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Abstract

Confounding factors exist widely in various biological data owing to technical variations,

population structures and experimental conditions. Such factors may mask the true signals

and lead to spurious associations in the respective biological data, making it necessary to

adjust confounding factors accordingly. However, existing confounder correction methods

were mainly developed based on the original data or the pairwise Euclidean distance, either

one of which is inadequate for analyzing different types of data, such as sequencing data.

In this work, we proposed a method called Adjustment for Confounding factors using

Principal Coordinate Analysis, or AC-PCoA, which reduces data dimension and extracts the

information from different distance measures using principal coordinate analysis, and

adjusts confounding factors across multiple datasets by minimizing the associations

between lower-dimensional representations and confounding variables. Application of the

proposed method was further extended to classification and prediction. We demonstrated

the efficacy of AC-PCoA on three simulated datasets and five real datasets. Compared to

the existing methods, AC-PCoA shows better results in visualization, statistical testing, clus-

tering, and classification.

Author summary

With today’s unprecedented amount of data, researchers are challenged by the need to

enhance meaningful signals without the interference of unwanted confounders hidden

inside the data. Data visualization is an important step toward exploring and explaining

data in order to intuitively identify the dominant patterns. Principal coordinate analysis

(PCoA), as a visualization tool, allows flexible ways to define pairwise distances and proj-

ect the samples into lower dimensions without changing the distances. However, when

visualizing large-scale biological datasets, the true patterns are often hindered by

unwanted confounding variations, either biologically or technically in origin. To eliminate

these confounding factors and recover underlying signals, we proposed a method called
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Adjustment for Confounding factors using Principal Coordinate Analysis, or AC-PCoA,

and showed that it significantly outperforms existing methods in visualization through

three simulation studies and five real datasets. We further showed that the low-dimen-

sional representations given by AC-PCoA provide promising results in statistical testing,

clustering, and classification as well.

This is a PLOS Computational Biology Methods paper.

Introduction

Confounding factors, which are generally regarded as hidden variables, exist widely in various

biological data, and they affect data in unknown ways. Some of these confounding factors are

caused by technical issues, also known as batch effects, such as lab variations in multisite data

generation processes. Others are biologically oriented, such as unwanted differences of sex,

age, or ethnic groups. Such factors may mask the true signals and lead to spurious findings.

Therefore, it is necessary to correct the confounding factors when analyzing datasets with pos-

sible underlying confounders.

Many methods have been developed in the last few decades to remove confounding factors

directly. For example, Johnson et al. [1] proposed parametric and non-parametric empirical

Bayes methods, which are robust to outliers for samples of small size, to adjust for batch effects.

Leek et al. [2–4] introduced surrogate variable analysis (SVA) for identifying, estimating, and

incorporating sources of expression heterogeneity into gene expression analysis. SVA identi-

fies groups of genes affected by each unobserved factor and estimates the factor based on the

expression of those genes. Negative controls and technical replicates have also been introduced

to identify and remove unwanted variations in high-dimensional data [5–8]. A large number

of scientific research from various disciplines are still focusing on this issue in recent years

[9–14].

More high-dimensional data lead to more corresponding demand for simultaneous dimen-

sion reduction and confounding factor correction. To meet this demand, Lin et al. [15] pro-

posed AC-PCA for simultaneous dimension reduction and adjustment for confounding

variations. It is a model-free method, and it has shown good performance when removing var-

iations across individual donors in a human brain exon array dataset and across different spe-

cies in an ENCODE RNA-Seq dataset. However, when only pairwise distances are available in

the data, AC-PCA is no longer applicable. In reality, there are also situations where non-

Euclidean distances are better at describing pairwise relationships. For example, alignment-

free distances [16–18] are particularly designed for next-generation sequencing data, and

Bray-Curtis distance [19] is widely used in the field of metagenomics, while Manhattan dis-

tance is suitable for data sampled from Laplace distribution. Some generalized distance mea-

sures are specifically designed for ordinal data [20], categorical data [21], and sparse data [22,

23]. Involving analysis of the proper distance measures can help capture major, as well as sub-

tle, differences among samples. Such cases require appropriate methods to adjust for con-

founding variation.

Principal Coordinate Analysis (PCoA), also known as classical Multidimensional Scaling

(MDS), is a popular method of dimension reduction when only the distance measures are
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given. It was seminally proposed by Torgerson in 1958 [24] and Gower in 1966 [25], and it has

been widely used in biological and ecological studies [26–28]. Based on PCoA, adjusted Princi-

pal Coordinates Analysis (aPCoA) is a recently proposed method for adjusting covariates [29].

By calculating the eigenvectors and the eigenvalues of confounder-adjusted Gower’s center

matrix, aPCoA can improve data visualization and enhance presentation of the effects of inter-

est. However, aPCoA assumes a linear relationship between the Euclidean representation of

data and the confounding factors, which may introduce bias and remove desired signals in the

original data.

Therefore, in this work, we introduce AC-PCoA, a novel method to simultaneously per-

form dimension reduction and confounding factor removal. This method definitely can man-

age a large variety of confounders for various types of data and distances. AC-PCoA can also

be extended for data preprocessing in classification and prediction problems when confound-

ing factors exist. In order to further validate the performance of AC-PCoA, we consider four

evaluation criteria, using three simulated datasets and five real datasets. Then, comparisons

with the existing methods show that AC-PCoA gives more meaningful patterns in visualiza-

tion, more significant results in MANOVA testing, as well as better clustering and classifica-

tion accuracy.

