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Through genetic and epigenetic alterations, cancer cells present the immune system with
a diversity of antigens or neoantigens, which the organism must distinguish from self. The
immune system responds to neoantigens by activating naïve T cells, which mount an
anticancer cytotoxic response. T cell activation begins when the T cell receptor (TCR)
interacts with the antigen, which is displayed by the major histocompatibility complex
(MHC) on antigen-presenting cells (APCs). Subsequently, accessory stimulatory or
inhibitory molecules transduce a secondary signal in concert with the TCR/antigen
mediated stimulus. These molecules serve to modulate the activation signal’s strength
at the immune synapse. Therefore, the activation signal’s optimum amplitude is
maintained by a balance between the costimulatory and inhibitory signals. This system
comprises the so-called immune checkpoints such as the programmed cell death (PD-1)
and Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and is crucial for the
maintenance of self-tolerance. Cancers often evade the intrinsic anti-tumor activity
present in normal physiology primarily by the downregulation of T cell activation. The
blockade of the immune checkpoint inhibitors using specific monoclonal antibodies has
emerged as a potentially powerful anticancer therapy strategy. Several drugs have been
approved mainly for solid tumors. However, it has emerged that there are innate and
acquired mechanisms by which resistance is developed against these therapies. Some of
these are tumor-intrinsic mechanisms, while others are tumor-extrinsic whereby the
microenvironment may have innate or acquired resistance to checkpoint inhibitors. This
review article will examine mechanisms by which resistance is mounted against immune
checkpoint inhibitors focussing on anti-CTL4-A and anti-PD-1/PD-Ll since drugs
targeting these checkpoints are the most developed.
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INTRODUCTION

Cancers often evade the intrinsic anti-tumor activity present in
normal physiology through various mechanisms one of which is
the downregulation of T cell activation. Through genetic and
epigenetic alterations, cancer cells present the immune system
with a diversity of antigens, which are distinguishable from self.
Antigen-specific T cell activation is initiated by a signal mediated
by the interaction of the T cell receptor (TCR) with an antigen
that is bound to the major histocompatibility complex (MHC) on
antigen presenting cells and another signal transduced through
co-stimulatory molecules belonging to the B7 family. The
optimum amplitude of activation signal is maintained by a
balance between this costimulatory signal and an inhibitory
one also mediated by the B7 family (1). This system comprises
the so-called immune checkpoints mediated by the inhibitory
molecules and is crucial for the maintenance of self-tolerance.
The blockade of the immune checkpoint inhibitors has emerged
as a potentially powerful strategy for anti-cancer therapy and
Frontiers in Oncology | www.frontiersin.org 2
several drugs, mainly for solid tumors, have been approved
(Table 1) (35, 36).

Cancers deve lop within a diverse and dynamic
microenvironment and possess mechanisms to survive
unfavourable physiological machinery designed to suppress
carcinogenesis. Thus, they are equipped with strategies to
reprogram the microenvironment metabolically and
immunologically. For example, cancers develop mechanisms to
switch off the physiological immune response by blocking
activated T cells to protect themselves from cytotoxic killing.
Thus, during cancer progression, the immune checkpoint
pathways mediated by the structurally similar co-inhibitory
receptors; Programmed cell Death 1 (PD-1) and the Cytotoxic
T lymphocyte-associated antigen-4 (CTLA-4) or CD152
receptors are often usurped by cancer cells to evade immune
surveillance. These two receptors, which form part of a growing
list of checkpoint inhibitors, are the foremost targets for immune
checkpoint inhibition-based drug development in recent
years (Table 1).
TABLE 1 | List of FDA-approved Immune Checkpoint Inhibitors (ICIs) targeting CTLA-4, PD-1 and PD-L1.

Drug (Trade name) Company Date of approval Indication References

CTLA-4 inhibitors
Ipilimumab (Yervoy®) Bristol-Myers Squibb 2011 Melanoma (2)

colorectal cancer (3)
Renal cell carcinoma (4)

PD-1 inhibitors
Nivolumab (Opdivo®) Bristol-Myers Squibb 2014 Melanoma (5)

Hodgkin’s lymphoma (6)
Diffuse large B-cell lymphoma (7)
Urothelial cancer (8)
Colorectal cancer (3)
Hepatocellular carcinoma (9)
Non-small cell lung cancer (10)
Small cell lung cancer (11)
Renal cell carcinoma (12)
Squamous cell carcinoma (13)

Pembrolizumab (Keytruda®) Merck 2014 Melanoma (14)
Cervical cancer (15)
Hodgkin’s lymphoma (16)
Diffuse large B-cell lymphoma (17)
Gastric cancer (18)
Urothelial cancer (19)
Colorectal cancer (20)
Hepatocellular carcinoma (21)
Non-small cell lung cancer (22)
Small cell lung cancer (23)
Renal cell carcinoma (24)
Squamous cell carcinoma (25)
Esophageal cancer (26)
Merkel cell carcinoma (27)

Cemiplimab (Libtayo®) Sanofi 2018 Cutaneous squamous cell carcinoma (28)
PD-L1 inhibitors
Atezolizumab (Tecentriq®) Roche, Genentech 2016 Non-small cell lung cancer (29)

Triple negative breast cancer
Avelumab (Bavencio®) Merck, Pfizer 2017 Merkel cell carcinoma (30)

Renal cell carcinoma (31)
Urothelial cancer (32)

Durvalumab (Imfinzi®) AstraZeneca 2017 Bladder cancer (33)
Non-small cell lung cancer (34)
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In this review we examine the mechanisms of inhibitors
targeting the immune checkpoint pathways PD-1/PD-L1 and
CTLA-4, as well as the types of resistance that can develop
against them.
CTLA-4 AND PD-1 IMMUNE CHECKPOINT
SIGNALLING PATHWAYS

The CTLA-4, which is the first co-inhibitory immune checkpoint
receptor to be identified, is constitutively expressed on both
CD4+ and CD8+ T lymphocytes (37). CD28 and CTLA-4 are
both capable of binding two important ligands, namely B7.1 (also
known as CD80) and B7.2 (also known as CD86) (38). CTLA-4
expression is up regulated in T cells after activation. This is
particularly significant in cancer cells as CTLA-4 has a higher
binding affinity to both ligands, compared to CD28.
Consequently, it is plausible that the role of the CTLA-4
expressed on the surface of T cells is to decrease T cell
activation by competing with CD28 for ligand binding as well
as active removal of B7.1 and B7.2 from the cell surface of
antigen-presenting cells (APCs) (39). It counteracts the activity
of the co-stimulatory CD28 upon TCR engagement by the
antigen-MHC complex on APCs (40). Upon T cell activation
CTLA-4 is translocated via a genetically programed pathway to
the cell surface where it competes for binding with CD28. At the
cell surface CTLA-4 is stabilized by src kinase-mediated
phosphorylation and binds with higher affinity to B7 ligands
Frontiers in Oncology | www.frontiersin.org 3
when compared with CD28. Intracellularly CTLA-4 transduces
signals via PP2A and PI3K (41).

