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Abstract

Background: Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative
association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of
adiponectin deficiency in mammary carcinogenesis remains elusive.

Methodology/Principal Findings: In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT) transgenic
mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on
mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin
production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more
aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control
MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice,
accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K)/Akt/beta-catenin
signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN) activities. Further
analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin
complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1)
and thioredoxin reductase (TrxR1) were significantly elevated, whereas treatment with either curcumin, an irreversible
inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor
cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of
TrxR1.

Conclusion: Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and
activation of PI3K/Akt signalling pathway through a mechanism involving Trx1/TrxR1 redox regulations.
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Introduction

The prevalence of obesity and obesity-related cancers has risen

alarmingly for the past several decades [1,2,3]. Unfortunately, the

mechanisms underlying the association between obesity and

cancer are not well understood. Recent evidences suggest that

adipokines, referring to a group of secreted factors from adipose

tissue, could be the key players in regulating obesity-related

carcinogenesis [4,5,6,7]. Adiponectin is an abundant adipocyte-

derived hormone that can elicit pleiotropic beneficial functions

against obesity-related medical conditions, such as diabetes,

chronic inflammation, atherosclerosis and tumorigenesis [8,9].

Decreased circulating concentrations of adiponectin are associated

with many obesity-related cancer diseases, including breast cancer,

endometrial cancer, gastric cancer, colorectal cancer, renal cell

carcinoma and prostate cancer [10,11,12,13,14,15,16]. Breast

cancer represents the second leading cause of death among

women. An inverse correlation of circulating adiponectin levels
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with breast cancer risk has been observed in both pre- and post-

menopausal women, independent of body mass index and other

known risk factors [17,18,19,20,21,22,23,24]. Moreover, mam-

mary tumors arising in women with low serum adiponectin levels

are more likely to show a biologically aggressive and poor

prognosis phenotype. These epidemiological evidences suggest

that reduced adiponectin expression might be causally involved in

obesity-related carcinogenesis.

In line with these clinical findings, numerous experimental

evidences support the role of adiponectin as an inhibitory factor

for breast cancer development [25,26,27,28,29,30,31,32,33].

Adiponectin at physiological concentrations suppresses the prolif-

eration and causes cell cycle arrest in both estrogen receptor (ER)-

negative and ER-positive human breast carcinoma cells. It inhibits

insulin- and growth factors-stimulated growth of ER-positive

breast cancer cells [28]. Adiponectin replenishment suppresses

mammary tumorigenesis of MDA-MB-231 cells in nude mice

[28]. Cell-type dependent signalling mechanisms have been

suggested to mediate the growth inhibitory effects of adiponectin.

In MCF-7 cells, adiponectin induces AMP-activated protein

kinase (AMPK) phosphorylation and inactivates p42/p44 MAPki-

nase (ERK1/2) [29]. By contrast, the inhibitory effects of

adiponectin on T47D cell growth are associated with inactivation

of ERK1/2 but not AMPK or p38 MAPK [18,28]. In MDA-MB-

231 cells with ectopic ER over-expression, globular adiponectin

inhibits cell proliferation by blocking JNK2 signalling [26]. In ER-

negative MDA-MB-231 cells, adiponectin could modulate the

glycogen synthase kinase-3beta (GSK3beta)/beta-catenin signal-

ing pathway [28]. Prolonged treatment with adiponectin markedly

reduces serum-induced phosphorylation of GSK3beta, decreases

intracellular accumulation and nuclear translocation of beta-

catenin, and suppresses cyclin D1 expression. Despite of these

progresses, whether adiponectin deficiency is a direct contributor

to the pathogenesis of breast cancer remain elusive.

In this study, we investigated the effects of reduced adiponectin

expression on mammary tumor development in MMTV-PyVT

transgenic mice. Mice with reduced adiponectin expressions were

established in both FVB/N and C57BL/6J backgrounds.

Adiponectin haploinsufficiency significantly reduced tumor latency

and promoted mammary tumor development in both female and

male animals. The results demonstrated that inadequate adipo-

nectin production might alter the stromal microenvironment

towards more pro-proliferative and pro-tumorigenic in mammary

tissue, by triggering the abnormal redox activities that led to the

inhibition of tumor suppressor PTEN and hyperactivation of

PI3K/Akt signaling pathways in mammary tumor cells.

