regulate 
appetite, respectively. Both neuropathways innervate the para-
ventricular nucleus (PVN) and the lateral hypothalamic area 
(LHA), while the ARC also connects with other hypothalamic 
nuclei, including the ventromedial hypothalamus nucleus (VMN) 
and the dorsomedial nucleus (DMN).33,34 POMC is involved in 
the production of the α-melanocyte-stimulating hormone (α-
MSH), which binds to postsynaptic melanocortin 4 receptor 
(MC4R) in the PVN and releases anorexigenic hormones such as 
thyrotropin-releasing hormone (TRH), corticotropin-releasing 
hormone (CRH), and oxytocin, causing reduced feeding.35,36 
Brain-derived neurotrophic factor (BDNF), which is highly ex-
pressed in the VNM, has also been shown to regulate feeding 
via MC4R signaling.37 On the contrast, the orexigenic effects of 
NPY/AgRP neurons are mediated by GABA-mediated inhibition 
of POMC neurons and by stimulating postsynaptic Y1 and Y5 
receptors in the PVN.38–40 Furthermore, AgRP exerts its orexi-
genic effects by acting as an antagonist of melanocortin 3 re-
ceptor (MC3R) and MC4R in the PVN.41 As such, NPY/AgRP and 
POMC/CART neurons are intricately and interactively involved 
in appetite regulation.

3.1.2  |  Hindbrain

The role of the hindbrain in appetite control has also been empha-
sized. GDF-15, also known as macrophage inhibitory factor (MIC-1), 
is a member of the transforming growth factor-β (TGF-β) superfam-
ily.42,43 This stress-induced cytokine is strongly associated with CC 
and anorexia. GDF-15 is expressed at high levels in the tissues of 
various carcinomas, accompanied by marked increases in serum 

levels.44–46 The plasma concentration of GDF-15 in healthy indi-
viduals ranges from 100 to 1200 pg/mL,47 whereas in patients with 
advanced cancer, the circulating levels of GDF-15 can reach from 
10 000 to 100 000 pg/mL.48 Several commonly used chemotherapeu-
tic agents also elevate plasma levels of GDF-15.49 A direct and posi-
tive correlation has been shown between serum GDF-15 levels and 
cancer anorexia and cachexia in clinical studies on gastrointestinal, 
lung, pancreatic, and prostate cancer.50–52 Moreover, its elevated cir-
culating levels are robustly associated with adverse clinical outcomes 
in aging, cardiovascular disease, cancer, and cachexia.53–59

Although the precise neural pathways through which GDF-15 
regulates feeding behavior remain unclear, there is sufficient evi-
dence to suggest that the neurons which respond to GDF-15 and 
induce anorexia are localized in the area postrema (AP) and nucleus 
of the solitary tract (NST) in the medulla oblongata. This was demon-
strated by the distribution of GDNF family receptor α-like (GFRAL), 
a GDF-15 receptor, within a subset of cholecystokinin-positive neu-
rons in the AP and NST of the mouse.13–16 Mice in which the AP 
and NST areas were removed reversed the anorexigenic effects of 
MIC/GDF-15.60 GFRAL gene knockout mice showed resistance to 
chemotherapy-induced anorexia and weight loss.15 Similarly, in mice 
in which the GFRAL gene was targeted by monoclonal antibodies, 
the cancer-associated cachexia and anorexia effects of GDF-15 
were reversed.61 Meanwhile, in normal mice given systemic MIC-1 
and transgenic mice overexpressing MIC-1, an increase in POMC 
mRNA levels and a decrease in NPY mRNA levels were observed in 
the ARC in a leptin-independent signaling pathway.50 These findings 
suggest that GDF-15 mainly regulates appetite through the GDF-15/
GFRAL pathway in the hindbrain, with a contributory role for the 
pathway via ARC neurons in the hypothalamus. In addition, GDF-15 
induces anorexia via nausea and vomiting reactions. In an experi-
mental model with musk shrews, exogenous administration of GDF-
15 caused nausea and emesis within a few minutes and subsequently 
induced prolonged anorexia and weight loss.62 This emetic response 
caused by GDF-15 may be related to the activation of the parab-
rachial nucleus (PBN)-amygdala (AMY) pathway and the expression 
of 5-hydroxytryptamine receptors (5-HT3R) in the brain stem, how-
ever, the exact mechanism has yet to be elucidated.63