PD-1 is an inhibitor of both adaptive and innate immune
responses and is more broadly expressed than CTLA-4 on
activated T cells, B cells and myeloid cells and its depletion in
experimental mice results in the disruption of immune tolerance
and in multiple autoimmune features (42, 43). The TCR
transduces the signal via the PI3K/Akt pathway and positively
regulates glucose metabolism, which is reprogrammed during T
cell activation (Figure 1). A negative signal during TCR
activation may occur via a ligated PD-1 receptor, which
mediates the recruitment of phosphatases, SHP2 (and/or
SHP1) to dephosphorylate TCR-proximal molecules and
displace the co-stimulatory molecule, CD28, thereby blocking
lymphocyte activation. PD-1 ligation also directly inhibits
phosphatidylinositol 4,5-isphosphate-3 kinase (PI3K) (44). In
the absence of PD-1, TCR signalling leads to Akt activation
thereby promoting key cellular activities including glucose
metabolism, cytokine production and phosphorylated glycogen
synthase kinase-3 (GSK-3b_P) associated events which include
glycogen synthesis in the liver and in the muscles (45). Hence the
inhibition of GSK-3 leads to the development of cancer and other
developmental diseases (46). The ligands of PD-1 and CTLA-4
receptors belong to the B7 family and function by mediating “co-
stimulatory” or “co-inhibitory” signals through the CD28 family
of receptors on lymphocytes (47). Engagement of PD-1 by its
ligands, PDL-1 and PDL-2, which are expressed on antigen
presenting cells downregulates lymphocyte activation (48).
FIGURE 1 | CTLA-4 and PDL-1 ligation interferes with glucose metabolism in activated T cells. The ligation of PD-1 blocks the activation of PI3K and consequently
the Akt signalling pathway resulting the inhibition of glycolysis. CTLA-4 accomplishes the same outcome by activating the phosphatase PP2A.
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The evidence has shown that the CTLA-4 and PD-1 receptors
may inhibit T-cell activation but use different signalling and
synergistic pathways. Furthermore, the ligation of these receptors
by their physiological ligands leads to the downregulation of
glycolysis (45). It is noteworthy that, like cancer cells, activated T
cells also exhibit the Warburg Effect or aerobic glycolysis which is
characterised by elevated glycolysis and downregulated oxidative
phosphorylation and is driven by mechanistic target of rapamycin
(mTOR) signalling (49). The antagonistic effect of checkpoint
inhibitors should therefore affect the metabolic reprogramming
that would have occurred in activated T cells. However, this has not
been specifically investigated according to our knowledge.

It has been shown that T cell activation requires upregulation
of glucose metabolism and that while glucose deprivation does
not affect proliferation, it diminishes the effector activities of T
cells thereby driving cancer progression. Alternatively, when
glycolysis was inhibited in CD8+ T cell using 2-deoxy-D-
glucose (2-DG) in the mouse sarcoma model, interferon
gamma (IFNg) but not Interleukin-2 (IL-2) production was
inhibited. Furthermore, a large-scale transcriptional analysis
also showed that only 10% of genes induced by T cell
activation were inhibited by 2-DG. This small subset of genes
comprised those involved in effector functions (50). These
observations suggest that the metabolic reprogramming
associated with T cell activation specifies their functional
properties However, the impact of glucose metabolic profiles of
the tumor microenvironment components on immune
checkpoint blockade therapy is still not well understood.

In the solid tumor microenvironment, competition for
glucose between cancer cells and tumor infiltrating CD8+
Frontiers in Oncology | www.frontiersin.org 4
lymphocytes has been shown to result in the suppression of
the T cell metabolic phenotype and effector capacity.
Furthermore, it was shown that the glycolytic phenotype of
cancer cells suppresses the metabolic programme and effector
activities of T cells (51). Importantly, this study showed that anti-
CTLA-4 and anti-PD-1 antibodies could reverse the antagonistic
impact exerted by cancer cells on the TME.

Another question that requires attention is the comparative
attractiveness of these receptors as therapeutic targets.
Phenotypic differences in PD-1 and CTLA-4 knock-out mice
show distinct outcomes that reveal critical features that suggests
different responses to therapies that target these receptors. PD-
1-/- mice spontaneously develop lupus-like glomerulonephritis
and arthritis. This phenotype is accelerated and characterized
with extensive lymphadenopathy when the Fas or
lymphoproliferation (lpr-/-) mutation is added. On the other
hand, transgenic mice with CLTA-4 deficiency rapidly develop
lymphoproliferative disease, multi-organ lymphocytic
infiltration severe myocarditis and pancreatitis. Moreover, this
mutation is lethal within four weeks (52, 53). These observations
indicate that the blockade of PD-1 might be less toxic when
compared to CTLA-4.
IMMUNE CHECKPOINT INHIBITORS

Mechanism of Inhibitors Targeting CTLA-4
CTLA-4 functions as a negative regulator of T-cell effector
function and therefore presented as an attractive target for
cancer therapy. Inhibitors targeting CTLA-4 act by preventing
A B

FIGURE 2 | CTLA-4 and PD-1 checkpoint inhibitor pathways. (A) CTLA-4 pathway. In this pathway strong TCR-HMC and CD28-B7 binding signals initiate the
exocytosis of the CTLA-4 from the intracellular vesicles to the T cell surface. As CLTA-4 has a higher binding affinity then CD28 for B7, this results in a net negative
signal that results in reduced T cell proliferation, survival and a decrease in growth cytokines such as IL-2. (B) In the PD-1/PD-L1 pathway TCR-HMC signalling up
regulates both PD-1 and interferon-g (IFNƴ) expression. The increased of IFNƴ in the tumor microenvironment activates the signalling pathway of Janus kinase (JAK)/
signal transducer and activator of transcription (STAT) which activates the transcription factor interferon regulatory factor 1 (IRF1), which in turn induces PD-L1
expression. PD-1/PD-L1 interaction results in in a net negative signal and ultimately reduced T cell survival, proliferation and cytotoxic production. Possible antibody
drug targets in both pathways are indicated showing antibody-target interaction (within black boxes).
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the binding between CTLA-4 (on T-cells) and B7 ligands (on
APCs) (Figure 2). As a result, Treg-associated immune
suppression is inhibited and T-cell effector function is
promoted, allowing the immune system to mount a response
(54–56). An influential clinical trial whereby improved survival
rates were seen when patients with unresectable melanomas
(stage III/IV) were treated with an anti-CTLA-4 monoclonal
antibody ultimately led to the FDA approval of the first immune
checkpoint inhibitor, ipilimumab, for cancer therapy (2).

