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Abstract: Particle-polymer dispersions are ubiquitous in additive manufacturing (AM), where they
are used as inks to create composite materials with applications to wearable sensors, energy storage
materials, and actuation elements. It has been observed that directional alignment of the particle
phase in the polymer dispersion can imbue the resulting composite material with enhanced mechani-
cal, electrical, thermal or optical properties. Thus, external field-driven particle alignment during the
AM process is one approach to tailoring the properties of composites for end-use applications. This
review article provides an overview of externally directed field mechanisms (e.g., electric, magnetic,
and acoustic) that are used for particle alignment. Illustrative examples from the AM literature show
how these mechanisms are used to create structured composites with unique properties that can only
be achieved through alignment. This article closes with a discussion of how particle distribution
(i.e., microstructure) affects mechanical properties. A fundamental description of particle phase
transport in polymers could lead to the development of AM process control for particle-polymer
composite fabrication. This would ultimately create opportunities to explore the fundamental impact
that alignment has on particle-polymer composite properties, which opens up the possibility of
tailoring these materials for specific applications.

Keywords: directed assembly; additive manufacturing; external fields; 3D printing; particle-
polymer composites

1. Introduction

Additive manufacturing (AM) is a method by which three-dimensional computer-
aided designs (CAD) are fabricated without the need for process planning [1]. This process
involves the layer-by-layer deposition of filament, powder, or liquid drops to translate
the CAD drawing into a fully realized object. The AM industry generated a revenue of
approximately 5.2 billion USD in 2015 [2]. This revenue includes a 769 million USD AM
materials market that produces, in descending order of market share, photopolymers,
laser-sintered powders, filaments, and metals. These materials are used to support a
variety of AM technologies [3] that include 3D printing, stereolithography, laminated object
manufacturing, and fused deposition modeling.

Among the materials available for use in AM applications, polymers represent 51%
of the products produced by AM systems [2,4]. This fraction does not include the 29%
of products that blend polymers and metals together to form composite AM materials.
The ubiquity of polymers in the AM industry likely arises from their low cost and high
production volume. The U.S. National Research Council reports that polymers, in the form
of plastics, fibers, and rubber, are produced in the range of 71 billion pounds per year
with a financial return approaching 0.50 USD per pound [5]. As a fundamental building
block for AM applications, polymers have properties that can be tuned to achieve specific
rheological behavior [6–8] or functionalities related to ionic conductivity [9–12], thermal
conductivity [13–15], and magnetic [16–18] or dielectric [19–21] permittivity.
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While some of these polymer functionalities can be achieved through chemical modi-
fication, an alternative method is to disperse filler micro- or nanoparticles in the polymer
solution prior to processing or deposition by AM [22–26]. Inks based on particle-polymer
dispersions can be used in the AM process to create compositionally graded compos-
ites [27,28] that serve to enhance the multi-material capabilities of finished products [29].
Tuning the AM process for particle-polymer dispersions influences composite proper-
ties such as flexibility, mechanical strength, toughness, and optical transparency [30–32].
These material properties are directly tied to the filler particle organization within the
composite [33].

Directing the assembly of filler particles in a composite toward specifically organized
arrangements or orientations enables the fabrication of materials which exhibit hierarchical
functionality from the nanoscale to the macroscale [34]. Polymer composites that contain
aligned filler particles exhibit increased elastic moduli as compared with composites
where the filler particles are randomly arranged [35–38]. Particle-polymer composites
with internal alignment also exhibit anisotropic responses to mechanical, thermal, electric,
or magnetic inputs [39–42]. The anisotropy exhibited by the aligned particle-polymer
composites can be used for a variety of emerging soft material applications, including
wearable sensing devices [43–45], energy storage [46–48], artificial muscles [49–51], and soft
robotics [52–54]. The alignment of filler particles used in these materials is often achieved
by the application of external fields such as electric [55,56], magnetic [57,58], and acoustic
fields [59–61].

It is the purpose of this review article to provide an overview of some of the types
of external fields used to direct the assembly or alignment of filler particle-polymer dis-
persions. Figure 1 summarizes the transport mechanisms discussed in this review. Using
external fields to tune the internal arrangement of filler particles is a pathway towards fab-
ricating functionally graded particle-polymer composites. Achieving specific arrangements
of filler particle distributions requires an understanding of how different directed assembly
mechanisms operate. The forces associated with each of these mechanisms can favor
different structures and a fundamental understanding of these forces serves as the basis
for a paradigm in multi-material AM processing. The review concludes with a discussion
of how external fields can contribute to specific filler particle arrangements that enhance
intrinsic material properties (e.g., elastic modulus) or can be used as an actuator to improve
AM process control.
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Figure 1. The diagram shows the three major types of external field mechanisms used in AM processing of particle-polymer
composites.