Glucagon-like peptide 1 (GLP-1) is an incretin hormone derived 
from the ileum and the NTS of the medulla oblongata, which stimu-
lates insulin secretion and suppresses glucagon secretion in a glucose-
dependent manner.64 GLP-1 receptors are distributed throughout the 
body, including the stomach, intestinal tract, kidneys, cardiovascular 
system, peripheral and central nervous system.65 GLP-1 analogs that 
mimic the action of this incretin hormone have been shown to pro-
duce significant weight loss through mechanisms such as prolonging 
gastric emptying,66 promoting satiety,67 and increasing energy expen-
diture by brown remodeling of white adipose tissue and lipolysis.68 
Consequently, GLP-1 analogs are currently approved not only as a 
treatment of diabetes but also as an anti-obesity agent. In addition, 
many clinical trials have already demonstrated the favorable clinical 
outcomes of GLP-1 analogs in patients with liver and cardiovascular 
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diseases, which can be attributable to their weight loss and metabolic 
improvement effects.64,69

In the CNS, GLP-1 receptors are also widely distributed in the 
PVN and ARC, as well as the ventral tegmental area (VTA) of the mid-
brain,17 with many of their functions having been addressed through 
research in rodents. Rinaman and Rothe70 showed in animal experi-
ments that GLP-1 receptor antagonists suppressed the anorexic ef-
fect of oxytocin originating in the PVN. Secher et al.71 demonstrated 
that the GLP-1 analog liraglutide-induced weight loss is mediated by 
direct stimulation of POMC/CART in the ARC and indirect inhibition 
of neurotransmission in NPY/AgRP-expressing neurons via GABA-
dependent signaling. In another experimental model, the endogenous 
GLP-1 released from NTS neurons reduced highly palatable food in-
take by suppressing mesolimbic dopamine signaling.72 In addition, the 
activation of GLP-1R signaling in the CNS promoted weight loss inde-
pendently of food intake by inducing thermogenesis in brown adipose 
tissue through increased sympathetic drive in mice.73

From the opposite perspective, it appears that the blockade of 
GLP-1 receptors would be an efficacious intervention for patients with 
cancer anorexia. Nevertheless, in a clinical trial examining the effects 
of GLP-1 receptor blockers in healthy subjects, peripheral administra-
tion of GLP-1 receptor blockade failed to suppress postprandial satiety 
or to promote food intake in humans.74 Conversely, the intracerebro-
ventricular administration of GLP-1 receptor blockers was effective in 
treating cancer cachexia-related anorexia and chemotherapy-induced 
anorexia in animal models.75,76 This discrepancy may be attribut-
able to differences in the administration pathway of GLP-1 receptor 
blockers, insufficient peripheral doses of GLP-1 receptor blockers, or 
differences in the response between cancer patients and healthy indi-
viduals, which require further verification.

3.2  |  Inflammatory cytokines

Pro-inflammatory cytokines such as IL-1, IL-6, TNF, and 
interferon-γ (IFN-γ), which play a central role in systemic inflam-
mation, are released by the host immune system and the tumor 
itself,77–79 contributing to the onset and progression of the 
pathogenesis of cachexia by acting as paracrine and endocrine. 
IL-1 is one of the pro-inflammatory cytokines that cause potent 
appetite loss through a diverse range of mechanisms. POMC/
CART anorexigenic neurons express type 1 IL-1 receptors,80 and 
IL-1α injection into the ventromedial hypothalamus of normal rats  
activates POMC/CART neurons and stimulates the release of 
α-MSH.81 IL-1 also activates the POMC/CART pathway through 
increased CNS serotonin secretion in rats.82 Furthermore, ad-
ministration of IL-1 to cancer patients and murine models of 
starvation has been shown to cause increased expression of 
leptin, an appetite-suppressing adipokine, in adipocytes.83,84 In 
a phase III clinical trial of 333 patients with advanced colorectal 
cancer, MABp1, a human monoclonal antibody targeting IL-1α, 
significantly improved the primary composite outcome, which 

consisted of a stable or increased lean body mass and stabil-
ity or improvement in two of three symptoms (pain, fatigue, or 
anorexia).85

IL-6 is a pro-inflammatory cytokine with pleiotropic effects on 
immune response, metabolism, and tumourigenesis. Its role as a me-
diator of muscle atrophy in cancer patients is well-established.86 In a 
murine model of CC, IL-6 receptor antibody treatment prevented the 
progression of CC by suppressing muscle proteolysis, although it failed 
to restore muscle protein synthesis.87 While it has been suggested that 
IL-6 may regulate the secretion of anorexigenic hormones such as CRH 
and oxytocin in the hypothalamus through neural gp130 receptor-
mediated signaling in mice.88 In a phase II clinical trial in advanced non-
small cell lung cancer (NSCLC) patients with cachexia, treatment with 
humanized anti-IL-6 antibody also showed improvement in anorexia, 
although it failed to rescue the loss of lean mass.89