Ipilimumab, marketed as Yervoy® by Bristol-Myers Squibb, is
a human IgG1k anti-CTLA-4 monoclonal antibody. Ipilimumab
was originally granted FDA approval for late stage, unresectable
melanomas in 2011. It has subsequently been approved for
patients with cutaneous melanoma, renal cell carcinoma and
metastatic colorectal cancer as shown in Table 1 (3, 4, 12, 57).
Currently, ipilimumab remains as the only checkpoint inhibitor
targeting CTLA-4.

Mechanism of Inhibitors Targeting PD-1
The interaction between PD-1 (on T-cells) and its ligand, PD-L1
(on APCs) (Figure 2), has an inhibitory effect on T-cell effector
activity. The PD-1/PD-L1 pathway therefore represents an
additional negative regulator of immune responses and a key
mechanism in tumor evasion (58). Inhibitors that target PD-1 act
by preventing its binding to PD-L1 (Figure 2). This interferes
with the feedback mechanism between T-cells and tumor cells in
the tumor microenvironment and consequently restores T-cell
effector function enhancing anti-tumor activity (36).

Following the outcome of the CheckMate-037 trial,
nivolumab received FDA approval in 2014 for the treatment of
unresectable or metastatic melanoma in patients whose cancers
had progressed following ipilimumab treatment ± BRAF
inhibitors (2). Nivolumab is a human IgG4k anti-PD-1
monoclonal antibody marketed as Opdivo® by Bristol-Myers
Squibb. Nivolumab represented the first immune checkpoint
inhibitor targeting PD-1 to be granted FDA approval. Its
approval was subsequently expanded for the treatment of
various cancers including cervical cancer (59), gastric cancer
(60), urothelial cancer (8), Hodgkin’s lymphoma (6),
hepatocellular carcinoma (9), squamous cell carcinoma (13,
61), colorectal cancer (3), non-small cell lung cancer (10),
diffuse large B-cell lymphoma (62), renal cell carcinoma (12)
and small cell lung cancer (5, 6, 8–13, 61, 63) (Table 1).

In 2014 an additional PD-1 inhibitor, pembrolizumab, was
granted accelerated approval as an alternative for nivolumab in
patients with unresectable or metastatic melanoma based on the
results from the NCT01295827 clinical trial (14, 64).
Pembrolizumab, a humanized IgG4k anti-PD-1 monoclonal
antibody marketed as Keytruda® by Merck, later received
expanded approval for the treatment of various cancers
including cervical cancer (15), endometrial carcinoma (65),
esophageal cancer (26), gastric cancer (18), urothelial cancer
(19), Hodgkin’s lymphoma (16), hepatocellular carcinoma (21),
Merkel cell carcinoma (27), squamous cell carcinoma (25),
colorectal cancer (20, 66), non-small cell lung cancer (22),
diffuse large B-cell lymphoma (17), renal cell carcinoma (24)
and small cell lung cancer (15–22, 24–27, 66, 67).
Frontiers in Oncology | www.frontiersin.org 5
Cemiplimab, a human IgG4k anti-PD-1 monoclonal
antibody marketed as Libtayo® by Sanofi, is the most recent
immune checkpoint inhibitor to be given FDA approval. In 2018,
cemiplimab was approved for the treatment of metastatic
cutaneous squamous cell carcinoma (28).

Mechanism of Inhibitors Targeting PD-L1
Similar to inhibitors targeting PD-1, PD-L1 inhibitors aim to disrupt
the interaction between PD-1 and PD-L1 in the tumor
microenvironment. Inhibiting PD-1/PD-L1 results in the stimulation
of T-cell anti-tumor activity as described previously (36, 68).

The first PD-L1 inhibitor granted FDA approval was
Atezolizumab in 2016. Atezolizumab is a human IgG1k anti-
PD-L1 monoclonal antibody marketed as Tecentriq®, by
Genentech and Roche. The mAb was found to be effective for
the treatment of metastatic urothelial carcinoma following
platinum chemotherapy (69). The therapy was subsequently
approved for treatment of metastatic non-small-cell lung
carcinoma (NSCLC) (29) and advanced urothelial carcinoma in
patients that are ineligible for chemotherapy (19). In 2018,
Atezolizumab was further approved for the treatment of
metastatic NSCLC in combination with chemotherapy and
bevacizumab, a mAb targeting VEGF (70). Following the first
combinational therapy, Atezolizumab was subsequently approved
in combination with paclixatel (71) and chemotherapy (72) for the
treatment of metastatic triple negative breast cancer (TNBC) and
small cell lung cancer (SCLC), respectively.

Avelumab, marketed as Bavencio® by Merck/Pfizer, is a
human IgG1l monoclonal antibody that targets PD-L1.
Avelumab was first approved by the FDA for the treatment of
Merkel cell carcinoma in 2017 (30). Following its first approval,
avelumab was granted further approval for the treatment of
locally advanced and metastatic urothelial carcinoma (32). In
2019, avelumab was approved for the treatment of advanced
renal cell carcinoma (RCC) in combination with axitinib, a
tyrosine kinase inhibitor (31).

Another PD-L1 inhibitor, durvalumab, was granted FDA
approval in 2017 for the treatment of advanced bladder cancer
in patients that previously did not respond to chemotherapy or
ineligible for the treatment (33). Durvalumab is a humanized
IgG1k anti-PD-L1 monoclonal antibody marketed as Imfinzi®

by AstraZeneca. In 2019, the immune checkpoint inhibitor was
approved for the treatment of unresectable stage III NSCLC (34).

The Mechanism of Next Generation
Inhibitors Targeting LAG-3, TIM-3,
TIGIT, VISTA and B7-H3
CTLA-4, PD-1 and PD-L1 are the most broadly studied
checkpoints. However, given the success seen with previous
checkpoint inhibitors, new inhibitory pathways and next
generation inhibitors targeting LAG-3, TIM-3, TIGIT, VISTA
and B7-H3 are being investigated. The mechanisms of these
checkpoints as well as inhibitors that are currently in clinical
trials will be described briefly.

Lymphocyte activation gene-3 (LAG-3 or CD223) is a
membrane receptor constitutively expressed by T cells and
natural killer cells. LAG-3 interacts with MHC class II resulting in
June 2021 | Volume 11 | Article 641428
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a negative regulatory effect over T cell function (73). This
interaction normally prevents tissue damage and autoimmunity,
however, tumor-infiltrating lymphocytes (TILs) found in the TME
upregulates LAG-3 thereby promoting cell dysfunction, immune
exhaustion and favorable conditions for tumor growth (74). Thus,
disrupting the LAG-3/MCH II interaction with blockade therapy
should encourage immune activation and anti-tumor responses.