Methods

In this section, we first review AC-PCA, and then present AC-PCoA in detail. Furthermore,

we discuss the applications of AC-PCoA in classification problems.

AC-PCA

AC-PCA was proposed by Lin et al. [15] to perform simultaneous dimension reduction and

adjustment for confounding variations. In a typical case, let X be an N × p data matrix repre-

senting N samples and p features with each data point denoted as xi 2 Rp. Here, X is centered

by column. Let Y be the N × l matrix for l confounding factors with yi 2 Rl as the confounding

factor of each sample xi. AC-PCA modifies principal component analysis (PCA) and aims to

solve the following optimization problem:

max
V

tracefV>X>XV � lV>X>KXVg;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g;
ð1Þ

where vt and vg denote the t-th and g-th columns of V, and T is the reduced dimensionality. In

addition, K is the N × N kernel matrix constructed from the confounding factors, and Kij = k
(yi, yj). The first term in the objective function maximizes the variance of the projected data

XV, as in principal component analysis. The second term penalizes the dependence between

projected data XV and the confounding factors Y. The parameter λ balances these two terms.

Denote Z = X>X − λX>KX. The above optimization problem can be rewritten as:

max
V

tracefV>ZVg;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g:

It is straightforward to solve this optimization problem by implementing an eigen-decom-

position on Z.

AC-PCA is effective when Euclidean distance is used to characterize sample relationships.

However, it is a common case in biological data that non-Euclidean distance is better for
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describing pairwise dissimilarities. Accordingly, we were motivated to extend AC-PCA to

AC-PCoA for handling more generalized distance measures.

AC-PCoA: Confounding factor adjustment based on pairwise distances

In this subsection, we extend PCoA to AC-PCoA to perform confounding factor adjustment

with dimension reduction. As previously noted, PCoA is a popular dimension reduction and

visualization method when pairwise distances of the samples are given without the original

data. It projects the samples into a lower-dimensional Euclidean space so that the given pair-

wise relations are preserved. The procedure of applying PCoA can be summarized in the fol-

lowing steps:

1. Given the N × p data matrix X, representing N samples and p features, the pairwise distance

matrix D using the desired distance measure is first calculated. If data available are pairwise

distance matrix D, go to the next step.

2. Transform distance matrix to similarity matrix A: aij ¼ �
1

2
d2

ij.

3. Normalize similarity matrix: Â ¼ ðI � 1s>ÞAðI � s1>Þ, where s ¼ 1

N 1 and 1 = (1, . . ., 1)>.

4. Calculate the M eigenvectors corresponding to the M leading eigenvalues λm, m = 1, 2, . . .,

M of Â. These eigenvectors are then normalized to have norm
ffiffiffiffiffiffi
lm

p
.

The result of PCoA is defined as matrix X̂M with each column being one of the M corre-

sponding normalized eigenvectors of Â. In the following, we set M as the number of positive

eigenvalues of Â, which can well capture the patterns in the data, and simplify X̂M as X̂ . Notice

that PCoA is equivalent to PCA when Euclidean distance is used to calculate the pairwise dis-

tances [30]. Detailed explanations were given in Gower [25, 31] and Legendra [24].

To extend PCoA to handle multiple datasets with confounding factors, we aim to preserve

pairwise distances in a lower dimensional space, and at the same time minimize the associa-

tions between the lower-dimensional representation and the confounding variables. Based on

principal coordinate representations X̂ of the original data, AC-PCoA is proposed as a method

of adjusting confounding factors that finds the principal directions by solving the following

optimization problem:

max
V

tracefV>X̂>X̂V � lV>X̂>KX̂Vg;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g;
ð2Þ

where the notations are the same as those in AC-PCA. Confounding factors are user-defined

and depend on the assumptions of confounding factors’ variation. We provide several exam-

ples on the choice of Y in simulation studies and real data analysis. To solve the optimization

problem (2), we denote Ẑ ¼ X̂>X̂ � lX̂>KX̂ , and the optimization problem can be rewritten

as:

max
V

traceðV>ẐVÞ;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g:

By implementing eigen-decomposition on Ẑ , we may get the principal directions V̂ and the

data representation X̂V̂ . Note that PCoA is equivalent to PCA when Euclidean distance is

used to calculate pairwise distances. We performed extensive simulation studies and real data

PLOS COMPUTATIONAL BIOLOGY Adjustment for confounding factors using PCoA

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010184 July 13, 2022 4 / 21

https://doi.org/10.1371/journal.pcbi.1010184


analysis, and the experiments showed that the results of AC-PCoA, when using Euclidean dis-

tance, are pretty close to that of AC-PCA.

As for the choice of parameter λ, we followed Lin et al. [15] and defined

RðlÞ ¼ traceðV>X̂>KX̂VÞ
traceðV>X̂>X̂VÞ to be the ratio of penalty term verses the principal projection. As λ

increases from 0, R(λ) tends to decrease. When the penalty term in Eq (2) is designed as the

between-groups sum of squares, λ is determined by the smallest value such that R(λ)� 0.05 in

the principal coordinates of interest. For other definitions of the penalty term, we choose the

smallest λ that can satisfy R(λ)� 0.05R(0). It is worth mentioning that the overall results are

quite robust against the fluctuation of λ in a wide range.