TNF, produced by monocytes, macrophages, and tumor cells, is 
one of the most prominent pro-inflammatory cytokines in CC, medi-
ating proteolysis and adipose tissue wasting. Like IL-1, administration 
of TNF-α has been shown to increase plasma leptin levels in starved 
mice.83 Intraperitoneal injection of a TNF-α receptor antagonist also 
improved anorexia in cancer-bearing rats with cachexia.90 As such, the 
efficacy of thalidomide and infliximab, both of which are TNF inhibi-
tors, in cancer cachexia-associated anorexia has been examined, with 
some studies showing improved appetite and QoL in CC.91–93

In contrast, there are conflicting results and tolerance is-
sues.94,95 Two small randomized placebo-controlled trials (RCT) 
found no benefit of thalidomide for cancer cachexia-associated an-
orexia.94,96 In a clinical trial of 61 elderly and/or poorly performing 
NSCLC patients, infliximab was associated with a deterioration in 
QoL and did not prevent cancer-associated weight loss and anorexia 
compared with placebo.95 A double-blind placebo-controlled trial 
of 63 patients with refractory malignancies showed that etaner-
cept, a TNF blocker, did not palliate the cancer anorexia/weight 
loss syndrome.97 Although much evidence supports the mediation 
and involvement of inflammatory cytokines in the development of 
cancer anorexia, the effects of anti-cytokine therapy are inconsis-
tent, which implies that there is no one-to-one causal relationship 
between cancer cachexia-associated anorexia and each cytokine. 
Further investigation is required to determine the potential thera-
peutic effects of anti-cytokine drugs on cancer anorexia.98

3.3  |  Ghrelin and leptin

Ghrelin is an amino acid peptide secreted mainly from the fundus of 
the stomach, acting as an orexigenic hormone that increases appe-
tite and food intake by stimulating NPY/AgRP neurons and inhibiting 
POMC/CART neurons in the hypothalamic ARC.99–101 Intriguingly, 
patients with cachexia in various cancers have elevated serum ghre-
lin levels,102–104 with these counter-intuitive findings being consid-
ered to be a compensatory mechanism to buffer anorexia as well 
as to reflect “ghrelin resistance” in patients with CC.105 In addition 
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to stimulating appetite, ghrelin also inhibits proteolysis by suppress-
ing the production of pro-inflammatory cytokines such as IL-1β, IL-6, 
and TNF, induces the anti-inflammatory cytokine,106–108 promotes 
muscle protein synthesis via activating anabolic hormone pathways 
like growth hormone (GH)/insulin-like growth factor 1 axis,109 regu-
lates skeletal muscle apoptosis,110 all of which contribute towards 
alleviating pathological conditions in CC. In this context, the ghrelin 
receptor agonist “anamorelin” is undergoing clinical trials as a prom-
ising pharmacological therapy for CC.111,112

Leptin is an anorexigenic hormone expressed and secreted by 
white adipose tissue that regulates adipose tissue mass.113 It stim-
ulates POMC gene expression, suppresses the expression of NPY/
AgRP neurons in the hypothalamus, and activates anorexigenic hor-
mones such as CRH, increasing energy expenditure and decreasing 
appetite.114 So far, several experiments and clinical studies have 
demonstrated that inflammatory cytokines such as IL-1, IL-6, and TNF 
increase leptin expression in adipose tissue.83,84,115 However, the 
exact role of leptin in cancer anorexia remains elusive. Leptin levels 
are reduced in patients with cachexia while not associated with in-
creased compensatory food intake, as might be expected.116,117 This 
phenomenon is thought to be involved in a disruption of feedback 
mechanisms in the hypothalamus and the release of inflammatory cy-
tokines such as IL-1 that induce and mimic the hypothalamic effect of 
leptin under cachexia.118

3.4  |  Endocannabinoid system

Endocannabinoids are bioactive lipid mediators, and historically, 
their receptor, cannabinoid receptor 1 (CB1), was first discovered in 
the CNS,119 followed by N-arachidonoylethanolamine (anandamide, 
AEA) and 2-arachidonylglycerol (2-AG) were identified as physiologi-
cally active substances at CB1, i.e., endogenous cannabinoids.120,121 
Central cannabinoids are produced in postsynaptic neurons on 
demand and act retrogradely on CB1 at presynaptic axon termi-
nals,122 causing various physiological changes such as feeding and 
emotion.123,124 Cannabinoids also increase NPY expression and in-
hibit the secretion of pro-inflammatory cytokines such as IL-1, IL-6, 
and TNF in rodent models.125,126 Furthermore, cannabinoids reduce 
chemotherapy-induced nausea and vomiting responses.127 These 
backgrounds raise hopes for a positive effect of cannabinoids on 
cancer cachexia-associated anorexia, but so far, only small trials have 
demonstrated their effectiveness.128,129

3.5  |  Serotonin

Serotonin (5-hydroxytryptamine: 5-HT) is a classical monoamine 
neurotransmitter and may contribute to the development of cancer-
associated anorexia. Increased serotonin levels and serotonin receptor 
(5-HT receptor) expression have been shown in various types of human 
cancer,130–132 with accumulating findings further suggesting serotonin 
involvement in hypothalamic orexigenic and anorexigenic neurons.