T cell immunoglobulin-3 (TIM-3) is an immune checkpoint
expressed on numerous cells including effector T cells, B cells,
Tregs, macrophages and natural killer cells (75). Its main ligand is
galactine-9, but it is also known to interact with phosphatidyl serine
and carcinoembryonic antigen-related cell adhesion molecule
(CEACAM) (76, 77). TIM-3 functions as a direct negative
regulator of T cells. Interaction with its various ligands results in T
cell exhaustion as well as expansion of myeloid-derived suppressor
cells (MDSCs) in the TME creating favorable conditions for tumor
growth. Not surprisingly, TIM-3 levels have been found elevated in
several malignancies. Blockade of TIM-3 decreases MDSCs while
increasing T cell proliferation and cytokine production leading to
anti-tumor activity (78). However, there has been some concern over
TIM-3 blockade. Considering its role in immune responses against
listeria and mycobacteria, inhibiting TIM-3 may result in an
increased risk of these infections (79). Nevertheless, antibodies
targeting this receptor have proceeded to clinical trials.

T cell immunoglobulin and ITIM domain (TIGIT) is a
receptor part of the CD28 family and is expressed by T cells
and natural killer cells (80). CD155 and CD112 are ligands that
interact with TIGIT to bring about immunosuppressive effects
(81). Studies have shown that tumor-infiltrating lymphocytes
Frontiers in Oncology | www.frontiersin.org 6
have elevated levels of TIGIT co-expressed with PD-1, LAG-3
and TIM-3 suggesting a role in tumor progression. Dual
blockade of TIGIT and either TIM-3 or PD-1 has revealed an
anti-tumor mechanism through immune cell proliferation,
cytokine release and reversal of T cell exhaustion (82).

V-domain Ig suppressor of T cell activation (VISTA) is an
unusual immune checkpoint with dual function as an inhibitory
and stimulatory molecule (83). VISTA, expressed as a receptor
on T cells, interacts with VSIG-3 on tumor cells to suppress T cell
activation, proliferation and production of cytokines promoting
tumor progression. This co-inhibitory pathway therefore
presented as an alternative strategy for blockade therapy (84).
Although most studies have described the inhibitory effects of
VISTA on immune responses, other studies have demonstrated
that VISTA can act as a ligand expressed on APCs allowing for
immune activation. Regardless, blockade of VISTA seemed to
enhance T cell infiltration and reduce myeloid suppressive cells
proving to be an effective anti-tumor strategy (85, 86).

B7 homolog 3 (B7-H3) is a transmembrane protein found on
various solid organs as well as immune cells such as APCs, T
cells, B cells and natural killer cells. Although the exact ligand
remains unknown, B7-H3 is believed to interact with the CD28
receptor family (87). This interaction prevents T cell activation,
proliferation, cytokine production and appears to enhance
cancer aggressiveness. B7-H3 blockade promotes T cell
activation, cytokine release and cytotoxic activity. Moreover, it
has been associated with fewer immune-related adverse events
(irAEs) due to the lower expression of B7-H3 in normal tissues as
opposed to the TME allowing for localised effects (88).
TABLE 2 | Next generation immune checkpoint inhibitors.

Target Binding partner Drugs Trial stage References

LAG-3 MHC-II Eftilagimod alpha (Immutep) I/II (89)
Relatimab (Bristol Myers Squibb) II/III
Ieramilimab (Novartis) II
Favezelimab (Merck) I/II
Fianlimab (Regeneron) I
Encelimab (AnaptysBio/GlaxoSmithKline) I
Miptenalimab (Boehringer Ingelheim) I
Sym 022 (Symphogen) I
FS118 (F-star) I
Tebotelimab (MacroGenics) I

TIM-3 Galactine-9, phosphatidyl serine, CEACAM TSR-022 (GlaxoSmithKline) I (75)
Sabatolimab (Novartis) I/II
Sym 023 (Symphogen) I
INCAGN 2390 (Incyte Corporation) I
LY3321367 (Eli Lilly and Company) I/II
BMS-986258 (Bristol Myers Squibb) I/II
SHR-1702 (Jiangsu HengRui) I

TIGIT CD155, CD112 Vibostolimab (Merck) III (80)
Etigilimab (OncoMed Pharmaceuticals) I
Tiragolumab (Genentech) II
BMS-986207 (Bristol Myers Squibb) I/II
Domvanalimab (Arcus Biosciences) I

VISTA VSIG-3 JNJ-61610588 (Johnson & Johnson) I (90)
CI-8993 (Curis Inc)

B7-H3 Unknown Enoblituzumab (MacroGenics) II (91)
131I-omburtamab (Y-mAbs Therapeutics) II/III
124I-omburtamab (Y-mAbs Therapeutics) I
Jun
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Drugs targeting LAG-3, TIM-3, TIGIT, VISTA and B7-H3
that are currently in clinical trials are listed in Table 2. Apart
from these immune checkpoints, drugs associated with
inhibitory targets beyond traditional immune checkpoints
which lead to indirect repercussions on T-cell effect are also
being investigated as next generation inhibitors. This has been
reviewed in detail elsewhere (92).

Challenges Associated With Immune
Checkpoint Inhibitors
Immune checkpoint blockade (ICB) therapy has become one of
the most successful cancer treatment strategies developed to date.
A pooled meta-analysis study evaluating the long-term survival
of 1861 advanced melanoma patients, receiving ipilimumab
therapy, estimated a 3-year survival rate of 22% (93). The
significance of these results is highlighted when compared to
melanoma patients treated with dacarbazine, a chemotherapeutic
agent, and 3-year survival rates were only 12.2% (14). In
comparison to chemotherapeutics, ICB has allowed better
disease control and outcomes for some patients. Accordingly,
immunotherapy is now at the forefront for management of
various malignancies. But despite the remarkable progress, ICB
is challenged by low response rates, immune-related adverse
events (irAEs) and resistance to treatment.

Response rates are known to vary depending on the type of
malignancy. While excellent response rates are seen in Hodgkin’s
lymphoma and melanomas which range from 40-70%, response
rates in most other diseases is limited to only 10-25% (94). The
unfortunate reality is that majority of patients do not experience
any benefit from treatment with immune checkpoint inhibitors,
and those that do, are likely to experience irAEs. Immune-related
adverse events are caused from non-specific activation of the
immune system resulting in immune responses that target self-
antigens. ICB therapy most frequently results in dermatological
irAEs such as pruritis and mucositis (68% of patients on
ipilimumab therapy). Gastrointestinal distress and immune
mediated colitis have also been reported in 40% of patients on
ip i l imumab therapy . Less common irAEs inc lude
endocrinopathies, hepatotoxicity, pneumonitis, renal toxicity,
pancreatitis, neurotoxicity, cardiovascular toxicity and
hematological abnormalities (95, 96). Inhibition of CTLA-4 has
been associated with a higher frequency and severity of irAES
than checkpoint inhibitors targeting the PD-1/PD-L1 axis (97).
Although irAEs can be managed, they often lead to the
discontinuation of treatment in some patients. Lastly, a crucial
limitation of ICB therapy is related to resistance. Patients that fail
to respond to treatment (innate resistance) and patients that
respond initially but eventually develop disease progression
(acquired resistance) will be discussed further.