Results

Adiponectin haploinsufficiency promotes mammary
tumor development in MMTV-PyVT mice

We generated MMTV-PyVT transgenic mice with reduced

adiponectin expressions in both FVB/N and C57BL/6J back-

grounds. PyVT transgenic mice with complete loss of the

adiponectin alleles could not be born alive across all generations

due to embryonic lethality. On the other hand, the knockout

genotypes were found in male and female PyVT(2/2) litters.

Therefore, mice with normal PyVT(+/2)/ADN(+/+) and reduced

PyVT(+/2)/ADN(+/2) adiponectin expressions were used in the

present study. The heterozygotes showed a 4–5 folds reduction of

adiponectin levels (Figure 1), which were more relevant to those

breast cancer patients with decreased adiponectin levels. Tumor

development of these mice was closely monitored every 2–3 days.

All mice carrying the PyVT transgene developed mammary

tumors. Tumor onset was recorded as the age of the animal at

which palpable abnormal masses were detected (Figure 2). The

overall median age of tumor latency in PyVT(+/2)/ADN(+/2)

mice of FVB/N background were 58 days for female (n = 20) and

115 days for male (n = 23) mice respectively, which were

significantly earlier than those of PyVT(+/2)/ADN(+/+) mice

(66 days for female and 133.5 days for male mice, n = 23 and 24

respectively, p,0.0001). Similar phenomena were also observed in

mice of C57BL/6J background. The overall median tumor latency

of female and male adiponectin haplodeficient PyVT mice (66 and

114 days respectively, n = 19) was significantly reduced comparing

with those of mice having normal adiponectin expression levels (73

and 137 days respectively, n = 19, p,0.0001). Tumor develop-

ment was monitored twice per week up to 14 and 28 weeks for

female and male mice respectively (Figure 3). No tumors were

found in PyVT(2/2) mice up to 60 weeks, irrespective of their

adiponectin levels. Tumor growth was significantly accelerated in

both female and male adiponectin haplodeficient PyVT mice

compared to PyVT(+/2)/ADN(+/+) mice. At the time of sacrifice,

the total wet weights of tumors in PyVT(+/2)/ADN(+/2) mice

was over 2-fold heavier than those with normal adiponectin

expression levels (Table 1). The mean tumor weight of female

PyVT mice of FVB/N background when sacrificed at 14 wks of

age was 9.88963.189 g in ADN(+/2) animals compared to

4.48361.645 g in ADN(+/+) animals. Similarly, in male FVB/N

PyVT mice sacrificed at 22 wks of age, the mean tumor weight

was 6.85761.262 g in ADN(+/2) animals compared to that of

3.68761.483 g in ADN(+/+) animals. On the other hand,

although the wet weights of lung tissues in female and male

PyVT(+/2) mice were heavier than those in non-transgenic

PyVT(2/2) mice (data not shown), they were not significantly

different between mice with reduced and normal adiponectin

expressions.

Distinct basal-like subtype of tumors in adiponectin
haplodeficient PyVT mice

Five subtypes of breast carcinoma with different outcomes,

including luminal A, luminal B, HER2+/ER2, basal-like and

normal breast-like, were revealed by microarray studies [42].