The serotonin 1B (5-HT 1B) receptor is expressed on the 
orexigenic NPY/AgRP-containing neurons to downregulate their 
activity,133–135 while the serotonin 2C (5-HT 2C) receptor is ex-
pressed on the anorexigenic POMC neurons to upregulate their 
activity,136 each contributing to appetite reduction. Inflammation 
also enhances serotonin availability in the hypothalamus. 
Intraperitoneal administration of TNF and IL-6 to mice caused 
an increase in serotonin metabolism in the hypothalamus and re-
duced food intake.137 IL-1β significantly increased hypothalamic 
serotonin secretion,138 and intracerebroventricular infusion of 
an IL-1 receptor antagonist in rats with colitis drastically reduced 
serotonin release from the PVN and significantly restored food 
intake. These findings, together with the importance of serotonin 
and serotonin receptors in the pathogenesis of cancer anorexia, 
suggest their potential as therapeutic targets for cancer anorexia.

4  |  PHARMACOTHER APY OF 
C ANCER- C ACHE XIA A SSOCIATED WITH 
ANORE XIA

Strategies to treat or ameliorate cancer anorexia have been inves-
tigated for the past few decades, yet there are currently no FDA-
approved drugs for this syndrome. To date, only corticosteroids and 
progestins have shown sufficient evidence of benefit for weight loss 
and anorexia in CC29—whereas cannabinoids, thalidomide, and anti-
psychotics such as olanzapine and mirtazapine have failed to show 
consistent efficacy due to side effects and the high heterogeneity of 
studies. Nevertheless, recently developed drugs with novel mecha-
nisms of action against CC and anorexia, such as anamorelin and 
GDF-15 inhibitors, may represent a breakthrough in this syndrome. 
The following section elaborates on the medications for the treat-
ment of anorexia in CC, with reference to the mechanism and the 
recommendations of each guideline (Table 1).

4.1  |  Corticosteroids

A relatively long history of research into corticosteroids  
as a treatment for cancer anorexia was first published in  
1974.139 Following that, several RCTs and systematic reviews 
revealed that corticosteroids improved appetite and QoL in pa-
tients with advanced cancer.29,140,141 Corticosteroids increase 
appetite by inhibiting the release of pro-inflammatory cytokines 
such as IL-1 and TNF and by enhancing NPY/AgRP gene expres-
sion via adenosine monophosphate-activated protein kinase 
(AMPK) signaling in the hypothalamus.142–144 Based on these 
findings, the ESMO, ASCO, and ESPEN guidelines provide a mod-
erate to high level of evidence for corticosteroids for anorexia 
in cancer patients; however, due to their short duration of ef-
fect and side effects such as increased insulin resistance, muscle 
atrophy, immunosuppression, and osteoporosis over time, their 
recommended use is limited to 1–3 weeks.4–6
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4.2  |  Progesterone analogs (megestrol acetate)

Megestrol acetate (MA) is a pregestational agent initially adminis-
tered to humans in 1968. Commercially introduced in the United 

States in 1971 as MA tablets, this drug has been integrated into oral 
contraceptive pills and employed in the treatment of melanoma, 
ovarian, breast, kidney, and prostate cancers, benign prostatic hy-
pertrophy, endometrial hyperplasia, and endometrial carcinoma.145 

TA B L E  1 Drugs for the treatment of cancer cachexia-associated anorexia: their mechanisms and recommendations in each guideline.

Drug Mechanism of appetite increase

Recommendations in each guideline

ReferencesESMO ASCO ESPEN

Corticosteroids •	 Inhibit the release of pro-inflammatory 
cytokines (IL-1 and TNF).

•	 Enhance NPY/AgRP gene expression 
via AMPK signaling in the 
hypothalamus.

Generally 
recommended

Moderate in 
favor

Weak [29,139–141]

Megestrol acetate •	 Inhibits pro-inflammatory cytokines 
(IL-1, IL-6, and TNF).

•	 Directly increases hypothalamic NPY 
neuron expression.

Generally 
recommended

Moderate in 
favor

Weak [148–151]

Cannabinoids •	 Act on CB1 receptors in the CNS to 
stimulate appetite.