Mechanisms of Resistance to Immune
Checkpoint Inhibitors
Immune checkpoint inhibitors targeting the CTLA-4, PD-1, and
its ligand PD-L1 have been successful at inducing an anti-tumor
immune response in several cancers (98). Ipilimumab was the
first agent in the class of immune checkpoint inhibitors (ICIs) to
Frontiers in Oncology | www.frontiersin.org 7
be granted FDA approval for the treatment of metastatic
melanoma in 2011 albeit with significant immune-related
adverse events (irAEs) which needed to be addressed (99).
Since then, diverse ICIs targeting the PD-1 (cemiplimab,
nivolumab and pembrolizumab), and PD-L1 (atezolizumab,
avelumab and durvalumab) have been granted FDA approval
for the treatment of various cancers. To date there are several
other ICIs currently in clinical trials. Although these agents have
been successful at maintaining a sustained response in some
cancer patients, the overall response is usually low, and some
patients develop resistance over time (100). Resistance to ICIs
may be innate (primary) or acquired (secondary). Resistance can
also be classified as intrinsic or extrinsic to tumors. In intrinsic
resistance, tumor cells modify processes associated with DNA
damage response, cell signalling pathways and immune
recognition. Extrinsic resistance occurs external to tumor cells
and is facilitated by interactions of immune cells and non-
immunological mechanisms in the tumor microenvironment
(101–105).

Successful blockade of CTLA-4 and PD-1/PD-L1 in tumors
results in reactivation and proliferation of T-cells. Activation of
T-cells is dependent on the successful presentation of tumor
antigens by APCs and the recognition of these antigens by MHC
I and/or II. T-cells recognise the MHC-bound antigens and
stimulate T-cell proliferation through co-stimulatory factors
described previously (106). Both CTLA-4 and PD-1/PD-L1
pathways play a significant role in tumor evasion through
down regulation of the immune response. Tumors evolve
mechanisms to evade immune checkpoint blockade, thereby
reducing the effectiveness of ICI therapy. In the following
sections, we describe the various mechanisms that govern the
evasion of T cell cytotoxicity by tumor cells following treatment
with ICIs.
INNATE AND ACQUIRED RESISTANCE

Tumor Neoantigens
Innate or primary resistance is observed in tumors that have
never responded to the initial treatment with ICIs (104). The
most notable trigger of intrinsic resistance relates to genetic and
epigenetic alterations that influence tumor neoantigen
presentation, structure, and processing (106, 107). Neoantigens
are peptides produced in the tumor because of somatic
mutations that occur in cancer cells (108). The tumor
neoantigen repertoire is crucial for the activation of an
immune response and recruitment of effector T-cells to the
tumor. Tumors with high mutational rates are typically
responsive to ICI therapy compared to tumors with low tumor
mutational burden (TMB) apart from renal cell carcinomas (66,
109–111).

Emerging evidence indicates that some tumors lose or down
regulate generation of neoantigens required to illicit an immune
response and therefore the tumor escapes T-cell cytotoxicity
(63). Anagnostou and colleagues (63, 82) assessed biopsies of
relapsed NSLC patients and observed a downregulation of key
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tumor antigens indicative of an anti-PD-1 and anti-CTLA-4
resistance. Efficacy of anti-PD-1 inhibitors is dependent on the
availability of tumor antigen specific T-cells in the tumor
microenvironment and the upregulation of PD-1 in effector T-
cells and PD-L1 in tumor cells. This requires tumors to present
specific antigens that are different from the original tumor cells.
Without these antigens, the immune checkpoint blockade
is attenuated.

In addition to tumor neoantigen downregulation, tumors
escape immunosuppression through alteration of the antigen
presentation machinery. Dendritic cells (DCs) initiate an
immune response through uptake and presentation of tumor
antigens to activate naïve CD4 and CD8 T cells (112, 113). DCs
activate the CD8 T cells in a process called cross priming where
antigens are presented to CD8 T cells via MCH I to generate an
anti-tumor CD8 T cell response (114). Cross priming of tumor
specific CD8 T cells is very important in initiation and stabilisation
of the anti tumor immune response. Deficiencies in T cell priming
mechanism have been shown to contribute unresponsiveness to
immune checkpoint inhibition therapy (115). The TME plays a
major role in the transportation of effector CD8 T cells to tumors
and alterations in the TME therefore affect the anti-tumor
response. In particular, the presence of tumor derived inhibitory
molecules such as interleukin (IL-6, 10), transforming growth
factor beta (TGFb) and VEGF produced by the tumor negatively
impact the growth, maturation and differentiation of DCs (116,
117). These molecules are usually secreted by myeloid derived
suppressor cells (MDSCs), tumor-associated macrophages
(TAMs) and regulator T cells (Tregs) which are discussed in
subsequent sections.

Dysfunctional Major Histocompatibility
Complex Molecules
Alterations in the structure of MHC-I/II and the antigen
presenting machinery, beta 2 microglobulin (B2M), prevents
the identification and presentation of tumor antigens (118).
The MHC class I pathway is responsible for antigen
presentation and any defects in the genes associated with
MHC-1 pathways such as the HLA class I and the B2M gene
affect antigen presentation and ultimately immune response
(119). This phenomenon has been observed in several tumors
with B2M mutations and more specifically the loss of
heterozygosity (LOH) of the B2M gene. Indeed, these
modifications have been observed in various tumor tissues and
have been associated with resistance to anti-PD-1/PD-L1 and
anti-CTLA-4 immune checkpoint inhibitors (120–122).

Inadequate Anti-Tumor T-Cell
Effector Function
Interestingly, mutations in the JAK1 and JAK2 pathways have
also been associated with resistance to ICI treatment (123, 124).
JAK1/2 are key intermediates in the interferon signaling
pathways. Since the interferon pathway (INF) is particularly
involved in the upregulation of PD-L1 expression, blockade of
the PD-1/PD-L1 is likely ineffective in tumors with alterations in
the interferon pathway. This is suggestive of an alternate
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mechanism of immune evasion in tumor cells other than PD-
1/PD-L1 upregulation (125). Moreover, Gao and colleagues
reported anti-CTLA-4 resistance in tumors with LOH in many
genes associated with the INFg pathway (126). It has been shown
in melanoma that the interferon-gamma-JAK1/JAK2-STAT1/
STAT2/STAT3-IRF1 signaling cassettes primarily regulates PD-
L1 expression on the cancer cell, through IRF1 binding to its
promoter. This establishes PD-L1 as an interferon-g immediate
response gene. Upon tumor antigen recognition in the context of
the MHC, the T cell releases interferon gamma that binds to its
receptors on the cancer cell. This is followed by the transduction
of a signal via the JAK/STAT pathway, culminating in the
activation of the paralogous the PD-L1 and PD-L2 genes of the
tumor cell (Figure 2). In this way interferon gamma can play a
critical role in negative regulation of T cell activation through the
expression of PD-1 receptors on the tumor cell. Immune
checkpoint blockade therapy acts by blocking PD-1/PD-L1/2
interaction thereby restoring T cell activation and anti-tumor
activity. The evidence shows that dysregulation of this pathway
in the tumor cell produces resistance to PD-1 based ICB therapy.
It was shown that loss of function mutations in Ak1/2 and
subsequent lack of PD-L1 expression led to primary resistance to
anti-PD-1 antibody therapy (123, 127). Similar interferon
signalling dependent resistance has been demonstrated with
the anti-CTLA-4 therapy, ipilimumab (126). Though studies
on delayed relapses after anti-PD-1 therapy, the interferon-g
signalling pathway has been shown to be associated with
acquired immunity to anti-PD-1 immune blockade therapy
(124). The inhibitory CTLA-4 is essentially an intracellular
molecule whose trafficking from intracellular vesicles to the to
the cell surface is tightly regulated to maintain an optimal
balance with stimulatory molecules (41).