Luminal A and B are ER positive tumors, whereas the other three

subtypes are ER negative. Our preliminary microarray analysis

suggested that the molecular profiles of tumor cells derived from

PyVT(+/2)/ADN(+/2) mice were very different from those of

PyVT(+/2)/ADN(+/+) mice and could be clustered separately

(data not shown). To further validate such an observation, gene

markers associated with different tumor subtypes were quantified

by real-time PCR analysis. In PyVT(+/2)/ADN(+/2) tumors,

basal-like subtype genes, including KRT17, KRT5, MFGE8 and

FZD7, were significantly up-regulated, whereas HER2+/ER2

subtype-related genes, ERBB2 and MED1, were dramatically

down-regulated (Figure 4A). Histological analysis demonstrated

typical morphologic features associated with the basal-like subtype,

including markedly elevated geographic tumor necrosis, ribbon-

like architecture associated with central necrosis, pushing margin

of invasion, and stromal lymphocytic response in tumors from

PyVT(+/2)/ADN(+/2) mice [43] (Figure 4B). We could not

detect these morphological features in any of PyVT(+/2)/ADN(+/

+) mice or the original PyVT mice, which in contrast showed a

well-structured and organized morphology, suggesting that the

phenotype differences may not be tumor developmental stage

dependent. Moreover, the protein levels of p53, a characteristic

associated with tumors overexpressing ERBB2, was significantly

higher in the PyVT(+/2)/ADN(+/+) tumors comparing with

PyVT(+/2)/ADN(+/2) tumors (Figure 4C). These and the above
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evidence suggested that adiponectin deficiency might result in the

development of a basal-like subtype tumor, which could be

aroused from a different origin or subgroups of stem cells that

developed tumor more aggressively.

Accelerated growth of primary tumor cells derived from
adiponectin haplodeficient mice

We next isolated the primary tumor cells from the PyVT mice,

and examined their tumor development in athymic nude mice

following the protocol described previously [39]. Since tumors

originated from different torso regions of PyVT mice might show

various degrees of aggressiveness and onset latencies, we collected

only tumors from the axillary mammary glands and re-implanted

the isolated tumor cells into the posterior glands of athymic nude

mouse by intraductal inoculation. The transplantation was

reproducible and tumor growth rate correlated with the number

of transplanted cells. Consistent with those observed in PyVT

mice, the tumor development of cells derived from adiponectin

haplodeficient mice was more aggressive than those from mice

with normal adiponectin expressions (Figure 5, A and B). The

accelerated tumor growth was reproducibly observed even when

the cells were re-implanted for multiple times in new batches of

nude mice (data not shown), suggesting that serial transplantation

preserved the molecular characteristics of the tumor origin. At the

time of sacrifice, the total weights of the collected tumors from

PyVT(+/2)/ADN(+/2) mice were heavier than those of PyVT(+/

2)/ADN(+/+) mice (Table 2). Note that when the tumor cells

were exposed to physiological adiponectin secreted from adipo-

cytes in the mammary tissue of nude mice, the change in the

tumor volume was smaller, but still significantly different between

ADN(+/2) with ADN(+/+) groups. At ,3 weeks after tumor

occurrence, the measurable tumor volumes were 5.5 and 2.8 fold

higher in FVB/N male and female PyVT(+/2)/ADN(+/2)

animals respectively than those of PyVT(+/2)/ADN(+/+) mice

(Figure 3), whereas the differences for the implanted nude mice

were approximately 3.2 and 2.1 fold for male and female tumor

cells respectively (Figure 5). The results further suggest that the

magnitude of tumor growth could be suppressed in the presence of

endogenous expression of adiponectin by adipocytes. The lung

tissues of mice implanted with male tumor cells showed elevated

wet weights than those implanted with female tumor cells.

Moreover, there was a significant difference between the two

nude mice groups implanted with male PyVT(+/2)/ADN(+/+)

and PyVT(+/2)/ADN(+/2) tumor cells, with much higher lung

weights in the later group (Table 2). Massive lumps of metastatic

tumor mass could be seen on the surface of the lungs from nude

mice implanted with male PyVT(+/2)/ADN(+/2) tumor cells.

Hematoxylin and eosin staining confirmed that the metastatic

capacities of these tumor cells were much higher than those from

other groups (Figure 6).

We next compared the proliferation of the isolated primary

tumor cells in culture by using [3H]-thymidine incorporation assay

(Figure 5, C and D). Cells derived from PyVT(+/2)/ADN(+/2)

mice showed dramatically enhanced DNA synthesis under both

0.5% FBS and 10% FBS DMEM culture conditions. Moreover,

the fold changes of [3H]-thymidine incorporation between the two

time points (24 hr and 48 hr) in ADN(+/2) group were greater

than those of ADN(+/+) group. Similar results were also obtained

by crystal violet staining and cell number counting (data not

shown). These data demonstrated that tumor cells derived from

adiponectin haplodeficient mice were more aggressive, and their

intrinsic properties were well preserved even under conditions

without any hormonal interference.