Data preprocessing using AC-PCoA in classification and prediction

problems

In this subsection, we extend the application of AC-PCoA to classification and prediction. In

large-scale data analysis, the data may be collected from multiple sites or different groups,

which could affect the performance of prediction methods. Correcting these confounding fac-

tors can help improve prediction accuracy. Here, we adapt AC-PCoA to correct confounding

factors and perform dimension reduction for the training data and test data, and then conduct

prediction and classification.

Suppose we have training dataset {X, Y, z}, where X is the covariate data matrix of size N ×
p with each data point denoted as xi 2 Rp, Y is the N × l confounding factor matrix with yi 2 Rl

as the confounding factors of each sample xi, and z describes the classes to which each sample

belongs for i = 1, 2, � � �, N. The relationships between X and z are modelled such that the corre-

sponding class of a new data point x can be predicted. When confounding factors Y exist, the

prediction may be misled by these variations. However, by applying AC-PCoA to the training

set, we can obtain the lower-dimensional representations X̂V̂ s after confounder adjustment

and then we can train the classification and prediction model. When a test data point x 2 Rp

with confounding factor y 2 Rl comes, higher prediction accuracy is expected by using the

data point’s lower-dimensional representation x̂V̂ in the same space as that of the training

data for classification.

We employ the idea of kernel PCA [32] to perform confounder correction for the newcom-

ing data point x. Consider a feature space introduced by a mapping F(�), which is implicit and

is characterized by a kernel matrix Âðxi; xjÞ ¼ hFðxiÞ;FðxjÞi, where Â is the normalized simi-

larity matrix in PCoA. For the training data, PCoA is equivalent to projecting the mapped data

F(xi) onto the direction of the first M normalized eigenvectors w1, � � �, wM of the covariance

matrix C ¼ 1

N

PN
j¼1
FðxjÞFðxjÞ

>
, i.e., for each x̂ i, fx̂ igm ¼ hwm;FðxiÞi, where kwmk2 = 1,

m = 1, . . ., M. This projection becomes tractable since hwm;FðxiÞi ¼ hum; Âðxi; �Þi, where

um = (um1, � � �, umn) is the eigenvector of kernel matrix Â with norm 1ffiffiffiffi
lm
p corresponding to the

m-th eigenvalue λm of Â. For a test point x, the image of which isF(x), one can also use the

same idea and compute the projected point x̂, where fx̂gm ¼ hwm;FðxÞi ¼ hum; Âðx; �Þi.
Âðx; �Þ denotes the vector of centered kernel function applied to x and all training points.

After obtaining the projected test data x̂ from PCoA, we then adjust for confounding factors

by multiplying the projection x̂ with the direction V̂ obtained from the training step. We can

then perform classification on the lower-dimensional representations x̂>V̂ of the test data

points. The procedure is given below.
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1. Perform AC-PCoA on training data X to get principal direction matrix V̂ T ¼ ðv̂1;⋯; v̂TÞ

and data projection matrix X̂T ¼ X̂V̂ T . Meanwhile, save matrix Â as similarity matrix and

matrix U = (u1, u2, . . ., uM) as the matrix of eigenvectors of Â corresponding to positive

eigenvalues with kumk2 ¼
1ffiffiffiffi
lm
p for later use.

2. Conduct AC-PCoA on test data.

a. For a test data point x, calculate the distances between it and all the training data points.

Denote this vector as D(x, �) = (dx1, � � �, dxN).

b. Calculate the corresponding similarity vector A(x, �) = (ax1, � � �, axN) by

axi ¼ �
1

2
d2
xi; i ¼ 1;⋯N. Center it to the same origin as that of the training data by

Âðx; �Þ ¼ Aðx; �Þ � 1

n 11
>Aðx; �Þ � 1

n A1þ 1

n 11
>A1.

c. Calculate PCoA representation of test data point by x̂ ¼ U>Âðx; �Þ.

d. Obtain the T dimensional AC-PCoA representation x̂T by x̂T ¼ x̂>V̂ T .

3. Use X̂T as input to train the classifier.

4. Feed x̂T to the trained classifier to do prediction.

By first projecting the data to a lower-dimensional space and selecting relevant features, sig-

nal-to-noise ratio can be increased, which might help improve classification accuracy. AC-P-

CoA, as a preprocessing step, is beneficial to finding desired principal directions of data

without the potential misdirection of confounding variation, thus improving classification

accuracy.

Evaluation criteria

The performance of AC-PCoA is evaluated through four different criteria.

1. Visualization. By projecting the data to a two-dimensional space after using AC-PCoA and

coloring the data with inherent features, check whether AC-PCoA can remove confounding

variations and recover the underlying patterns hidden in the data.

2. Multivariate analysis of variance (MANOVA). MANOVA can evaluate the significance of

groups defined by data representation after confounding factor adjustment and the under-

lying true labels. In MANOVA, an F-statistic is defined to access the mean rank of distance

between samples in two groups, and a permutation test is employed to calculate the p-

value. In this paper, the function ‘anosim’ in R package vegan is employed to calculate the

F-statistic. As the F-statistic increases, the significance of the cluster increases.

3. Normalized mutual information (NMI) [33]. NMI is one of the popular evaluation metrics

estimating clustering quality. After conducting k-means clustering on low-dimensional

data representations given by AC-PCoA, NMI is employed to measure how well the low-

dimensional representations of samples are clustered. NMI is calculated using the ‘NMI’

function in R package aricode. The number of clusters k in k-means is set to be the num-

ber of true labels.