•	 Increase NPY expression.
•	 Inhibit the secretion of pro-
inflammatory cytokines (IL-1, IL-6, and 
TNF).

Optional Weak against None [128,129,153–156]

Anamorelin •	 Acts on ghrelin receptors to stimulate 
NPY/AgRP neurons and inhibit POMC/
CART neurons.

•	 Suppresses the production of pro-
inflammatory cytokines (IL-1β, IL-6, 
and TNF).

— No 
recommendation

— [111,112,158–160]

Olanzapine •	 Antagonizes serotonin and dopamine 
receptors to exert antiemetic effects 
and stimulate appetite.

Generally 
recommended

No 
recommendation

— [162–164,167,168]

Mirtazapine •	 Antagonizes 5-HT 3 and 5-HT 2C 
receptors to exert anti-nausea and 
appetite-stimulating effects.

— — — [171,172]

Thalidomide •	 Inhibits the production of pro-
inflammatory cytokines (TNF and 
IL-1β).

— No 
recommendation

— [91,92,94,176]

Anti-IL-6 therapy 
(Clazakizumab, 
Tocilizumab) and 
JAK inhibitors 
(Ruxolitinib)

•	 Antagonize the IL-6 receptor or inhibit 
its associated JAK/STAT signaling, 
reducing muscle and adipose tissue 
wasting and increasing appetite.

— — — [184–187]

GDF-15 inhibitors 
(Ponsegromab)

•	 Inhibit GFRAL localized within a subset 
of cholecystokinin-positive neurons in 
the brainstem and stimulates appetite.

•	 Decrease NPY mRNA expression and 
increase POMC mRNA in a leptin-
different signaling pathway.

— — — [13–16,50,60–62,188,189]

Melanocortin 
receptor antagonist

•	 Antagonizes MC4R in the PVN with 
α-MSH and inhibits the release of 
anorexigenic hormones such as CRH.

— — — [190–192]

Abbreviations: 5-HT, 5-hydroxytryptamine; AgRP, agouti-related peptide; AMPK, adenosine monophosphate-activated protein kinase; ASCO, 
the American Society for Clinical Oncology; CART, cocaine- and amphetamine-regulated transcript; CB1, cannabinoid receptor 1; CNS, central 
nervous system; CRH, corticotropin-releasing hormone; ESMO, the European Society of Oncology; ESPEN, the European Society for Clinical 
Nutrition and Metabolism; GFRAL, GDNF family receptor α-like; IL-1, interleukin-1; IL-6, interleukin-6; INF-γ, interferon-γ; JAK/STAT, Janus kinase/
signal transducers and activators of transcription; MC4R, melanocortin 4 receptor; NPY, neuropeptide Y; POMC, pro-opiomelanocortin; PVN, 
paraventricular nucleus; TNF, tumor necrosis factor; TRH, thyrotropin-releasing hormone; α-MSH, α-melanocyte-stimulating hormone.
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As a synthetic progesterone derivative, megestrol affects lipid and 
carbohydrate metabolism, increasing fat deposition, basal insulin 
level, and the response to carbohydrate ingestion.

Megestrol is among the most studied treatments for anorexia-
cachexia syndrome, with evidence that it mediates orexigenic 
effects by inhibiting pro-inflammatory cytokines such as IL-1, 
IL-6, and TNF and directly increasing hypothalamic NPY neuron 
expression,146,147 yet meta-analyses of clinical trials have demon-
strated controversial effects on body weight, appetite, and the 
safety of treating CC populations. In 2001, a systematic review 
included 15 RCTs that evaluated the effect of MA, progestins, 
and medroxyprogesterone acetate on more than 2000 terminally 
ill cancer patients. The authors showed the most impressive re-
sult on increasing appetite, but there was no significant effect 
on body weight.148 To evaluate the effect of MA in patients with 
anorexia-cachexia syndrome in patients with cancer, AIDS, and 
other pathologies, Pascual López et al.149 performed a systematic 
review and meta-analysis including 3887 patients and 26 RCTs. 
MA treatment was favorable in appetite improvement and weight 
gain compared with placebo, although inconclusive compared to 
other drugs. The authors also found that QoL, as assessed by the 
Karnofsky Performance Index, was significantly improved in MA-
treated patients compared to placebo. Following these results, 
current guidelines provide low to moderate recommendations for 
using MA to increase appetite and body weight with moderate to 
high levels of evidence.4–6 However, their optimal dosage and du-
ration of treatment remain unclear, together with the potential for 
serious side effects such as thromboembolism, which limits their 
use in clinical practice. The results of two recent meta-analyses 
further emphasized that the effects of MA on appetite and weight 
improvement and its thromboembolic risk in patients with cancer 
anorexia/cachexia are still controversial.150,151