Elevated PI3K/Akt/beta-catenin signalling in tumor cells
derived from adiponectin haplodeficient mice

We previously reported that chronic treatment of adiponectin

could modulate GSK3beta/beta-catenin pathway in MDA-MB-

Figure 1. Serum adiponectin distributions in wildtype and PyVT mice. The serum adiponectin concentrations were measured by an in-
house sandwich ELISA assay using blood samples collected from the tail vein of FVB/N and C57BL/6J mice. The median and mean values were
calculated and displayed in the table.
doi:10.1371/journal.pone.0004968.g001
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231 human breast cancer cells [28]. To investigate whether

adiponectin inadequacy could enhance beta-catenin signaling in

mammary tumors, we examined the phosphorylation status of

GSK3beta and its upstream protein kinase Akt, as well as the

protein levels and nuclear activities of beta-catenin (Figure 7A).

The results revealed that in primary tumor cells derived from

PyVT(+/2)/ADN(+/2) mice, phosphorylations of both Akt at

serine 473 and GSK3beta at serine 9 were significantly increased.

On the other hand, the phosphorylation of ERK1/2 was not

different between the two types of tumor cells from PyVT(+/2)/

ADN(+/+) and PyVT(+/2)/ADN(+/2) mice (data not shown).

The protein levels of beta-catenin and its target cyclin D1 were

largely elevated. The augmented beta-catenin signaling was also

confirmed by measuring its nuclear activities, which were

increased by ,4.5 folds in PyVT(+/2)/AND(+/2) tumor cells

according to the results from the TOPflash/FOPflash reporter

Figure 2. Reduced tumor latency in adiponectin haplodeficient MMTV-PyVT mice of both FVB/N and C57BL/6J genetic
backgrounds. The tumor onset was closely monitored by visual inspection and palpation every 2–3 days. Latency of mammary tumors was defined
as the age when a palpable lump was first detected in the mammary gland. Kaplan-Meier estimates of the tumor-free survival curves were calculated
and plotted. Median value represents the time point when 50% of animals developed palpable tumor masses. The significance of differences in
latency was analyzed by the Log-rank test. The comparisons were performed between ADN(+/+) and ADN(+/2) female (left panel) and male (right
panel) animals in FVB/N and C57BL/6J genetic backgrounds. CI, confidence interval.
doi:10.1371/journal.pone.0004968.g002
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assays (Figure 7A). Inappropriate Akt activation can occur through

PI3K. We found that the protein levels of the p110alpha subunits

of PI3K, the main isoform involved in oncogenesis, were slightly

increased in PyVT(+/2)/ADN(+/2) tumor cells (data not shown).

Both general (LY294002) and selective pharmacological antago-

nists against different isoforms of p110 catalytic subunits

(p110alpha-selective inhibitor PIK75, p110beta-selective inhibitor

TGX221 and p110delta-selective inhibitor IC8714) [34] were

then used for testing their effects in cells isolated from PyVT(+/2)/

ADN(+/2) tumors. Treatment with either LY294002 or PIK75

led to significantly attenuated phosphorylations of Akt and

GSK3beta and more than 50% reductions of nuclear beta-catenin

activities, whereas treatment with IC8714 and TGX221 did not

have much impacts (Figure 7B). Similarly, treatment with a

specific inhibitor of Akt1 and Akt2 (Akti-1/2) significantly reduced

beta-catenin and cyclin-D1 expression levels and caused about 11-

fold decrease of nuclear beta-catenin activities (Figure 7C). To

further verify the involvement of PI3K and Akt in the accelerated

Figure 3. Accelerated mammary tumor development in adiponectin haplodeficient MMTV-PyVT mice. Tumor growth in PyVT(+/2)/
ADN(+/+) and PyVT(+/2)/ADN(+/2) mice were monitored starting from 6 and 11 wks, up to 14 and 28 wks for female (left panel) and male (right
panel) mice respectively. Tumor sizes were measured using vernier calipers and tumor volume calculated as described in Methods. Each group
contained 13–20 mice, and the mean tumor volume 6SD was presented.
doi:10.1371/journal.pone.0004968.g003

Table 1. Total wet weights of tumor and lung tissues collected from PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) mice in FVB/N
and C57BL/6J background.