4. Classification accuracy. AC-PCoA can be applied as the preprocessing step in classification

problems. Random forest is used as the classifier and parameters are tuned using grid

search. Five-fold cross validation is used to evaluate performance. All the classification pro-

cedures are performed by tuning parameters on the training set only and evaluating
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accuracy on independent validation set. In the following analysis, the numbers of principal

components are set to 2 and 3 to demonstrate the performance of AC-PCoA as a visualiza-

tion tool. The classification performance of AC-PCoA on higher dimensions is provided in

S1 Fig and S1 Appendix.

Results

In this section, AC-PCoA was first tested on three simulation studies and then on five real

datasets.

In all experiments, AC-PCoA was carried out following Eq (2), and the linear kernel was

chosen. Different distance measures were considered, the definitions of which are provided in

S2 Appendix. For comparison, we also conducted PCoA and aPCoA [29] using the same dis-

tance measures. We demonstrated the results of AC-PCA implicitly via AC-PCoA using

Euclidean distance, denoted as AC-PCoA(eu), in real data analysis because the two- and three-

dimensional representations given by AC-PCA are equivalent to those given by AC-PCoA

(eu). Also, running AC-PCA takes more time than running AC-PCoA when the number of

variables is large. Four criteria were employed to evaluate the performance of PCoA, AC-P-

CoA, and aPCoA. Note that aPCoA cannot be applied to classification.

Simulation studies

We evaluated AC-PCoA in three simulation settings.

Setting 1. We simulated biological samples of different types generated from independent

labs. For samples from lab i, we assumed that the data matrix was generated from Xi = F(O +

αΓ(i) + �(i)), whereO is the low rank component shared among labs, Γ(i) is the lab-specific com-

ponent, α represents the strength of confounding variation, and �(i) is Gaussian noise. The lab-

specific variation is modeled as GðiÞ ¼ L
ðiÞ
1
þ L

ðiÞ
2

. In L
ðiÞ
1

, the lab’s effect is the same in all sam-

ples within one lab. In L
ðiÞ
2

, the lab’s effect is different in that only a subset of samples is

affected, allowing for more complicated confounding effects. By stacking the rows of Xi, we

formed a matrix X representing the data from all labs.

Specifically, samples of 3 different types were generated from 5 independent labs. Each lab

contains n = 9 samples, among which 3 samples belong to the same type. The length of vari-

ables in each sample is p = 400. F(�) is a nonlinear element-wise function with Fð�Þ ¼ expð�Þ.
For visualization, we assumed that the shared component O = EH has rank 2. E = (e1, e2) is an

n × 2 matrix, representing the latent structure of the shared variation. We further assumed that

samples of the same type have the same low rank representation. That is, 3 distinct rows com-

prise E, corresponding to samples of 3 different types. Each entry is generated from Uniform

[−3, 3]. The rows of E corresponding to samples of the same type have the same values, H is a

2 × p matrix, and the rows in H are generated from N ð0; IpÞ. For the lab-specific component

GðiÞ ¼ L
ðiÞ
1
þ L

ðiÞ
2

, we setL
ðiÞ
1
¼ 1ri, and L

ðiÞ
2
¼ Bisi. Here, Bi is an n × 1 matrix, wherein three

random entries are generated from Uniform[0, 2], and the other entries are set to 0. Moreover,

ri and si are 1 × p matrices generated from N ð0; IpÞ, and α is set to be 2.5. Each row of �(i) is

generated from N ð0; 0:25IpÞ.
To pool samples from multiple labs together, we performed AC-PCoA using Eq (2) to

remove lab-specific component Γ(i) and capture the shared component O. Confounding factor

matrix Y in Eq (2) is defined to be a matrix of N × 10, wherein each column has two groups of

non-zero entries, 1

n corresponding to the samples from lab i and � 1

n corresponding to those
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from lab j. Hence, the optimization problem (2) becomes:

max
V

trace V>X̂>X̂V � l
X4

i¼1

X5

j¼iþ1

V>½f ðX̂ jÞ � f ðX̂ iÞ�
>
½f ðX̂ jÞ � f ðX̂ iÞ�V

( )

;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g;

where f ðX̂ iÞ ¼
1

n 1
>X̂ i.

The results of one representative run and 100 runs are shown in Fig 1A. Note that the non-

linear function in this setting is a monotonically increasing function. We selected Spearman

distance (sp) as the distance measure in AC-PCoA because Spearman distance only takes the

order of data into consideration. The results of visualization, MANOVA, and NMI all show

that AC-PCoA(sp) has sufficient flexibility to manage nonlinear structures.

Setting 2. Under the same framework as that for setting 1, parameters of the second simu-

lation setting are given below. Samples of 10 different types were generated from 5 indepen-

dent labs. Each lab contains n = 10 samples of different types. The length of variables of each

sample is p = 400. E = (e1, e2) is an n × 2 matrix. Define μ = (1, � � �, n)> and scale μ to have

mean 0 and variance 1. Particularly, e1 is set to be the scaled μ, and e2 is assumed to be sampled

from multivariate Laplace distribution Laplace(0, 0.25S), where Sij = exp [−(ei1 − ej1)2/4].