2. Electric Fields

In uniform electric fields, or at low frequencies, particle transport is dominated by
electrophoresis, which represents the migration of a charged particle towards an electrode
of opposite polarity. The characteristic electrophoretic velocity as a function of frequency
is [62,63]:

vep =
(
bεpεoζE/ηmp

)[(
b/mp

)2
+ ω2

]−0.5
, (1)



Micromachines 2021, 12, 935 3 of 24

where b is the Stokes drag factor, εp is the dielectric constant of the particle, εo is the electric
permittivity of free space, ζ is the particle zeta potential, E is the applied electric field, η
is the medium viscosity, mp is the particle mass, and ω is the angular frequency of the
field. Electrophoresis is frequently used to deposit colloidal particles onto surfaces to create
functional materials by a process known as electrophoretic deposition [64,65].

In one demonstration of electrophoretic deposition for fabricating particle-polymer
composites, poly [3-(3-N,N-diethylaminopropoxy)thiophene] (PDAOT) was dissolved in
an acetic acid, water, and ethanol mixture [66]. The mixture was blended with a dispersion
of single-wall carbon nanotubes (SWCNTs) and placed in an electrochemical cell, where a
3–15 V direct current (DC) potential was applied over a period of time that varied from
1 to 10 min. The process was used to control the particle-polymer deposition rate for
the fabrication of metal oxide nanoparticle-polymer films with a thickness that varied
from 100 nm to 15 µm [67,68]. Another polymer, poly (3-octylthiophene) (P3OT), has
been blended with SWCNTs to fabricate particle-polymer films with enhanced current
density [69]. In these experiments, a 40 V DC potential was applied to create a control
particle-polymer film. An alternating current (AC) signal was superimposed onto the
input DC signal, resulting in a 12% improvement to current density capacity. The current
capacity of electrophoretically deposited particle-polymer films was used as the basis for a
sensor which measured changes in resistivity due to in-plane shear stress [70].

Electrodes can also be patterned using photolithography to better concentrate depo-
sition material. Electrode patterning allowed for the fabrication of a conductive particle-
polymer film that resulted in a 344% improvement of current density as compared with
films fabricated using a DC potential [69]. Photolithography has also been used as part of
a process to create a substrate where electrophoretic deposition was applied to Ni fibers
dispersed in a polyurethane-modified epoxy resin [71]. An unmodified resin was measured,
and its Young’s modulus was 285 MPa after curing, while an electrophoretically deposited
Ni fiber resin composite’s Young’s modulus was 6.8 GPa.

When a non-uniform electric field is used, particles migrate towards field minima or
maxima depending on particle and medium properties [72–74]. This mechanism, known as
dielectrophoresis, affects particles with a force that depends on the gradient of the applied
electric field [75]:

Fdep =
3
2

εmεoVp fcm∇E2, (2)

where εm is the medium dielectric constant, Vp is the particle volume, and fcm is the Clausius–
Mossotti factor. The parameter, fcm, is a factor that compares the relative contribution of
particle and medium properties to the force acting on the particle. This contribution is as
follows:

fcm = Re
[(

ε̃p − ε̃m
)
/
(
ε̃p + 2ε̃m

)]
, (3)

where the operator, Re, is used to find the real component of the Clausius–Mossotti term
and ε̃ = εεo − iσ/ω is the complex dielectric permittivity of the particle or the medium.
In the DC limit, where ω = 0, fcm is dominated by conductivity values, while dielectric
constants are important at high frequencies (ω → ∞) [76].

Dipolar chains also form in response to electric field-induced polarization of the
particles in solution. The dipolar chain energy acting on a single pair of particles in an
electric field is [77]:

udc,E = − p2

2πεmεor3 P2(cosθ), (4)

where p = 3εmεoVp fcmE is the dipole moment of the particle pair, r is the center-to-center
separation distance between particle pairs, P2 is a Legendre polynomial of order two, and
θ is the angular orientation of the particle pair with respect to the direction of the applied
electric field. The force representation of Equation (4) is [78]:

Fdc,E = − p2

4πεmεor4

[(
15 cos2θ − 3

)
er − (6 cos θ)ez

]
, (5)
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where er is a unit vector that connects the particle pair and ez is a unit vector that points in
the direction of the electric field.