FVB/N C57BL/6J

Female (14 weeks) Male (22 Weeks) Female (16 weeks) Male (26 Weeks)

ADN(+/+) (n = 20)
ADN(+/2)
(n = 20) ADN(+/+) (n = 13)

ADN(+/2)
(n = 18) ADN(+/+) (n = 13)

ADN(+/2)
(n = 19) ADN(+/+) (n = 18)

ADN(+/2)
(n = 18)

Tumor 4.48361.645 9.88963.189* 3.68761.483 6.85761.262* 3.60961.846 8.70462.742* 2.13461.253 5.07962.51*

Lung 0.20360.041 0.21360.0309 0.25260.005 0.28660.028 0.22560.085 0.21960.026 0.26660.018 0.29260.029

*p,0.05 vs the corresponding PyVT(+/2)/ADN(+/+) mice group.
doi:10.1371/journal.pone.0004968.t001
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proliferation of tumor cells derived from PyVT (+/2)/ADN(+/2)

mice, their inhibitors were used for cell proliferation measurement

using [3H]-thymidine incorporation assay. Importantly, the

general inhibitor LY294002 and Akti-1/2 showed greater extent

of attenuation on the cell growth at all time points, whereas the

p110alpha-selective inhibitor PIK75 was more potent than the

other two inhibitors (Figure 7D), suggesting that blockade of PI3K

or Akt reversed the proliferative advantage of adiponectin

haplodeficient tumors. Adiponectin treatment significantly atten-

uated phosphorylations of Akt and GSK3beta and beta-catenin

protein levels and nuclear activities, as well as inhibited cell

proliferation to a greater extent in PyVT (+/2)/ADN(+/2) tumor

cells (Figure 8). On the other hand, it had little effects on

p110alpha levels. These results implicated that the activation of

PI3K/Akt pathway might contribute to the elevated beta-catenin

signalling cascades in adiponectin haplodeficient mammary

tumors.

Decreased PTEN activities caused by altered redox
environment in adiponectin haplodeficient PyVT tumors

PTEN is one of the most frequently mutated tumor suppressors

that can prevent the activation of the cell survival PI3K/Akt

signaling pathway [44]. In the absence of PTEN function, cells

exhibit elevated Akt activities. It has been reported that PTEN

could bind to Trx1 in the cytosol, resulting in a functional loss of

its lipid phosphatase and membrane binding activity [45].

Interestingly, PTEN activities were decreased by more than 50%

in PyVT (+/2)/ADN(+/2) tumor cells (Figure 9A), whereas its

total protein amount was not significantly different (Figure 9B).