T-Cell Exhaustion
T cell exhaustion is a phenomenon that was first described in
mice with chronic viral infections, and thereafter observed in
humans with chronic viral infections and cancer (42, 128–131).
More recently, however, it has been linked to resistance in ICB
therapy. Exhausted T cells in the tumor microenvironment have
been shown to progressively lose their functional capacity to
proliferate, produce effector cytokines and lyse upon chronic
antigen exposure (130, 131). While numerous pathways may
individually influence T cell exhaustion, the PD-1/PD-L1
checkpoint pathway partly contributes to T cell exhaustion. In
exhausted T cells, PD-1 expression is driven by demethylation of
its promoter. The stability of this epigenetic mechanism blocks
long-term effector function or memory development by T cells
following ICB therapy, potentially explaining disease relapse in
patients treated with PD-1/PD-L1 checkpoint inhibitors (132–
134). Moreover, studies have reported that T cell exhaustion in
acquired resistance is a consequence of the up-regulation of other
checkpoint inhibitors such as TIM3, LAG3 and VISTA following
checkpoint blockade (120, 135, 136). The exact mechanisms
leading to T cell exhaustion following ICB therapy is largely
unclear and further studies are required to validate the
dysfunctional T cell states and their contribution to resistance.
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The Tumor Microenvironment (TME)
The TME contains various types of cells that play a significant
role in the promotion or inhibition of the tumor. The cell types
include regulatory T-cells (Treg cells), myeloid derived
suppressor cells (MDSCs), cancer-associated adipocytes,
fibroblasts and endothelial cells; and tumor-associated
macrophages (TAMs) (137). Through producing various
molecules, Tregs, MDSCs, TAMs and tumor-associated
stromal cells inhibit the anti-tumor T-cell response and
maintain an immune tolerant tumor that attenuates the
effectiveness of ICIs (138, 139). Foxp3 Treg cells, are mainly
produced by the thymus as a functionally mature and distinct T-
cell subpopulation, whose function is to maintain self-tolerance
after an immunological response or activation (140).

Treg cells produce immunosuppressive molecules including
transforming growth factor-b (TGF-b) and interleukin-10 (IL-
10) which typically interfere with the activation, proliferation
and survival of effector T-cells (141). Additionally, Tregs also
upregulate the expression of immune checkpoints such as
CTLA-4, PD-1 and others (142). The effectiveness of anti-
CTLA-4 mAb is dependent on decreasing Treg cells in tumors
via antibody-dependent cytotoxicity but this mechanism does
not affect the activation of CTLA-4 (143). For this reason, anti-
CTLA-4 alone selectively depletes Treg cells permitting
immunosuppression stimulated by remaining Treg cells (138,
144). Several animal studies have shown a connection between
amount of Treg cells in the TME and enhanced antitumor
immunity (145, 146). Studies in cancer patients treated with
anti-CTLA-4 therapy revealed better response to treatment in
patients with a low ratio of Treg cells compared to Teff cells in
the TME (140, 147). Recruitment of Tregs in the TME relies
upon metabolic processes associated with lipid metabolism. A
study by Pacella and colleagues (2018) showed that both
increased glycose and oxidative metabolism influenced Tregs
expansion by fueling fatty acid (FA) synthesis (148).

Tumor-associated macrophages (TAMs) support tumor
growth through the expression of PD-L1 ligand and Na/H
exchanger isoform 1 (NHE1) (149, 150). NHE1 maintains the
alkaline intracellular pH of glioma cells, a driving force of
glycolytic metabolism exploited by cancer cells in a process
called Warburg Effect (151, 152). Moreover, TAMs are
involved in the production of cytokines such as transforming
growth factor (TGF-b) and vascular growth factor (VEGF-A)
implicated in tumor evasion (153, 154). Since TAMs can regulate
the production of pro-inflammatory and immune response
inhibitory molecules, anti-PD-L1 inhibition alone is not
sufficient for prolonged suppression of the tumor.

Myeloid-derived suppressor cells (MDSCs) alter the function
of CD8+ T cells through numerous mechanisms including a
(i) decrease in arginine and cysteine production in the TME,
(ii) reduced transport of T cells into the lymph node and tumor,
(iii) production of free radicals that ultimately block TCR and IL-
2 signaling, inducing T cell death and expansion of Tregs (155).
Like TAMs, MDSCs may be induced by tumor-derived factors
such as TGF-b, ILs 1, 6, 10 and VEGF-A. MDSCs cells have been
shown to also express immune checkpoint PD-L1, further
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contributing to immunosuppression in mice models (156). The
manifestation of MDSCs was associated with poor prognosis in
metastatic melanoma patients treated with anti-CTLA-4
(ipillimumab) (157, 158).

Metabolic Reprogramming in the TME
Cancer cells tend to accumulate metabolic alterations that allow
them to utilize eccentric sources of nutrients to support cancer
cell proliferation and deprive antitumor immune cells of
nutrients within the tumor microenvironment. Because tumors
are heterogeneous in nature, they often have complex metabolic
patterns. The first evidence of variations in nutrient metabolism
observed in cancer and normal cells was reported in the 1920s by
Warburg and colleagues (159). They observed a marked increase
in glucose metabolism in cancer cells compared to non-
proliferating normal cells; and the preference of glycolysis over
oxidative phosphorylation (OXPHOS) even in the presence of
oxygen and functional mitochondria. The observed
phenomenon was later termed the “Warburg Effect” (159).
This observation was further corroborated in a variety of
tumors associated with poor prognosis (160). Even though
there are other metabolic processes and molecules governing
tumor resistance, we will focus on the metabolism of glucose in
the TME and its impact on tumor progression and antitumor
immune escape.