In uniform electric fields or electric fields with weak gradients, dipolar chain structures
are observed in the resulting composite. These dipolar chains assemble with structures
oriented in the primary direction of the applied electric field and, with particle loadings in
sufficiently high concentrations, bridge the gap between electrodes, forming a percolated
network. Spirulina, a microscopic organism with a spring-like structure, is coated with
silver and dispersed in polydimethylsiloxane (PDMS) [79]. The Spirulina structures are
used to create microcoils, as shown in Figure 2A. These microcoil particles assemble into
chains between electrodes to form a composite with a conductivity of 10 S/m, which is
eight orders of magnitude larger than non-aligned Spirulina samples (Figure 2B). Carbon
nanocones dispersed in an acrylated urethane form chain structures that improve the
electrical conductivity of the polymer from 10−7 to 10−3 S/m [80].
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Figure 2. (A) SEM image of a metallic Spirulina-templated microcoil. The inset shows a cross-
section of the microcoil particle; (B) the application of a 5 wt% electric field-aligned microcoil/PDMS
composite in a functional LED integrated circuit. Reprinted with permission from [79], copyright
2017 American Chemical Society; optical micrographs showing (C) the top view and (D) side view of
a thermally cured carbon nanocone film (0.2 vol%), which was assembled by DC field alignment;
(E) inset shows an SEM image of the nanocone used in this process. Reprinted with permission
from [80], copyright 2011 John Wiley and Sons; (F) hollow glass microspheres dispersed in Norland
optical adhesive initially chain before (G) migrating towards an electrode. Reprinted with permission
from [81], copyright 2017 Elsevier; (H) an acrylate polymer composite consisting of (I) SWCNT
aligned using an AC electric field. Reprinted with permission from [82], copyright 2014 John Wiley
and Sons.

Particle-polymer composites fabricated using electric field assembly can be used to
fabricate tactile force sensors. For example, carbon nanocones dispersed in a UV curable
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adhesive, 3094 Dymax, were assembled into a wire that connects two electrodes spaced
100 µm apart, as shown in Figure 2D [83]. The carbon nanocone wire formed as part of the
composite was found to be sensitive to substrate deflections up to 50 µm. CNTs dispersed
in PDMS assembled between interdigitated electrodes formed microwires that registered a
0.145% linear change in wire resistivity per unit change in mN of applied force [84].

When dielectrophoresis is the dominant transport mechanism, chains form locally in
the electric field before migrating towards electric field minima or maxima [74,85]. This
can create opportunities to fabricate local concentration gradients in composite materials.
The dynamics of particle chain formation in a polymer media under dielectrophoresis
mechanism can be predicted using a particle chaining model based on dipole–dipole
interactions, which takes into account variable medium viscosity and electric field am-
plitude [86]. Hollow glass spheres dispersed in Norland optical adhesive initially form
chains (Figure 2F) before migrating towards an electrode (Figure 2G) [81]. Barium titanate
nanoparticles with a cubic morphology migrate towards electrodes, forming a particle
rich layer, when dispersed in PDMS [87]. Anisotropic particles, such as CNTs or fibers,
experience an electric field-induced torque before migration towards an electrode, enabling
the formation of an aligned nanocomposite (Figure 2H,I) [82,88,89]. The local concentration
gradients formed in this way have been used to fabricate composite materials tailored to
serve as alternatives to metallic strain gauges [90] or create thermally conductive pathways
for enhanced heat transfer [91,92].

3. Magnetic Fields

Similar as with electric fields, particles respond to magnetic fields by migrating
towards magnetic field minima or maxima depending on the intrinsic properties of the
particle and the medium in which they are dispersed [93]. The magnetophoretic force
responsible for this migration is given as follows:

Fmag =

(
χp − χm

)
Vp

µo(1 + χm)
(B·∇B), (6)

where χp and χm are the magnetic susceptibilities of the particle and medium, respectively,
and µo is the magnetic permeability of free space. The magnetic induction, B, is related
to the applied magnetic field, H, by the expression [94] B = µo(1 + χm)H. In addition
to magnetophoresis, multiple particles also form dipolar chains in the direction of the
magnetic field. The interaction energy between a single pair of particles in a magnetic field
is [95]:

udc,M = −1.202m2

2πµor3 P2(cosθ), (7)

where m =
(
χp − χm

)
VpB/µo is the magnetic moment of the particle and θ is the angle the

pair forms with respect to the direction of the magnetic field. The force representation of
Equation (7) is [96]:

Fdc,M =
3µom2

4πr4

[(
1− 5 cos2θ

)
er + (2cosθ)ez

]
, (8)

where er is a unit vector that connects the particle pair and ez is a unit vector that points in
the direction of the magnetic field.

The use of magnets as a mechanism for composite fabrication has a long history
due to the ease of the process and simplicity of blending para- or ferromagnetic particles
with a polymer medium [97–101]. When magnetically sensitive particles are crosslinked
in a polymer, the composite forms a magnetoelastomer that deforms in the presence of
a magnetic field [102,103]. An alternative method for creating magnetoelastomers was
suggested by the authors of this review [104]. In this alternative approach, a sacrificial
scaffold was created in PDMS. The scaffold was dissolved, and a magnetorheological fluid
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was introduced to the evacuated channel, rendering the structure sensitive to magnetic
field-induced deflections.