The activities of both Trx1 and its upstream binding enzyme,

TrxR1, were augmented by nearly 40% in PyVT(+/2)/ADN(+/

2) tumor cells (Figure 9A). While the protein levels of Trx1 were

similar between PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/

2) tumors, the total amount of TrxR1 was increased in PyVT(+/

2)/ADN(+/2) tumor cells (Figure 8B). Surprisingly, co-immuno-

precipitation experiment revealed that the amounts of Trx1-bound

PTEN were dramatically increased in tumor cells derived from the

adiponectin haplodeficient PyVT(+/2) mice (Figure 9C). Treat-

ment with curcumin, an irreversible inhibitor of TrxR1 (40),

elevated PTEN activity by nearly 3 folds in PyVT(+/2)/ADN(+/

2) tumor cells, which was accompanied by the decreased activities

of both TrxR1 and Trx1 (Figure 9A). A stimulatory effect on

PTEN activity was also observed in cells treated with adiponectin

(Figure 9A). In PyVT(+/2)/ADN(+/2) tumor cells, the TrxR1

promoter-driven reporter activity was ,1.8 fold higher than that

of PyVT(+/2)/ADN(+/+) tumor cells (Figure 9D). Treatment with

adiponectin for 24 hrs significantly reduced the reporter activities

by ,60% in PyVT(+/2)/ADN(+/2) tumor cells but had no

significant effects on PyVT(+/2)/ADN(+/+) tumor cells. Similar

effects were also observed for TrxR1 mRNA levels in tumor cells

treated with or without adiponectin (Figure 9D). Taken together,

Figure 4. A basal-like subtype of mammary tumors derived from adiponectin haplodeficient MMTV-PyVT mice. A, Quantitative RT-PCR
analysis of the expression levels of gene markers associated with different subtypes of breast tumors. The RNA was extracted from cultured primary
tumor cells isolated from 14-week old PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) female FVB/N mice and quantitative PCR analysis performed as
described in the Methods. *, P,0.01 vs PyVT(+/2)/ADN(+/+) group, n = 10. B, Morphological features of tumors derived from 14-week old female
PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) mice of the FVB/N background. Distinct morphologies were observed between tumors collected from
mice with normal and reduced adiponectin levels. Note that central necrosis and geographic tumor necrosis, as well as stromal lymphocytic
responses represented the typical basal-like subtype of breast tumors in PyVT(+/2)/ADN(+/2) mice. C, The protein levels of p53 were much higher in
tumors derived from PyVT(+/2)/ADN(+/+) mice compared to those of the PyVT(+/2)/ADN(+/2) mice as measured by Western Blotting using specific
antibodies purchased from Cell Signaling Biotechnology.
doi:10.1371/journal.pone.0004968.g004

Adiponectin and Breast Cancer

PLoS ONE | www.plosone.org 6 March 2009 | Volume 4 | Issue 3 | e4968



these results suggested that in tumor cells derived from adiponectin

haplodeficient mice, the increased TrxR1/Trx1 redox activities

might be involved in inactivation of PTEN and hyperactivation of

PI3K/Akt signalling pathways.

Discussion

Although the anti-tumor activities of adiponectin have been

suggested by numerous clinical and experimental evidences, the

underlying mechanisms remain to be established. Here, we have

evaluated the impacts of reduced adiponectin expression on

mammary tumor development in MMTV-PyVT mice. Our

results demonstrate that in both FVB/N and C57BL/6J genetic

backgrounds, adiponectin inadequacy is associated with earlier

tumor onset and accelerated tumor growth (Figure 2, Figure 3

and Table 1). The aggressive phenotypes of tumor cells derived

from PyVT(+/2)/ADN(+/2) mice are retained during serial

trans-implantations in nude mice as well as multiple passages in

culture (Figure 5), suggesting that insufficient adiponectin

production from adipose tissue might result in an abnormal

microenvironment that leads to distinct but permanent genetic

and phenotypic modifications of mammary epithelial cells.

Indeed, both histological and gene expression analyses suggest a

distinct basal-like subtype of tumors in PyVT(+/2)/ADN(+/2)

mice (Figure 4). Tumor cells derived from adiponectin haplodefi-

cient mice show enhanced beta-catenin nuclear activities and

protein stabilities, which might be partly attributed to the

hyperactivated PI3K/Akt signaling (Figure 7). While adiponectin

treatment restores most of the changes downstream of PI3K,

including Akt and GSK3beta and beta-catenin, it has little effects

on p110alpha (Figure 8). On the other hand, adiponectin

deficiency causes inactivation of PTEN and results in the

hyper-activated PI3K/Akt signaling in PyVT(+/2)/ADN(+/2)

tumors (Figure 9).

Figure 5. Mammary tumor cells derived from adiponectin haplodeficient mice were more aggressive. Primary mammary tumor cells
were isolated from FVB/N PyVT mice with normal [PyVT(+/2)/ADN(+/+)] or reduced [PyVT(+/2)/ADN(+/2)] adiponectin expressions, and implanted
into nude mice for assessing their tumor development in vivo (A and B), or subjected to culture and [3H]-thymidine incorporation assays for
evaluating their proliferations in vitro (C and D). The comparison between PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) groups were performed for
tumor cells derived from both female (A and C) and male (B and D) mice. Tumor growth was presented as the fold changes of tumor volume against
the first measurement at day 4 (A and B). DNA synthesis was monitored in 0.5% and 10% FBS culture conditions at 24 and 48 hrs after seeding (C and
D). CPM, counts per minute. *, P,0.05 and **, P,0.01 vs corresponding groups (n = 13–18).
doi:10.1371/journal.pone.0004968.g005
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PTEN/PI3K/Akt constitutes an important pathway regulating