The high demand for glucose in cancer cells within the TME
starves immune cells resulting in poor antitumor immune
response (51). When T cells are inactive, they largely rely on
OXPHOS and fatty acid oxidation (FAO) to support their needs.
Once T cells are activated through binding of costimulatory
receptors such as CD28, T cells alter their metabolism to support
T-cell proliferation and T cell effector (Teff) functions (161). The
CD28 co-stimulation drives the activation of the PI3K/AKT
pathways and glycolytic flux (162, 163). The dramatic increase
in glycolysis in T cells is essential for T-cell growth, division, and
differentiation into cytotoxic T cells (164). Since glucose is
required by tumors and is essential to support immune cell
growth, differentiation and function, its metabolism within the
TME affects the function of immune cells infiltrating the TME
(165). The competition for glucose metabolism within the TME
deprives tumor infiltrating lymphocytes (TIL) of glucose
resulting in their exhaustion and tumor immune escape (166).

In addition, the preference for aerobic glycolysis in tumors
increases the levels of lactic acid in the TME resulting in an acidic
environment that further supports the growth of tumors whilst
inhibiting immune cell function within the TME. Indeed Muller
and colleagues (2000) showed that the activation and function of
tumor infiltrating immune cells (IL-2) was significantly
perturbed in acidic conditions. Both the stimulated and
unstimulated human PMBCs were unable to kill tumor cells
after three days of culture in an acidic culture environment of pH
6.5 (167). This finding was further supported by Calcinotto and
colleagues (168) using mice models and human tumor cell lines.
Using in vitro and in vivo models, Calcinotto and colleagues
revealed that the acidic microenvironment not only affected the
function of effector cells but also induction of T-cell anergy (168).
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In addition to interfering with immune cell activation and
function, acidic pH in the microenvironment also upregulates
the expression of CTLA-4 on T lymphocytes, therefore
intensifying antitumor resistance (169).

Besides the increased uptake of glucose by tumor cells;
competitive uptake of other metabolites, amino acids
(glutamine, arginine, tryptophan) and growth factors by tumor
cells also affects the function of immune cells (51, 165).

Amino acids are protein building blocks, the high availability
of amino acids in the TME is essential for tumor growth. At the
same time, amino acids are essential for immune cells
differentiation and development of their antitumor effector
cells (170). For example, glutamine powers the tricarboxylic
acid (TCA) cycle via glutaminolysis, to provide metabolic
intermediates that serve as building blocks for lipids, proteins,
and nucleic acids, which are necessary for cancer cell
proliferation. Interestingly, the metabolic pathway used by the
tumors has been shown to be essential for T cell activation and
proliferation (171, 172).

There are several studies that have investigated the impact of
targeting different metabolic pathways to assist the immune
checkpoint inhibition or circumvent resistance. The metabolic
dependencies between tumor and immune cells in the TME
make it challenging to obtain antitumor effects with drugs
targeting metabolic processes (170). Targeting enhanced
glycolytic activity of tumors through inhibition of glycolysis
regulatory enzymes or via application of competitive glucose
analogs has been shown to promote T- cell proliferation and
function (166, 173). Various studies have shown that the
blockade of immune checkpoints (PD/PD-L1 and CTLA-4)
rescues TILs from tumor-induced glucose restrictions and
restores glycolysis in T-cells.
STRATEGIES TO OVERCOME
RESISTANCE TO IMMUNE CHECKPOINT
BLOCKADE THERAPY

When looking at patients that experience resistance, it is helpful
to define them into two broad categories, firstly are the ones with
innate resistance, who never respond to the immune checkpoint
therapy (ICT) and secondly are the ones who have acquired
resistance, who respond positively to treatment at first, but then
build up a resistance resulting in the treatment becoming
ineffective over time (102). Studies have found that tumors
that are infiltrated by T cells and therefore that have initiated
an inflammatory response as well as have a higher mutational
burden have a better response to ICT then tumors that do not,
this is especially important when looking at potential strategies to
combat resistance to ICI (174).

An essential aspect to combating ICT resistance requires a
deeper understanding of the exact mechanisms involved, down
to an individual level, so that therapies can be adapted to the
tumor microenvironment. To overcome resistance against a
single checkpoint inhibitor target, combinational therapies
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have been conducted. Multiple combinations of different
therapies have been successfully tried with the most promising
combination therapies including ICT paired with (i) other
checkpoint inhibitors, with a combination of anti-PD-1 and
anti-CTLA-4 already having been approved for multiple
cancers as they have been shown to improve T-cell activation
and decrease T-cell exhaustion (175) and combinations with
next generation ICT such as anti-LAG and anti-TIGHT showing
similar positive results (176). (ii) Immunotherapeutic agents
such as cancer vaccines and oncolytic virus therapy which can
improve antigen presentation and recognition and T cell
infiltration (177, 178). (iii) Removal of co-inhibitory signals
and activation of co-stimulatory signals which can amplify T
cell activation and T cell cytotoxicity (179). (iv) DNA damaging
therapies such as chemotherapy or radiation which has been seen
to increase antigen presentation, pro-inflammatory cytokines
and activation of dendritic cells, to stimulate the presentation
of neoantigens in non-inflamed, non T cell infiltrated tumor cells
(180) and (v) more targeted therapies including monoclonal
antibodies and tyrosine kinase inhibitors which have been seen
to enhance antitumor immunity, increase T cell infiltration and
decrease T cell exhaustion (181).

In addition to these, epigenetic modifications within cancer
cell DNA can impact the presentation and processing of
antigens, which can promote immune evasion, therefore,
demethylating agents may also increase the response to
combination ICT treatment as they have been seen to elicit an
immunostimulatory response, upregulation of cytokine
production as well antigen presentation and inhibition of T
regulation cells (182). Interestingly a link has been reported
between the gut microbiome and response to ICT, where mice
suffering from sarcomas that were fed with a germ-free diet, had
a very poor response to CTLA-4 blockade therapy. This was
further supported when their response was restored upon being
fed with Bacteroides fragilis (183). This has since been concluded
in a number of studies that demonstrate that gut microbiome can
affect a person’s response to ICT treatment (184).

Lastly biomarkers have also become a topic of interest in
helping overcome resistance as they can be investigated to
estimate the predicted response of an individual to treatment.
Biomarkers of particular interest include PD-L1 expression,
tumor mutation burden (TMB), microsatellite instability-high
(MSI-H) or mismatch repair (MMR) deficiency, IFN-g signalling
and T-cell infiltration (185). The only predictive biomarker that
has been approved to date is PD-L1 expression using
immunohistochemistry (IHC), in which higher expression
correlates to a positive response to ICT and fewer side effects
observed (186). However, because the detection of PD-L1 relies
on antibody staining techniques, this creates inconsistencies in
the accuracy of results and therefore its predictive value (187).
TMB as a potential biomarker looks for somatic mutations via
DNA sequencing, with an increased number of mutations
resulting in higher neoantigen production and therefore a
positive response to ICT, however not all mutations and
neoantigens correlate equally towards a positive response
(188). Defective DNA mismatch repair (MMR) can lead to
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high microsatellite instability (MSI-H), and MSI-H is associated
with higher neoantigen production by tumors and therefore a
stronger immune response and better response to ICT. MSI has
been argued to be the most accurate biomarker predictor (189).