Magnetoelastic soft actuators (sometimes referred to as ferrogels) are designed by
coupling magnetic properties of filler particles and elasticity of the polymer matrix. Un-
derstanding the deformation and mechanical properties of such actuators is crucial for
optimizing their performance [105]. The deformation of these composites in the presence
of a magnetic field is analogous to muscle constriction [106], which makes these types of
composites ideal for actuation applications such as haptic control surfaces for steering [107].

Magnetite (Fe3O4) is one of the most frequently used filler material due to its high
magnetic susceptibility [108], which makes it easy to pattern structures in polymers using
externally directed magnetic fields [109]. Fe3O4 can be adsorbed on cellulose nanocrystals
to fabricate magnetic cellulose nanocrystals (MGCNCs). The MGCNCs, shown in Figure 3,
then are aligned in different configurations (parallel or perpendicular directions) in the
polylactic acid matrix through a tunable magnetic field which result in fabrication of
particle-polymer nanocomposite with anisotropic electrical and magnetic properties. The
percent elongation improvement of the resulting nanocomposite is in the range of 60%
to 240% [110]. This use of magnetic fields to locally pattern magnetite-PDMS composites
led to a reduction in local elastic modulus by as much as 50% depending on filler particle
concentration. While local elastic properties of the composite may see a reduction due
to magnetic field-induced concentration, the bulk storage moduli of a magnetite-based
composite are observed to increase by a factor of two depending on the field magnitude
used to align particles [111]. Magnetite can also be functionally bound to materials that are
not ferromagnetic, such as cellulose [112] or glass [113], to create materials with anisotropic
mechanical properties or functional structures, like the circuit shown in Figure 4A,B.
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Figure 3. Energy dispersive x-ray images show magnetic cellulose nanocrystals (MGCNC) without
(A) an applied magnetic field, (B) a horizontally aligned magnetic field, and (C) a vertically aligned
magnetic field. Insets diagrammatically show the field alignment for each case. Reprinted with
permission from [113]. Copyright 2011 American Chemical Society.
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Figure 4. A nanocomposite magnetic switch: (A) a gap between an aligned CNT coated composite
and a nonmagnetic Pb is (B) closed when a magnet is placed underneath the Pb sheet, which lights
an LED. Reprinted with permission from [112]. Copyright 2019 Elsevier. Environmental scanning
electron microscopy images show the morphology of an epoxy composite sample processed at (C)
no applied magnetic field and (D) at 15 T. The arrow represents the direction of the corresponding
magnetic field. Reprinted with permission from [114]. Copyright 2004 John Wiley and Sons. (E)
A complex pattern formed in a composite by the superposition of two separate magnetic fields.
Reprinted with permission from [115]. Copyright 2017 Springer Nature.

Aside from magnetite, carbon nanotubes (CNTs) are also extensively used with mag-
netic fields to create aligned composites [116–118]. When a magnetic field is applied to
anisotropic particle like CNT, the particle rotates with a torque of [119],

τmag = mµo H sin
(

ϕ f − ϕp

)
, (9)

where ϕf is the angular orientation of the magnetic field and ϕp is the angular orientation
of the particle. Multi-walled and single-walled CNTs blended into two separate types of
epoxy exhibit different mechanical properties as a function of magnetic field strength [120].
Multi-walled CNTs blended with a bisphenol-A type epoxy (Figure 4C,D) only exhibits
a small (~25%) increase in elastic modulus as a function of magnetic field strength, up to
25 T. However, single-walled CNTs increase the elastic modulus by a factor of nearly two
when the same alignment process is used. A separate epoxy based on bisphenol-A and
bisphenol-F actually exhibit a decline in elastic modulus for both dispersions based on
both types of CNTs. This is probably due to the interaction between the magnetic field and
the dipole of the polymer [114].

Since the magnetophoretic effect scales volumetrically, strong magnetic fields can
induce dipole alignment in both the filler particle and the polymer. Fe3O4 magnetic
nanoparticles were assembled within PMMA film by magnetophoretic forces using two
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permanent magnets, one was stationary and the other was manipulated in order to create
complex interference-like patterns (Figure 4F) [115]. Low-strength magnetic fields are
sometimes used to minimize the complex effects that polymer alignment has on the
mechanical properties of the composite [121]. The susceptibility of CNTs to low-strength
magnetic fields is typically enhanced by blending with iron oxide particles. This blending
process allows for filler particle alignment at magnetic field strengths as low as 0.5 T
in a rubber medium, which improves the compressive strength by as much as 285% as
compared with rubber alone [122]. Another process uses acids to oxidize CNTs and create
functional groups, after which the CNTs are placed in a mixture containing ferrous sulfate
and iron (III) chloride and stirred together in ammonia to initiate a reaction that attaches
magnetite to the functional groups [123]. The magnetite/CNT particles are dispersed in a
bisphenol-A (DGEBA)/polyoxypropylenediamine epoxy and cured during exposure to
a 0.7 T magnetic field. The composites made from these particles are observed to have
a lower crack density than epoxy laminate in the absence of particles, which is ideal for
composites that undergo thermal cycling.