Additionally, H is a 2 × p matrix and its rows are generated from multivariate Laplace distribu-

tion Laplace(0, Ip). The lab-specific components are set to beL
ðiÞ
1
¼ 1ri and L

ðiÞ
2
¼ Bisi. Here,

each entry of Bi is generated from Uniform[0, 2], ri and si are generated from multivariate

Laplace distribution Laplace(0, Ip), α is set to be 2.5, and the entries in �(i) are generated from

Laplace(0, 0.25) independently.

Results of setting 2 are shown in Fig 1B. Because Manhattan distance (man) is commonly

used to describe pairwise distances of samples generated from Laplace distribution, we imple-

mented AC-PCoA using Manhattan distance. We set Y to have the following structure: each

column of Y contains only two non-zero entries, 1 and −1, corresponding to the rows of a pair

of samples of the same type, but from different labs. Thus, Eq (2) becomes:

max
V

trace V>X̂>X̂V �
l

5

X4

i¼1

X5

j¼iþ1

V>ðX̂ j � X̂ iÞ
>
ðX̂ j � X̂ iÞV

( )

;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g:

The results show that AC-PCoA(man) gives better visualization results compared to

AC-PCA since samples of the same label are clustered more tightly. AC-PCoA(man) also out-

performs AC-PCA in both MANOVA and NMI.

Setting 3. We used the ‘SimulateMSeq’ function in R package GUniFrac [34] to simulate

microbiome data from Dirichlet-multinomial distribution. GUniFrac is a popular R-package

for microbiome data. ‘SimulateMSeq’ implements a semiparametric approach and generates

synthetic microbiome sequencing data to study the performance of different abundance analy-

sis methods. We simulated samples from 2 clinical groups, each of which contains n = 25 sam-

ples. The number of OTUs was set to be p = 100. 80% of the OTUs were affected by the label of

clinical groups. We further assumed that samples were collected by 2 independent labs where

80% of OTUs were affected by batch labeling.

The results are shown in Fig 1C. Since Bray-Curtis distance (bc) is commonly applied to

microbiome abundance data, we implemented AC-PCoA with Bray-Curtis distance. Con-

founding factors are chosen in the same manner as that in Setting 1. Fig 1C shows that the per-

formance of AC-PCoA(bc) is better than that of the other methods.
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Fig 1. Results of simulation data. A: Simulation setting 1. The first line shows the true pattern and two-dimensional representations of samples from

PCA, AC-PCA, PCoA(sp), AC-PCoA(sp) and aPCoA for one representative run. Samples are colored according to 3 types. The second line shows

box plots of MANOVA F-statistic and NMI of k-means clustering on two-dimensional representations for 100 runs. B: Simulation setting 2. The first

line shows the true pattern and two-dimensional sample representations from PCA, AC-PCA, PCoA(man), AC-PCoA(man) and aPCoA for one
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https://doi.org/10.1371/journal.pcbi.1010184.g001
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Real data analysis

In this section, we applied the proposed method to five real datasets to evaluate its perfor-

mance: 1) whole genome shotgun sequencing data of white oak trees, 2) human microbiome

OTU counts table from the Microbiome Quality Control Project, 3) RNA-Seq data from the

Sequencing Quality Control Project, 4) single-cell RNA-Seq data of human PBMCs, and 5)

human brain exon array data.

NGS whole genome shotgun sequencing data of white oak trees. We first applied AC-P-

CoA to NGS whole genome shotgun (WGS) sequencing data of white oak trees. Data were

downloaded from NCBI BioProject PRJNA269970, PRJNA308314, and PRJNA327502. The

samples in the first two BioProjects were collected using the Illumina platform. In the third

BioProject, 8 samples were collected using Illumina, and 22 using PacBio. Owing to the small

size and the outlier performance, nine data points were deleted [35]. After preprocessing, we

were left with a total of 131 samples from 4 batches. Samples were divided into three geo-

graphic categories according to their continental origins. Samples from the United States and

Canada were categorized as North America (NA). Samples from west of 100˚E longitude were

categorized as West Europe (WE). And samples from east of 100˚E longitude were categorized

as East Europe and Asia (EEA). The origins were considered as underlying true labels of the

data. To reduce the effects caused by different sequence quantities, we downsampled the data

to produce random samples of reads totaling 100 Mbp for each sample. We took the unwanted

variations between different BioProjects and sequencing platforms as confounding factors.

Note that the original data are raw sequence reads, to which most computational methods,

including PCA and AC-PCA, cannot be applied. Here, we employed six alignment-free dis-

tance measures specifically designed for next generation sequencing data, including three tra-

ditional distance measures: Manhattan distance (man), Euclidean distance (eu), and d2

distances (d2), as well as three recently developed background-adjusted measures: CVTree, d�
2

(d2star) and ds
2

(d2shepp). These distances are based on the relative frequencies of k-mers (k-

grams, k-tuples, k-words). Here, k-mer length is set to be 12 and Markov order is set to be 10.

Denote by Ei the set of tree sequences from batch i, where i = 1, . . ., 4. Suppose ni be the

number of trees from batch i. Let E represent the whole set of tree sequences from all batches.

Further assume N = n1 + � � � + n4 as the total number of trees. Confounding factor matrix Y in

Eq (2) is defined to be a matrix of N × 6, wherein each column has two groups of non-zero

entries, 1

ni
corresponding to the samples from batch i and � 1

nj
corresponding to those from

batch j. Hence, the optimization problem (2) becomes:

max
V

trace V>X̂>X̂V � l
X3

i¼1

X4

j¼iþ1

V>½f ðX̂ jÞ � f ðX̂ iÞ�
>
½f ðX̂ jÞ � f ðX̂ iÞ�V

( )

;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g;

where f ðX̂ iÞ ¼
1

ni
1>X̂ i.