Activation of IFN-g signalling can be used as a predictive
biomarker as studies have found loss of function mutations or
gene knockdowns in this pathway result in resistance to ICT
treatment (7, 23, 182). IFN-g signalling up regulates the major
histocompatibility complex II as well as antigen presenting cells
(APCs) and increases PD-L1 expression, however on the other
hand studies have found that chronic IFN-g signalling can lead to
acquired resistance, therefore it seems early IFN-g signalling may
predict positive response to ICT but once resistance is acquired,
continued IFN-g signalling can predict further resistance (190).
Lastly decreased T cell infiltration and a lack of an inflammatory
response has been reported to be linked to poorer prognosis and
is therefore predictive of a low response to ICT (191).
FUTURE DIRECTIONS

This review examined the successes and failures of immune
checkpoint inhibitors (ICIs) and focused on resistance
mechanisms. Although ICIs have produced unmatched and
durable clinical responses in some cases, this revolutionary
strategy has not succeeded in most patients. The limited
application of this revolutionary cancer treatment strategy is
the most critical matter and is a subject of intense investigation.
Critically, it is not possible to predict who is likely or unlikely to
benefit from ICI therapy. Towards this end, the discovery of
biomarkers is ongoing and is expected to allow personalized
treatment approaches. Also, the immune-related adverse effects
present a difficult challenge because they are unique and unlike
adverse effects often seen with traditional treatments. Although
irAEs are usually low-grade and reversible, they can also cause
permanent disorders and affect any organ. Another challenge to
ICI treatment is that poorly understood primary or secondary
resistance limits treatment outcomes. The enormous impact of
the tumor microenvironment on carcinogens adds a chaotic
dimension to the study of cancer as the TME is a dynamic system
and pliable. Presumably, there are deterministic laws or logical
patterns that govern the apparent random environment. With
the advances in artificial intelligence and high-throughput data,
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it is possible to produce knowledge to understand the complex
emergence of irAEs better. The ongoing transcriptomic and
epigenetic analyses are likely to make invaluable knowledge in
this regard.
CONCLUSION

Immune checkpoint therapy (ICT) is a very promising, recently
developed cancer treatment. Here, we described PD-1/PD-L1
and CLTA-4 immune checkpoints and the monoclonal antibody
drug inhibitors that have been approved by the FDA. Although
there are positive results in some patients treated with immune
checkpoint inhibitors, others never respond to treatment, while
the responders often develop resistance. We have described
various mechanisms by which resistance can develop and some
efforts to overcome this problem. The diverse components of the
tumor microenvironment play a critical role in creating ICT
resistance. Strategies currently used to help combat resistance
include combination therapy with multiple checkpoint inhibitors
or checkpoint inhibitors with chemotherapy or radiation.

Given the increasing incidence of cancer, there is an urgent
need to improve the currently available therapies and develop
new alternatives. Although glucose competition exerts pressure
on normal cells in the tumor microenvironment, the fine details
about how this affects ICI therapy is still unclear.
AUTHOR CONTRIBUTIONS

BLR, SAS and STM contributed equally in the, composition of
the main text. LD contributed in the conception of article, in
intellectual input and in fundraising. MN is the corresponding
author who researched and wrote the final document. All authors
contributed to the article and approved the submitted version.
FUNDING

BLR and LD are funded by The Technology and Human
Resources for Industry programme (THRIP). SAS and STM
are funded by the National Research Foundation (NRF) GUN:
116681 and GUN: 121878 respectively.
REFERENCES
1. Nurieva R, Thomas S, Nguyen T, Martin-Orozco N, Wang Y, Kaja M-K,

et al. T-Cell Tolerance or Function Is Determined by Combinatorial
Costimulatory Signals. EMBO J (2006) 25(11):2623–33. doi: 10.1038/
sj.emboj.7601146

2. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al.
Improved Survival With Ipilimumab in Patients With Metastatic Melanoma.
New Engl J Med (2010) 363(8):711–23. doi: 10.1056/NEJMoa1003466

3. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz H-J, Morse MA,
et al. Nivolumab in Patients With Metastatic DNA Mismatch Repair-
Deficient or Microsatellite Instability-High Colorectal Cancer (Checkmate
142): An Open-Label, Multicentre, Phase 2 Study. Lancet Oncol (2017) 18
(9):1182–91. doi: 10.1016/S1470-2045(17)30422-9
4. Hammers HJ, Plimack ER, Infante JR, Rini BI, McDermott DF, Lewis LD,
et al. Safety and Efficacy of Nivolumab in Combination With Ipilimumab in
Metastatic Renal Cell Carcinoma: The Checkmate 016 Study. J Clin Oncol:
Off J Am Soc Clin Oncol (2017) 35(34):3851–8. doi: 10.1200/
JCO.2016.72.1985

5. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al.
Nivolumab Versus Chemotherapy in Patients With Advanced Melanoma
Who Progressed After Anti-CTLA-4 Treatment (Checkmate 037): A
Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol (2015)
16(4):375–84. doi: 10.1016/S1470-2045(15)70076-8

6. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al.
PD-1 Blockade With Nivolumab in Relapsed or Refractory Hodgkin’s
Lymphoma. New Engl J Med (2014) 372(4):311–9. doi: 10.1056/
NEJMoa1411087
June 2021 | Volume 11 | Article 641428

https://doi.org/10.1038/sj.emboj.7601146
https://doi.org/10.1038/sj.emboj.7601146
https://doi.org/10.1056/NEJMoa1003466
https://doi.org/10.1016/S1470-2045(17)30422-9
https://doi.org/10.1200/JCO.2016.72.1985
https://doi.org/10.1200/JCO.2016.72.1985
https://doi.org/10.1016/S1470-2045(15)70076-8
https://doi.org/10.1056/NEJMoa1411087
https://doi.org/10.1056/NEJMoa1411087
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Russell et al. Resistance to Immune Checkpoint Inhibitors
7. Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D,
et al. Phase I Study of Ipilimumab, an Anti–CTLA-4 Monoclonal Antibody,
in Patients With Relapsed and Refractory B-Cell Non–Hodgkin
Lymphoma. Clin Cancer Res (2009) 15(20):6446. doi: 10.1158/1078-
0432.CCR-09-1339

8. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al.
Nivolumab in Metastatic Urothelial Carcinoma After Platinum Therapy
(Checkmate 275): A Multicentre, Single-Arm, Phase 2 Trial. Lancet Oncol
(2017) 18(3):312–22. doi: 10.1016/S1470-2045(17)30065-7

9. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al.
Nivolumab in Patients With Advanced Hepatocellular Carcinoma
(Checkmate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose
Escalation and Expansion Trial. Lancet (2017) 389(10088):2492–502. doi:
10.1016/S0140-6736(17)31046-2

10. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al.
Nivolumab Versus Docetaxel in Advanced Nonsquamous Non–Small-Cell
Lung Cancer. New Engl J Med (2015) 373(17):1627–39. doi: 10.1056/
NEJMoa1507643
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