Another process uses surfactants to tether single-walled CNTs to 50 nm γ-iron (III)
oxide particles [124]. This process enables a 1–2 wt% nanoparticle-CNT dispersion to
assemble into aligned microstructures in an epoxy composed of a bisphenol A polymer. The
composites formed by this process exhibit a 9.8% increase in ultimate tensile strength. The
enhanced mechanical properties of the composite are brought on by field aligned CNT/iron
particles [125]. Anisotropic mechanical properties enable particle-polymer composites
based on magnetic alignment to exhibit bending modes that enable the fabrication of soft
actuation elements [53].

Aside from mechanical properties, magnetic alignment of particles can also enhance
electrical properties of the composite. Magnetite particles aligned in a 25 mT magnetic
field have been observed to increase the electric conductivity from 7.14 × 10−9 S/m for a
randomly dispersed sample to 0.0014 S/m for aligned samples [126]. The enhancement in
electric conductivity also extends to magnetite-functionalized CNT particles, where aligned
dispersions prepared in a bisphenol A/methylenedianiline epoxy exhibit conductivities of
0.5 S/m [127]. The increase in conductivity is greatest in the direction of particle alignment,
while conductivity is reduced in a direction perpendicular to alignment. Aligned particle-
polymer composites undergo linear changes in resistance as a function of strain, with
applications to mechanical sensing [128].

The process of aligning particles can also lead to enhancements in thermal conductivity.
Values of 1.43 W/m-K for thermal conductivity have been observed in the direction of
alignment for 40 vol% of magnetite dispersed in epoxy [129]. Similar values of thermal
conductivity have been observed for magnetite-coated diamond particles, although only
a volume fraction of 15% was necessary in this case [130]. Thermal conductivities of
~5 W/m-K have been observed for aligned nickel particles in a polymer matrix, which
represented an increase of as much as 175% over the polymer alone [131]. Composites
formed from CNTs dispersed in a polyvinyldene fluoride matrix have exhibited thermal
resistances as low as 11 × 10−9 m2K/W [132]. Modification of thermal conductivity by
filler particle assembly can be used to improve thermal interfacing between surfaces [133]
or retard thermal transport [134].

4. Acoustic Fields

An acoustic source, such as a piezeoelectric transducer, generates an acoustic radiation
force that can be used to transport particles. The acoustic radiation force responsible for
transporting particles is dependent on the gradient of the pressure field generated by the
acoustic source [135–137]:

Fac =
πβmVpΦ

2λ
∇P2, (10)

Φ =
5ρp − 2ρm

2ρp + ρm
−

βp

βm
, (11)
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where β = 1/ρc2 is the compressibility, ρ is density, c is the speed of sound, Φ is the acoustic
contrast factor, λ is the wavelength of the acoustic field, and P is the pressure distribution.
The subscripts p and m refer to particle and medium properties, respectively. The pressure
distribution for a one-dimensional standing wave is [138] P = Pocos(2π f x/cm), where Po
is the pressure amplitude and f is the applied frequency.

Acoustic nodes are created when the acoustic wave is reflected. The resulting super-
position of incident and reflected waves interfere with each other [139]. This phenomena,
known as standing acoustic waves (SAW), has long been recognized as a method for sepa-
rating small particles or drops dispersed in a fluid [135,140–142]. The relative difference in
particle density and compressibility dictates whether particles migrate towards or away
from the acoustic pressure node where the wave interference leads to a local pressure
of zero. Particles that are more dense and less compressible than the medium, such as
polystyrene [143] or cells [144], migrate to acoustic pressure nodes. Particles such as mi-
crobubbles [145] or PDMS [146] are less dense or more compressible than the medium in
which they are dispersed, leading to migration towards the acoustic pressure antinode,
where the pressure gradient is highest.