The results are shown in Fig 2. AC-PCoA demonstrates its superior ability to discriminate

continental origins compared to that of either PCoA or aPCoA. Besides, d�
2
, ds

2
and CVTree

perform much better than traditional Euclidean distance. In MANOVA tests on both two and

three dimensions, AC-PCoA outperforms PCoA and aPCoA under all six distance measures.

NMI shows that three recently developed measures can better cluster trees from the same con-

tinental origin than traditional distances. AC-PCoA improves classification accuracy over that

of PCoA under five out of six distance measures in both two and three dimensions by
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removing confounding factors in the data. These consistent results show that AC-PCoA can

both remove confounding factors and contribute to downstream analysis.

The Microbiome Quality Control Project data. The Microbiome Quality Control Proj-

ect (MBQC) [36] is a collaborative effort to comprehensively evaluate methods for measuring

the human microbiome. Specifically, a set of initial samples of 23 specimens was collected. A

subset of specimens was replicated or triplicated into 96-sample aliquot sets that were sent to

15 biology labs to carry out extraction and/or 16S amplicon sequencing. Each biology lab

received one or more blinded copies of the 96-aliquot set. The raw sequence data were re-

blinded and distributed to 9 bioinformatics labs for generating OTU counts of each sample. A

total of 16140 samples were distributed in the final summarized data. We discarded samples

without specimen information and samples with zero levels in all OTUs. Labs that processed
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Fig 2. Results of white oak tree data. A: Two-dimensional representations of samples colored by continental origins after conducting AC-PCoA,

PCoA, and aPCoA using six distance measures. B: MANOVA F-statistic, NMI of k-means clustering, and classification accuracy. Continental origins

are set to be the true labels. MANOVA test, k-means clustering, and classification were conducted on two and three principal coordinates from PCoA,

AC-PCoA, and aPCoA.

https://doi.org/10.1371/journal.pcbi.1010184.g002

PLOS COMPUTATIONAL BIOLOGY Adjustment for confounding factors using PCoA

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010184 July 13, 2022 11 / 21

https://doi.org/10.1371/journal.pcbi.1010184.g002
https://doi.org/10.1371/journal.pcbi.1010184


fewer than 1000 samples were removed. Negative control samples were also removed. Thus,

16089 samples from 13 biology labs and 8 bioinformatics labs, including 22 specimens, were

involved in the following analysis. Data were further grouped into 14 subsets (denoted as ‘A’,

‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, and ‘8’). Samples in subset ‘A’, � � �, ‘F’ were pro-

cessed by their own biology lab and different bioinformatics labs. Samples in subset ‘1’, � � �, ‘8’

were processed by their own bioinformatics lab and different biology labs. The details of subset

construction are described in S3 Appendix. This gave rise to 14 subsets in total. The following

analyses were conducted on 14 subsets, respectively. The unwanted variations among different

labs act as confounding factors in following analysis.

In the microbiome community, Bray-Curtis distance [19] is widely used to measure dissim-

ilarity between samples, owing to the nature of abundance levels. In the following analysis,

Bray-Curtis distance (bc) and Euclidean distance (eu) were implemented.

We employed subset ‘A’ as a demonstration. Let XA
i represent the n × p matrix for OTU lev-

els of n samples and p OTUs processed by biology lab A and bioinformatics lab i. By stacking

the rows of XA
1
; . . . ;XA

8
, we formed an N × p matrix XA wherein N = 8 × n, representing the

data from subset ‘A’. Y in Eq (2) was defined to have only two non-zero entries in each col-

umn, 1 and −1, corresponding to the rows of a pair of samples from the same specimen, but

different labs. The optimization problem (2) was then formulated as:

max
V

trace V>ðX̂AÞ
>X̂AV �

l

8

X7

i¼1

X8

j¼iþ1

V>½X̂A
j � X̂A

i �
> X̂A

j � X̂A
i

h i
V

( )

;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g:

Fig 3A shows the visualization results of subset ‘A’. Here, AC-PCoA(bc) distinguishes the

original specimens better than all other methods in two-dimensional plots. AC-PCoA(eu) fails

to give meaningful results because Euclidean distance is unable to describe dissimilarities

between microbiome abundance levels. This example demonstrates the flexibility of AC-PCoA

in handling non-Euclidean distance measures in order to facilitate visualization.

MANOVA, NMI and classification accuracy of subset ‘A’ are shown in Fig 3B. Results of all

14 subsets are shown in S2, S3 and S4 Figs. It is shown that AC-PCoA(bc) gives the highest

MANOVA F-statistic and highest NMI in 13 out of 14 subsets in both two and three dimen-

sions. Also, AC-PCoA(bc) gives the highest classification accuracy in 12 out of 14 subsets in

both dimensions. This shows that AC-PCoA(bc) can cluster samples of the same specimen bet-

ter and improve classification accuracy on two- and three-dimensional representations.

Moreover, we compared AC-PCoA with another popular data normalization method, SVA

[3]. We conducted PCA after SVA for comparison. The results are included in S5 Fig. Results

of SVA are not as good as those of AC-PCoA(bc) since it doesn’t take the proper pairwise rela-

tionships into account.