4.3  |  Cannabinoids

Cannabinoids have been supported for their use in the treatment 
of cachexia in patients with HIV and multiple sclerosis,127,152 but 
the evidence for cancer anorexia remains limited. Several small pilot 
RCTs in advanced cancer patients with anorexia have shown that 
tetrahydrocannabinol and cannabidiol, constituents of cannabis, 
improved appetite and increased body weight.128,129 However, in 
other RCTs, cannabinoids did not provide efficacy against CC and 
anorexia,153,154 nor their superiority in comparison with megestrol 
acetate.155 From such inconsistent clinical data, current guidelines have 
no recommendation for the use of cannabinoids to control anorexia 
in patients with cancer anorexia.4–6 In 2022, after each guideline was 
published, Simon et  al.156 reported a systematic review and meta-
analysis including RCTs and non-randomized studies on cannabinoids 
in CC, which also failed to show any benefits for weight gain, appetite 
stimulation, or better QoL. The meta-analysis provided only very 
low-quality evidence on the benefit of cannabinoids for cancer-
associated anorexia due to the high heterogeneity and small number 

of patients, and furthermore, all RCTs included in the meta-analysis 
used cannabinoids alone. Taken together, higher quality research, 
larger RCTs, or combination treatment strategies with other anorexia 
therapeutic agents are required to verify the potential of cannabinoids 
for the management of cancer cachexia-associated anorexia.

4.4  |  Anamorelin

Anamorelin, a ghrelin receptor agonist, is an orally active ghrelin 
mimetic that has been most rigorously evaluated as a therapeutic 
agent for cancer anorexia. In a dose-escalation phase I study 
of RC-1291, a ghrelin mimetic and GH secretagogue, RC-1291 
produced significant dose-related increases in appetite and body 
weight without serious laboratory or clinical adverse events.157 
A crossover pilot study of placebo in 16 patients with different 
cancer types also showed that anamorelin treatment significantly 
increased appetite, body weight, GH, insulin-like growth factor 
(IGF), and insulin-like growth factor binding protein-3 (IGFBP-3); 
most adverse events were also minor, indicating the safety 
of anamorelin.158 Subsequently, in a phase II multicentre RCT 
involving 180 NSCLC patients with cachexia, anamorelin 50 mg, 
100 mg, or placebo was orally administered daily for 12 weeks. 
While overall survival rates were not significantly different among 
the three groups, lean body mass (LBM), appetite, and daily 
activity improved significantly in the group receiving 100 mg, with 
increased serum IGF-1, IGFBP-3, and pre-albumin levels.111

Three randomized, double-blind, phase III trials evaluated the 
safety and efficacy of anamorelin in patients with advanced NSCLC 
with cachexia: 484 patients were enrolled in ROMANA 1 and 495 
in ROMANA 2, where after 12 weeks of intervention (anamorelin 
100 mg/day or placebo), anamorelin significantly increased body 
weight and LBM and improved the anorexia-cachexia symptoms 
compared to the placebo in both trials.159 ROMANA 3, which com-
bined the first two trials with an additional 12-week intervention, 
demonstrated that anamorelin continued to be well tolerated and 
improved body weight and anorexia-cachexia symptoms over the 
entire treatment period.112 Following these favorable results, ana-
morelin was first approved in Japan in December 2020 for can-
cer anorexia-cachexia syndrome in four types of cancer, including 
NSCLC,160 but it is not yet approved in Europe. As such, there is 
currently no recommendation for use in cancer anorexia, although 
mentioned in the respective guidelines.4–6 A phase II study of ana-
morelin in patients with advanced pancreatic cancer is currently un-
derway (NCT04844970), with changes in body weight and appetite 
as endpoints, which may reveal further potential for anamorelin as a 
treatment for CC and anorexia.