To demonstrate the utility of SAWs as a method for particle-polymer composite
fabrication, early studies used polysiloxane as the polymer medium due to its ease of use
and low cost [147]. The composite was prepared by blending the polysiloxane with a curing
agent at a ratio of 20:1. Ten-micron acrylic spheres were dispersed in the polysiloxane
fluid to act as filler particles. The acoustic field frequency was adjusted to create multiple
acoustic nodes for filler particle assembly and allowed to set for 8 h. Adjusting the
orientation and number of transducers can lead to different internal microstructures,
such as lines or lattices [148]. Diffraction experiments showed that acoustic fields were
excellent for localizing particles around the acoustic node [149]. Diamond nanoparticles
with diameters of 5 nm were successfully arranged in ethanol-diluted epoxy matrix using
acoustic standing wave to produce polymer nanocomposite. The radiation force of standing
waves in a rectangular chamber was used to pattern clusters of nanoparticles. During the
epoxy curing cycle of 5 min, the standing wave was activated and diamond nanoparticles
migrated toward the nodes due to acoustic radiation force and formed quasi-parallel planes
of particle clusters (Figure 5A) [150]. Complex particle-polymer composite structures can
be formed using SAWs if the acoustic signal is first passed through a pattern that acts like a
“hologram” for the desired structure (e.g., Figure 5B) [151–153].
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Figure 5. (A) An X-ray microtomographic rendering of ~5 nm diamond nanoparticles assembled in
an epoxy composite using a 1 MHz ultrasound standing wave. Reprinted with permission from [150],
copyright 2011 AIP Publishing; (B) holographic tweezers used acoustic fields to assemble silicone
particles to form complex, nonsymmetric structures. Reprinted with permission from [153], copyright
2011 John Wiley and Sons; (C, left) acoustically assembled fibers assembled at an acoustic node
in an epoxy; (C, right) the composite is deposited on a substrate at a rate of 3.7 mm/s to form
a printed line. Reprinted with permission from [154], copyright 2016 Elsevier; (D) lock (1 mm
square) and key (200 µm circle) microgel assemble before excitation (left) and after acoustic excitation
(right). Reprinted with permission from [155], copyright 2011 Elsevier; (E) iron oxide nanoparticles
(50–100 nm) assemble in a hydrogel through vibrational excitation of the medium. Reprinted with
permission from [60], copyright 2018 Elsevier.

Localizing particles at the node has be done by adjusting the input voltage into the
piezoelectric transducer, which linearly scales with applied pressure amplitude [156]. Tun-
ing the input voltage controls the degree of particle ensemble compression, which affects the
equilibrium particle microstructure during transport within the acoustic field [61,157,158].
This creates opportunities to use SAWs as a method to dynamically control the internal
arrangement of filler particles at the acoustic node during 3D printing. For example, a base
ink used for 3D printing consisting of a thermally curable epoxy resin and polydisperse
glass spheres has been extruded through a printhead with a piezoelectric transducer and
demonstrated the fabrication of a log pile structure formed with internally structured
particle-polymer composite lines (e.g., Figure 5C) [159]. Multiple lines have been formed
during the extrusion process when the ink was blended with negative and positive acoustic
contrast particles [154]. SAWs has also been used during the sterolithography process
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where piezoelectric transducers could be attached to a vat holding a photocurable polymer
to hold particles in place during the curing phase [160]. Multiple piezoelectric transduc-
ers were used during the stereolithography process to assemble CNTs that enhanced the
electric conductivity of the resulting particle-polymer composite [161].

SAWs can also be used to orient and assemble anisotropic particles. The forces that
arise from these mechanisms drive anisotropic particles such as rods, bricks, or bowtie
shapes to orient themselves in a direction that is parallel to the acoustic node [162]. These
forces have been used to assemble glass fibers dispersed in a dimethacrylate monomer
fluid [59,163]. SAWs were used to generate periodic arrays of pressure nodes and antinodes
and trap stimulus-responsive coacervate microdroplets to fabricate parallel lines and grid-
like micropatterned polymer/dipeptide droplets [164]. Acoustic fields have been used
to assemble fibers on a timescale of ~667 ms and photocured with an LED light for a
period of 40 s to create a composite that improved the tensile strength by a factor of 43% as
compared with a randomly distributed sample. The light source used to cure the sample
could be mounted to a 3D printer gantry to locally cure the acoustically assembled fiber-
polymer composite [165]. Acoustic fields have also been applied to assemble CNTs in a
thermosetting polymer resin, which improves the ultimate tensile strength by 6% and the
elastic modulus by 51% [166].

SAWs have been used to fabricate biological composites due to observations that cells
do not appear to exhibit long-term effects because of acoustic field exposure [167,168].
Yeast cells dispersed in acrylamide or alginate gels assembled at acoustic nodes in 10 min
and cured in approximately 1 min after the assembly process was complete [169,170]. The
cells concentrated at the acoustic node remodeled the surrounding gel matrix where the
cells locally caused the gel network to contract [171]. The process of concentrating cells
at an acoustic node enabled the study of cell–cell interactions, which was not possible for
isotropically distributed cells. A live/dead assay performed on acoustically assembled
biocomposites showed that approximately 50% of the cells in the sample remained viable
after 40 h [172]. The concentrated cell structures formed at acoustic nodes formed sprouts
that were nearly three times longer than those formed in samples not directly exposed to
the SAW, indicating the formation of vasculature [173]. Cells seeded in isolated hydrogel
beads assembled into complex 3D structures (Figure 5D) that could serve as model tissues
for a variety of biotechnology applications [155]. Alternative approaches for creating
hydrogel-based biocomposites have relied on modification of the AM platform to assembly
cells during the extrusion process [174] or to break the surface tension at the nozzle tip to
create tunable hydrogel droplets [175].