The Sequencing Quality Control Project data. The Sequencing Quality Control (SEQC)

Project [37], also known as the third phase of the MAQC project (MAQC-III), is an FDA-led

community-wide consortium aimed at assessing the technical performance of next-generation

sequencing platforms at multiple sites by generating benchmark datasets with reference sam-

ples and evaluating advantages and limitations of various bioinformatics strategies in RNA

and DNA analyses. Specifically, 6 distinguished reference samples (sample ID: A, B, C, D, E

and F) were replicated and distributed to several independent sites for RNA-Seq library con-

struction and profiling using three RNA-Seq platforms (Illumina HiSeq, Life Technologies

SOLiD, and Roche 454). In this paper, we only consider data generated by six independent

sites (NVS, COH, AGR, BGI, MAY and CNL) using Illumina HiSeq 2000. For simplicity, we
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only used data with the same replication number (i.e. replication number 1) in the following

analysis. The variations caused by technical differences of six sites act as confounding factors.

In this dataset, we considered four distance measures: Euclidean distance (eu), Bray-Curtis

distance (bc), Manhattan distance (man), and Spearman distance (sp). Let Xi represent the

ni × p matrix for the gene expression levels of ni samples and p genes processed by site i. The

sample size ni is different for different sites owing to the different number of lanes and sectors

conducted by independent sites. By stacking the rows of X1, � � �, X6, we formed an N × p matrix

X where N = n1 + � � �+ n6. We defined Y to have only two groups of non-zero entries in each

column, 1 and −1, corresponding to the rows of a pair of samples of the same reference sample
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Fig 3. Results of MBQC data (Dataset ‘A’). A: Two-dimensional representations colored by specimens after conducting PCoA, AC-PCoA and aPCoA

using Euclidean distance and Bray-Curtis distance. B: MANOVA F-statistic, NMI of k-means clustering, and classification accuracy. Specimens are set

to be the true labels. MANOVA, k-means clustering, and classification were conducted on two and three principal coordinates from PCoA, AC-PCoA,

and aPCoA.

https://doi.org/10.1371/journal.pcbi.1010184.g003
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IDs but from different sites. The optimization problem (2) was defined as:

max
V

trace V>X̂>X̂V �
l

6

X5

i¼1

X6

j¼iþ1

X6

l¼1

V>½f ðX̂ jlÞ � f ðX̂ ilÞ�
> f ðX̂ jlÞ � f ðX̂ ilÞ
h i

V

( )

;

s:t: kvtk2 � 1; v>t vg ¼ 0; t; g ¼ 1; 2; . . . ;T; t 6¼ g;

where Xil is a submatrix of Xi, containing samples of reference sample ID l processed by site i,
and f ðX̂ ilÞ ¼ 1>X̂ il.

Fig 4A shows that AC-PCoA can tightly cluster samples with the same reference sample ID

compared to PCoA when the same distance measure is considered. aPCoA cannot improve
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Fig 4. Results of SEQC data. A: Two-dimensional plots colored by reference sample IDs after conducting PCoA, AC-PCoA and aPCoA, using four

distance measures. B: MANOVA F-statistic, NMI of k-means clustering, and classification accuracy. Reference samples IDs are set to be the true label.

MANOVA test, k-means clustering, and classification were conducted on two and three principal coordinates from PCoA, AC-PCoA, and aPCoA.

https://doi.org/10.1371/journal.pcbi.1010184.g004
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clustering over PCoA. Euclidean distance is able to distinguish reference sample ID E and F,

while the other three distances can separate reference sample ID A, B, C and D.

In Fig 4B, AC-PCoA gives higher MANOVA F-statistic than PCoA and aPCoA in all four

distance measures in both two and three dimensions. AC-PCoA(bc) and AC-PCoA(man)

show the best performance in clustering. These results demonstrate that incorporating non-

Euclidean distances in confounding factor adjustment via AC-PCoA is necessary.

Single-cell RNA-Seq data. Single-cell experiments are often conducted with notable dif-

ferences in capturing time, equipment and even technology platforms, which may introduce

batch effects to the data. Up to now, it has remained challenging to characterize cell types

across a wide variety of biological and technical conditions. We followed Korsunsky et al. [38]

and gathered three datasets of human peripheral blood mononuclear cells (PBMCs), each of

which assayed on the Chromium 10X platform but prepared with different protocols: 3’-end

v1 (3pV1), 3’-end v2 (3pV2) and 5’-end (5p) chemistries. After pooling all the cells together, 6

cell types were identified in total. Since the number of cells of type “mk” was much smaller

than that of the other 5 cell types, we discarded cell type “mk” and saved the other cell types

(“bcells”, “dc”, “mono”, “nk” and “tcells”) for later analysis. To simplify computation, we then

randomly selected at most sixty cells from each cell type and each protocol, and constructed a

subset consisting of 849 cells. Afterwards, we normalized the data following [38] and per-

formed the analysis on the normalized expression matrix.

We considered Euclidean distance (eu), Bray-Curtis distance (bc), Manhattan distance

(man), and Spearman distance (sp). Let Xi represent the ni × p matrix for the normalized

expression level of ni cells and p genes processed by the i-th protocol. We stacked the rows of

X1, X2, X3, and formed an N × p matrix X of the pooled data wherein N = n1 + n2 + n3. The def-

inition of Y and the optimization formula (2) was set to be the same as those given in the white

oak trees NGS whole genome shotgun sequencing data analysis.