4.5  |  Antipsychotic agents

Olanzapine is an atypical antipsychotic that blocks neurotransmis-
sion by antagonizing multiple receptors, including serotonin and 
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dopamine receptors,161 whose antiemetic effects on chemotherapy-
induced nausea and vomiting are well-known.162–164 Besides that, 
several clinical studies have demonstrated that olanzapine im-
proves cancer-related symptoms such as cancer pain, weight loss, 
and anorexia.165–167 More recently, in an RCT including 124 pa-
tients with advanced cancer performed by Sandhya et al.,168 low-
dose olanzapine was well tolerated and led to significant weight 
gain (≥5% weight gain: 60% vs. 9%, p < .001) and improved appetite 
(43% vs. 13%, p < .001) compared to placebo, respectively. The an-
tidepressant mirtazapine has also been investigated for its poten-
tial efficacy against CC and anorexia because of its anti-nausea and 
appetite-stimulating effects via antagonism of 5-HT 3 and 5-HT 2C 
receptors.169,170 In a small open-label phase II trial in 17 patients 
with cancer-related cachexia/anorexia, mirtazapine was associ-
ated with weight gain of ≥1 kg (n = 4, 24%) and improved appetite 
(n = 3, 17%) at week 4.171 However, in a subsequent double-blind 
RCT of 120 solid tumor patients with anorexia, mirtazapine did not 
improve appetite, body weight, or handgrip strength, although it 
significantly reduced the increase in depressive symptoms.172 Such 
pharmacological mechanisms and clinical results of olanzapine and 
mirtazapine suggest that these anti-psychotics may be an option for 
chronic nausea and anorexia in patients with CC, with the ESMO 
guidelines generally recommending the use of olanzapine based on 
moderate levels of evidence.4 Two clinical trials of olanzapine and 
mirtazapine in patients with CC are currently in progress, with both 
trials focusing on appetite and weight change as their outcomes 
(NCT05243251, NCT05380479).

4.6  |  Thalidomide

Thalidomide is an immunomodulatory and anti-inflammatory 
agent that inhibits the production of pro-inflammatory  
cytokines such as TNF and IL-1β, important players in CC and ano-
rexia.173,174 Therefore, some researchers have proposed thalido-
mide as a treatment option for cachexia, but so far, there is limited 
clinical data available. In 2005, Gordon et al. conducted a double-
blind RCT of thalidomide in 50 patients with advanced pancre-
atic cancer for 24 weeks. Thalidomide significantly reduced loss 
of body weight and arm muscle mass after 4 and 8 weeks but did 
not improve muscle strength, QoL, or survival.175 In a subsequent 
phase II trial, thalidomide was shown to improve cancer-related 
anorexia and QoL,91 while two small RCTs found no benefit of 
thalidomide on serum cytokines, metabolism, body composi-
tion, performance, cachexia/anorexia-related symptoms, and  
survival, further exposing poor tolerability due to its side ef-
fects.94,96 Several studies have also investigated thalidomide in 
combination with other drugs in cancer patients. In a clinical study 
of 120 patients with cancer cachexia/anorexia, combination re-
gimes of thalidomide and MA significantly improved body weight, 
handgrip strength, and fatigue, reduced IL-6 and TNF levels, and 
tended to increase appetite compared to MA alone.92 In contrast 
to other studies, toxicity was negligible in both groups. In a phase 

III trial to establish the most effective and safest treatment of 
CC, a total of 332 cancer patients with cachexia were assigned 
to the following five treatment arms: arm 1, medroxyproges-
terone or MA; arm 2, eicosapentaenoic acid; arm 3, L-carnitine; 
arm 4, thalidomide; arm 5, a combination of the above. Results 
showed the superiority of combination therapy on many end-
points (LBM, resting energy expenditure, fatigue, appetite, QoL, 
handgrip strength, performance status, and pro-inflammatory 
cytokines), with negligible toxicity and similar levels between  
groups.176 These findings suggest that thalidomide might be po-
tential of benefit for CC and anorexia, especially in combination 
therapy; however, due to the small number and high heteroge-
neity of studies and safety and tolerability concerns, there is 
currently insufficient evidence for the recommendation of tha-
lidomide in the management of cancer anorexia, requiring further 
validation in well-conducted, large-scale clinical trials.

4.7  |  Anti-IL-6 therapy and JAK inhibitor

Elevated IL-6 levels are a strong predictor of cachexia in various can-
cers,177,178 and one of the underlying mechanisms is the activation of 
the Janus kinase/signal transducers and activators of transcription 
(JAK/STAT) pathway via the IL-6 receptor and gp130.177 Persistent 
elevation of IL-6 levels in cancer causes activation of the JAK/STAT 
pathway to regulate the ubiquitin-proteasome system,179 induce 
autophagy in myotubes,180 and stimulate myostatin,181 resulting in 
increased protein catabolism. Consequently, IL-6 and its associated 
JAK/STAT signaling could be promising therapeutic targets for CC. 
Clazakizumab, a humanized monoclonal antibody, is the only spe-
cific anti-IL-6 agent evaluated in clinical trials in CC. A phase II trial in 
124 patients with refractory NSCLC with cachexia demonstrated its 
high tolerability, inhibition of lean mass reduction, and improvement 
in fatigue and anemia.182,183 In experimental and clinical studies, 
Tocilizumab, another IL-6 receptor antibody, increased appetite, food 
intake, and body weight, showing the potential to improve cancer 
anorexia.184,185 Whereas the JAK/STAT pathway inhibition has been 
demonstrated to prevent muscle and adipose tissue wasting and 
anorexia in several experimental models of CC,186,187 a phase I trial is 
currently underway to assess the effect of ruxolitinib, a JAK1/2 in-
hibitor, on wasting, anorexia, and survival in stage IV NSCLC patients 
with cachexia (NCT04906746).