the signaling of multiple biological processes such as apoptosis,

metabolism and cell proliferation [46]. PTEN activity is lost by

mutations, deletions, promoter methylation silencing, or protein

modifications at high frequency in many primary and metastatic

human cancers [47]. Hyperactivation of the PI3K/Akt signaling

pathway triggered by PTEN inactivation has been found to

correlate with increased breast cancer risks, poor prognosis and

resistance to hormone therapy [44]. In adiponectin haplodeficient

PyVT tumors, while the total protein levels of PTEN are not

altered, its activities are significantly decreased (Figure 9). PTEN is

well-known to be regulated by the redox state of the active site

cysteine residues [48]. Oxidation of PTEN resulted from thiol

modification leads to reversible inhibition of its phosphatase

activity. The thioredoxin system, composed of TrxR, Trx, and

NADPH, represents one of the main thiol-dependent electron

donor systems and plays critical roles in the regulation of the

cellular redox environment [49]. Although the reduction of

oxidized PTEN appears to be dominantly mediated by Trx, it

has been reported that Trx1 inhibits its phosphatase activity by

binding in a redox dependent manner to PTEN through disulfide

bond formation [45]. Moreover, knocking out of thioredoxin-

interacting protein, an inhibitor of Trx NADPH-dependent

reduction of PTEN, causes accumulation of oxidized PTEN and

elevated Akt phosphorylation [50]. We find that there is a

significantly augmented formation of Trx1-PTEN complexes in

tumor cells derived from adiponectin haplodeficient PyVT mice,

possibly due to elevated TrxR1 and Trx1 activities (Figure 9A).

Adiponectin treatment decreases TrxR1 promoter-mediated

transcription and its mRNA levels, which are highly upregulated

in adiponectin haplodeficient tumors (Figure 9D). These results

suggest that adiponectin might regulate PTEN activities through

Table 2. Total net weights (g) of tumor and lung tissues collected from nude mice implanted with primary tumor cells isolated
from female and male PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) mice.

Nude mice

Female (18 days after implantation) Male (24 days after implantation)

ADN (+/+) (n = 17) ADN (+/2) (n = 13) ADN (+/+) (n = 13) ADN (+/2) (n = 18)

Tumor 0.50360.262 0.87560.693* 0.44960.366 0.83160.425*

Lungs 0.16060.063 0.17460.014 0.18760.0407 0.24860.0928*

*p,0.05 vs the corresponding PyVT(+/2)/ADN(+/+) mice group.
doi:10.1371/journal.pone.0004968.t002

Figure 6. Tumor cells derived from male PyVT(+/2)/ADN(+/2) mice show increased metastatic capacities in nude mice comparing
with those of PyVT(+/2)/ADN(+/+) mice. Both hematoxylin and eosin staining (upper panel) and the morphological evaluations (bottom panel)
were performed to evaluate metastasis of the lung tissues.
doi:10.1371/journal.pone.0004968.g006
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Trx/TrxR redox system, and an altered Trx/TrxR redox balance

could play important roles in promoting tumorigenesis in PyVT(+/

2)/ADN(+/2) mice.