An alternative method for transmitting acoustic waves is to have the waves pass
through a substrate rather than into the fluid directly. This type of wave is known as a
surface standing acoustic wave (SSAW) and the acoustic radiation force experienced by
particles remains the same as the one presented above [176]. A chamber placed on top of
a vibration generator was used to produce SSAWs that directed the assembly of cellular
spheroid colonies consisting of mouse fibroblasts dispersed in crosslinked fibrinogen [177].
The same method was applied to assemble cardiomyocytes into a model cardiac tissue [178].
Cardiomyocytes assembled in this way exhibited 2.5 times greater contractile stress and
faster beating after 5 days as compared with randomly distributed samples. SSAWs can
also be generated using electrodes patterned on a piezoelectric substrate, which was used
to assemble cardiomyocytes in a photocurable gelatin [179]. The cardiomyocytes exhibited
beating in 5 to 7 days after assembly.

The patterns observed in samples assembled using SSAWs resemble Chladni fig-
ures [180], which result from time-varying localized flexing of the substrate. This flex-
ing causes the appearance of acoustic nodes, which correspond to plate displacement
anti-nodes (i.e., where displacement is maximal or minimal) [181]. A comparison of mi-
croparticle and nanoparticle assembly in a PEGDA hydrogel showed that microparticles
preferentially migrate to the acoustic nodes, while the nanoparticles migrate away from
the acoustic nodes [60]. A scaling analysis of this phenomena showed that nanoparticles
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were likely entrained in an acoustically generated flow known as acoustic streaming [182].
Assuming spherical geometry, the characteristic acoustic streaming velocity is [183]:

vstr =
3

16
P2

o

ρ2
mc3

m
sin(2kx + Nπ), (12)

where m is the solvent viscosity, k = ω/cm is the wave number, ω is the acoustic field fre-
quency, and N = ω w/π cm is the number of acoustic nodes in a system with a characteristic
width of w. To the best of our knowledge, the work by Shabaniverki et al. [60], shown
in Figure 5E, is the only demonstration of acoustic streaming as a transport mechanism
applied to AM.

5. Future Directions and Conclusions

Applying external fields to particles dispersed in a polymer solution creates opportu-
nities to target specific mechanical properties by tuning particle microstructure through
alignment. Halpin and Tsai were the first to develop models that described the mechanical
properties of particles aligned in a composite [184,185]:

E
Eo

=
1 + ηφ

1− ηφ
, (13)

η =

Ep
Eo
− 1

Ep
Eo

+ ξ
, (14)

ξ =
L
a

, (15)

where Eo is Young’s modulus of the polymer in the absence of particles, Ep is Young’s
modulus of the particle phase, φ is the particle volume fraction, L is the length of the
particle, and a is the particle’s radius. While the Halpin–Tsai model is frequently used
to analyze composites with aligned fillers, it suffers from several deficiencies [186,187]:
(1) It is a semi-empirical model that does not provide any insight into particle–particle
interactions and (2) it assumes that all the constituent particles are perfectly aligned. In
order to overcome some of these limitations, it is necessary to incorporate the statistical
distribution of particles through a parameter, such as the radial distribution function (RDF).
The RDF is a probability density function that describes the distribution of particles in
the sample as a function of particle pair separation. Song and Zheng [188] suggested an
expression originally developed by Verberg et al. [189]:

E
Eo

= χ

[
1 +

1.44φ2χ2

1− 0.1241φ + 10.46φ2

]
, (16)

where χ is the RDF at contact between particles. This expression was originally derived
from a statistical mechanics analysis of hard spheres dispersed in a Newtonian fluid. How-
ever, the polymers used in AM typically exhibit viscoelastic behavior [190]. Experimental
observations of particles dispersed in a viscoelastic fluid flowing in a tube show that
particles may preferentially migrate towards channel walls [191,192]. Viscoelasticity can
also lead to particles chaining when subject to applied shear [193–195]. The stress distri-
bution around individual particles causes particles to assemble into chains when sheared
in a viscoelastic fluid (Figure 6) [196]. Additional work is needed to clarify the role that
viscoelasticity plays in determining particle distribution in shear flow, particularly, how it
applies to AM.
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While the model described by Equation (16) is incomplete, it does offer some insight
that is not available from the Halpin–Tsai model. Equation (16) includes particle inter-
actions (i.e., hard sphere) and incorporates particle distribution in the form of the RDF.
Limitations include the assumption that particle distribution is isotropic, which would not
be true for field aligned particles and is reportedly valid for bulk volume fractions below
0.55, which precludes its use in modeling the AM of solidified structures, such as colloidal
crystals [197]. Measurements performed by Akella et al. on 3D printed particle-polymer
fibers showed that the model described by Equation (13) was consistent for samples with
random distributions of particles [198]. However, when an acoustic field was used to assem-
ble the particles during printing, the fiber printed by Akella et al. exhibited an increase in χ
due to improved particle packing. More experimental work is necessary to help elucidate
the impact that RDF has on composite mechanical properties. Another potential avenue
of research is the development of analytical expressions that better describe composite
mechanical properties and their dependency on particle alignment and RDF.