The results are shown in Fig 5. AC-PCoA, including AC-PCA, can better separate different

cell types than PCoA and aPCoA in visualization. Bray-Curtis distance and Spearman distance

give better results than Euclidean distance in MANOVA F-statistic (nPC = 2 and nPC = 3) and

NMI (nPC = 2).

Moreover, since tSNE is often employed to perform visualization in single-cell RNA-Seq

data analysis, we conducted AC-PCoA to reduce the dimension to 50, and then visualized

samples in two-dimensional space using tSNE. We compared the results of tSNE after con-

ducting AC-PCoA to the result of tSNE after conducting PCA and PCoA. The results are

plotted in S6 Fig. It shows that AC-PCoA, including AC-PCA, helps to cluster together each

cell type.

Human brain exon array data. Lastly, we implemented AC-PCoA on a subset of human

brain exon array data [39] reported by Lin et al. [15]. This dataset includes the transcriptomes

of 16 brain regions across developmental epochs. Samples from 10 brain regions in the neocor-

tex were used in the analysis. Lin et al. reorganized the data and defined nine time windows by

grouping samples from every six donors. By conducting PCA on each donor, they found that

the gross morphological structure of the hemisphere was largely recapitulated. This pattern

disappeared when PCA was applied to multiple donors in one window simultaneously. When

applying AC-PCA, the anatomical structure of neocortex could be recovered since the con-

founding effects from individual donor were adjusted.

We considered four distance measures: Euclidean distance (eu), Spearman distance (sp),

Kendall’s tau (tauD), and Manhattan distance (man). We also performed PCA and AC-PCA

on these data to verify the equivalence between PCA and PCoA(eu), and between AC-PCA

and AC-PCoA(eu). For one window, let Xi represent the n × p matrix for the gene expression

levels of donor i, where n is the number of brain regions and p is the number of genes. By
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stacking the rows of X1, � � �, Xm, where m is the number of donors, we obtained the N × p data

matrix X, wherein N = n × m. Confounder matrix Y was defined to have the same structure as

that in the Microbiome Quality Control Project data analysis.

The results of window 5 are given in Fig 6 as a demonstrating example. Fig 6A shows that

the two-dimensional plots of PCA and PCoA(eu) are the same, and the two-dimensional plots

of AC-PCA and AC-PCoA(eu) are also the same, thus confirming the equivalence of two-

dimensional representations given by AC-PCA and AC-PCoA(eu) in this dataset. In addition

to Euclidean distance, Spearman distance, Kendall’s tau distance and Manhattan distance

could remove confounding effect and recover the anatomical structure as well. Moreover,

aPCoA could not remove the confounding factors in this dataset.
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Fig 5. Results of scRNA-Seq data. A: Two-dimensional representations of samples colored by cell types after conducting PCoA, AC-PCoA and aPCoA

using four distance measures. B: MANOVA F-statistic, NMI of k-means clustering, and classification accuracy. Cell types are set to be the true labels.

MANOVA, k-means clustering, and classification were conducted on two and three principal coordinates from PCoA, AC-PCoA, and aPCoA.

https://doi.org/10.1371/journal.pcbi.1010184.g005
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Discussion

Confounding factors have a significant effect on scientific findings in data-driven research,

especially in today’s large-scale data analysis. In this work, we have developed a method called

AC-PCoA to simultaneously perform confounding factors adjustment and dimension reduc-

tion based on distance measures. AC-PCoA is effective, even when non-Euclidean distance

measures are applied to describe pairwise relationships, which is a common case in biological

data analysis. AC-PCoA is able to borrow strength from pairwise distances and make use of

the underlying topological structures of the samples. Thus, it shows promising results in vari-

ous kinds of data analysis, especially for data using non-Euclidean distance measures. Practi-

cally and significantly, we have showed the good performance of AC-PCoA on the next
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Fig 6. Results of human brain exon array data (window 5). A: Two-dimensional plot colored by brain regions after conducting PCA, AC-PCA,

PCoA, AC-PCoA and aPCoA, using four distance measures. B: MANOVA F-statistic, NMI of k-means clustering, and classification accuracy. Brain

regions are set to be the true labels. MANOVA, k-means clustering, and classification were conducted on two and three principal coordinates from

PCoA, AC-PCoA, and aPCoA.

https://doi.org/10.1371/journal.pcbi.1010184.g006
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generation sequencing data, the microbiome taxonomic data, the RNA-Seq data, and the exon

array data.

As an exploratory tool, AC-PCoA can be applied in combination with other data

analysis methods, such as classification. As shown in the experiments, it can help improve

classification accuracy by adjusting for confounding factors. Furthermore, AC-PCoA can

be used as a preprocessing step before applying other machine learning methods, such as

regression and clustering. Since more and more biological data are used for diagnostic, pre-

dictive and classification applications nowadays, it is of paramount importance that AC-P-

CoA as well as its idea can be further generalized to such scenarios, and even causality

analytics [40, 41].

Like most confounding factor adjustment methods, confounding factors are user-defined.

In our method, the choices of Y and K play a crucial role in the whole process. To give proper

definitions of Y and K is not always straightforward. Sometimes researchers have no informa-

tion at all about the confounding factors. Thus, in our future studies, we will focus much on

performing confounding factor adjustment using distance measures with unknown confound-

ing factors.

The R-package with application examples is available at https://github.com/YuWang28/

acPCoA.
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