4.8  |  GDF-15 inhibitors

As discussed above, GDF-15 is an appetite-suppressing cytokine 
that is strongly associated with cancer anorexia. Therefore, neu-
tralization of GDF-15 is an innovative therapeutic strategy with the 
potential to improve CC and anorexia. Several experimental mod-
els have already shown that anti-GDF-15 therapy improved emesis, 
food intake, weight loss, and physical function.15,188,189 A phase II 
clinical trial is currently underway to evaluate the effects of the 
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GDF-15 inhibitor ‘Ponsegromab’ on anorexia/appetite and physical 
activity in patients with NSCLC, pancreatic cancer, and colorectal 
cancer with cachexia and elevated GDF-15 levels (NCT05546476).

4.9  |  Melanocortin receptor antagonist

It is well-recognized that the central melanocortin system, con-
sisting of POMC neurons, their product α-MSH, and its receptor 
MC4R, is closely involved in the regulation of feeding. In experi-
mental models, intracerebroventricular injections of MC4R ago-
nists have shown anorexic effects via induction of CRH gene 
transcription in the PVN,190 and administration of MC4R antago-
nists caused significant increases in food intake.191,192 Therefore, 
MC4R is postulated to be a therapeutic target for diseases with 
negative energy balance, such as cachexia and anorexia, with a 
phase I clinical trial currently in progress to assess the safety, tol-
erability, and pharmacokinetics of the oral administration of the 
MC4R antagonist (NCT04628793).

4.10  |  Targeting the TWEAK-Fn14 
cytokine-receptor axis

The TNF family cytokine TWEAK and its cognate receptor Fn14 
(fibroblast growth factor-inducible 14) regulate various physiological 
processes, including proliferation, migration, differentiation, apopto-
sis, and inflammation. In particular, the TWEAK-Fn14 axis plays a sig-
nificant role in tissue repair following an acute injury.193 Meanwhile, the 
expression of TWEAK and Fn14 is increased in solid tumors,194–196 and 
their signaling contributes to carcinogenesis and the development of 
CC. Monoclonal antibodies targeting Fn14 signaling have been demon-
strated to suppress tumor growth in vivo and in vitro studies with human 
subjects.197–199 In a murine tumor model, Johnston et al.200 found that a 
monoclonal antibody targeting Fn14 inhibited tumor growth by blocking 
Fn14 signaling in the tumor, rather than in the host, thereby prevent-
ing and reversing cancer-induced cachexia. Sezaki et al.201 reported that 
the injection of 5-fluorouracil (5-FU) in colon carcinoma-bearing mice 
induced high Fn14 expression in epithelial cells and that the blockade of 
the TWEAK/Fn14 pathway by Fn14 knockout or the administration of 
anti-TWEAK antibody prevented 5-FU-induced diarrhea. Although in-
terventions targeting the TWEAK/Fn14 signaling for anorexia have not 
yet been investigated, these results extend the role of the TWEAK-Fn14 
axis in tissue repair to the development of cancer and CC and suggest 
that it may be a promising therapeutic target for cancer cachexia-related 
anorexia.202

5  |  CONCLUSIONS

This narrative review mainly outlines cancer anorexia with a focus 
on its mechanisms and pharmacotherapy. However, anorexia is only 
one of the “subjective” phenotypes of CC, making its accurate and 

consistent assessment challenging, while interventions for other hall-
marks of CC, ‘objective’ weight loss and skeletal muscle loss, are also 
crucial. Several other drugs besides those mentioned in this review 
are currently under scrutiny in clinical and pre-clinical studies for 
their potential to prevent tissue wasting, including selective andro-
gen receptor modulators,203 myostatin inhibitors,204 and β-adrenergic 
blockade.23 Also, as some studies have shown, a combination therapy 
may provide better clinical efficacy than a single-drug intervention for 
cancer anorexia.92,167,176 The complex and multifactorial condition of 
CC requires not only pharmacotherapy but also nutritional, exercise, 
and psychosocial interventions. Appropriate assessment of appetite 
on a standardized scale, combination therapy, and multidisciplinary 
and comprehensive intervention in physical (e.g., metabolic shift, mus-
cle wasting, and undernutrition), psychological (e.g., depression and 
anxiety), and social (e.g., reduced social activity and economic burden) 
aspects, may lead to better outcomes.
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