The mechanical properties of composites with external field aligned particles have
been shown to exhibit an orientational dependence, as shown in Figure 7A,B [35,199]. We
can qualitatively observe this dependence by introducing an orientation parameter, θ, to
the RDF, which is the same as the direction of alignment from Equations (4) and (7) [200]:

χ ≈ χhs exp
(

Λ
[

3 cos2θ − 1
2

])
, (17)

where χhs is the RDF at contact for hard spheres [201], χhs = (1− 0.5φ)(1− φ)−3, and Λ is a
dimensionless field energy density, which are given in Table 1 for the mechanisms described
in this review. The effect of the field-driven particle alignment on mechanical strength can
also be seen in Akella et al. [198], who found that the Young’s modulus increased from
24.7 MPa for the fiber without particles to 50.5 MPa for a fiber with acoustically assembled
particles.
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Figure 7. Elastic moduli for a composite of magnetically aligned particles with the load applied: (A) In the direction of
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(C) Stress-strain curves for a 3D printed fiber without particles (squares), with randomly distributed particles (circles),
and acoustically assembled particles (triangles). Reprinted with permission from [198], copyright 2020 Royal Society of
Chemistry.

Table 1. Dimensionless energy density for the mechanisms examined in this review.

Field Type Λ 1 References

Electric πεma3( fcmEo)
2/kBT [85,202,203]

Magnetic πµoa3[(χp − χm
)

H
]2/9kBT [95,204,205]

Acoustic VpΦ2Eac/2kBT [206–208] 2

1 The dimensionless energy density is scaled by, kB, Boltzmann’s constant and the ambient temperature, T.
2 Eac = P2

o /4ρmc2
m is the acoustic energy density. The one-half factor comes from the fact that Eac represents the

full oscillation range for the acoustic field. Thus, Eac/2 represents the acoustic field energy density magnitude.

To qualitatively see how RDF impacts mechanical properties, consider the cases of
parallel (‖, θ = 0◦) alignment:

χ‖ ≈ χhs exp(Λ), (18)

Thus, we can see that parallel alignment has a strong effect on RDF. According to
Baxter-Drayton and Brady [200], the RDF at contact for an aligned system saturates at high
values of Λ, limiting χ‖ to a maximum value of ~240. Qualitatively, based on Equation (16),
this translates to a larger elastic modulus in the direction of alignment. We combined
Equations (16) and (18) to produce Figure 8, which shows how RDF impacts Young’s
modulus value. A combination of field strength, measured by Λ, and volume fraction,
potentially, can increase Young’s modulus (Eo) by as much as 6000 times that of bare
polymer. To illustrate the significance of this, consider that a polymeric material, such as
PDMS, has a Young’s modulus of ~2 MPa [209]. The inclusion of field aligned particles
could increase the elastic modulus of PDMS to a value of ~12 GPa, which is comparable
to bone, concrete, or certain types of wood. Overall, the connection between particle
distribution vis-à-vis RDF and mechanical properties serves as another possible avenue
for future research. While the model presented above suggests a connection to mechanical
properties, it would also be useful to explore how RDF impacts other particle-polymer
composite properties, such as thermal [210–212] or electrical [213–215] conductivity.
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Figure 8. A contour plot of normalized Young’s modulus (Equation (16)) illustrating the impact that
filler particle volume fraction and the dimensionless energy density of an applied external field have
on mechanical properties. The field influences the RDF of the filler particles (Equation (18)), which
also influences Young’s modulus as described by Equation (16).

Models of particle behavior during the AM process could lead to process control
techniques that affect field conditions (e.g., amplitude and frequency) [74,216,217], par-
ticle type [218–220], and shear stress [221–223]. A fundamental understanding obtained
through modeling would be a pathway towards achieving specific microstructures with
targeted properties. Such process control strategies could be developed using real-time
field actuation to direct particle assembly [224–226], gain-scheduling policies that maximize
particle packing [227–229], or the identification of an open-loop strategy that would achieve
a desired order parameter, such as the degree of hexagonal close-packing [230,231].

Applying external fields to AM of particle-polymer composites provides a unique ap-
proach to functionally structure these composites by internally aligning the particles. This
would create opportunities to fabricate these composites for targeted mechanical, thermal,
electrical, or optical applications. However, it is necessary to improve our fundamental
understanding of the AM process in the presence of an external field and how composite
processing impacts its material properties. Process control for directed assembly-based
AM is an area of research that requires further exploration. Challenges associated with
this line of research include identifying the appropriate transport mechanism for a given
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polymer/particle system to use as an actuator, developing sensing techniques that could be
used to guide the assembly process in real time, and connecting the composite properties
to match desired material properties.
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