In this study, we have shown that inhibition of both PI3K and

Akt results in a reduced nuclear beta-catenin activities and protein

stabilities, supporting the involvement of PI3K/Akt pathway in the

Figure 7. Hyperactivation of Akt/GSK3beta/beta-catenin signaling in adiponectin haplodeficient tumors. A, Components of the PI3K/
Akt/beta-catenin axis were characterized in the tumor cell lysates by Western blotting (upper panel) and nuclear beta-catenin activities analyzed
using a TOPflash/FOPflash luciferase reporter assay (bottom panel). Results were expressed as fold changes relative to the values of samples derived
from PyVT(+/2)/ADN(+/+) cells. #, P,0.01 vs PyVT(+/2)/ADN(+/+) group (n = 6). B, Various pharmacological inhibitors, including LY294002 for PI3K,
PIK-75 for p110alpha, TGX221 for p110beta and IC8714 for p110delta, were used for the treatment of PyVT(+/2)/ADN(+/2) tumor cells at the
concentration of 1026 M. The phosphorylations of Akt (pAkt), GSK3beta (pGSK3beta), and beta-catenin (pBeta-catenin), as well as their total levels in
the cell samples treated with each specific inhibitor for 30 min were analyzed by Western Blotting (upper panel). After 24 hr incubation, the nuclear
beta-catenin activities were evaluated using the TOPflash/FOPflash reporter assay (bottom panel). *, P,0.01 vs vehicle (n = 4). C, Primary tumor cells
isolated from PyVT(+/2)/ADN(+/2) mice were cultured and treated without (vehicle) or with 1026 M of specific inhibitor of Akt-1/Akt-2 isoforms (Akti-
1/2) for 24 hr. Protein levels of phosphorylated Akt (pAkt), beta-catenin, and cyclinD1 in the cell lysates were analyzed by Western Blotting (upper
panel) and the nuclear beta-catenin activities measured using a TOPflash/FOPflash luciferase reporter system (bottom panel). *, P,0.01 vs vehicle
control (n = 3). D, Evaluation of the effects of various inhibitors on cell proliferation by [3H]-thymidine incorporation assay. CPM, counts per minute. *,
P,0.01 vs vehicle in each treatment group (n = 5). Results were derived from three independent experiments.
doi:10.1371/journal.pone.0004968.g007
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hyper-activation of beta-catenin signalling associated with adipo-

nectin haplodeficient tumors (Figure 7). Notably, the cross-talks

between PI3K/Akt and the canonical Wnt/beta-catenin signaling

pathways have been demonstrated by a number of studies from

independent groups (23). Overexpression of PTEN inhibits Wnt-1

induced beta-catenin stabilization and mammary tumorigenesis in

mice [51]. PI3K/Akt pathway is involved in Wnt3a-induced

proliferation and beta-catenin nuclear accumulation in NIH3T3

cells [52]. In HT29 colorectal adenocarcinoma cells, inhibition of

PI3K was accompanied by a considerably reduced expression level

of beta-catenin [53]. The linkage between Wnts and PI3K/Akt

signalling have also been found in the regulation of bone mass,

osteoblast progenitor proliferation, differentiation and osteoblast

apoptosis, as well as cardiomyogenesis [54]. The protein levels of

p110alpha subunits are elevated in tumor cells isolated from

adiponectin haplodeficient PyVT mice. However, adiponectin

treatment has no effects on p110alpha, despite that it can inhibit

Akt phosphorylation and nuclear beta-catenin activities (Figure 7),

suggesting that the inhibitory effects of this hormone is

downstream of PI3K and upstream of Akt, possibly through

modulating PTEN’s activities.

Insufficiency in adiponectin production might promote mam-

mary tumor formation from distinct type of cells, as suggested by

the consistent morphological and gene expression differences

between tumors derived from PyVT(+/2)/ADN(+/+) and

PyVT(+/2)/ADN(+/2) mice (Figure 3). Adiponectin haplodefi-

cient tumor is more related to a basal-like subtype, which is

characterized by high proliferative activity and unfavorable

Figure 8. Tumor cells derived from PyVT(+/2)/ADN(+/2) mice showed increased sensitivity to adiponectin-mediated inhibition of
Akt/GSK3beta/beta-catenin signaling and cell proliferation. Tumor cells isolated from both PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2)
mice were pre-treated with 15 mg/ml of adiponectin for 24 hr in 0.5% FBS DMEM. The serum-stimulated phosphorylation changes of Akt, GSK3beta
and beta-catenin were analyzed by Western Blotting (A) as described previously [28]. The nuclear beta-catenin activities were assayed using the
TOPflash/FOPflash reporter assay (B). Cell proliferation was evaluated for both types of tumor cells under the indicated treatment conditions using 3H-
thymidine incorporation assay (C). *, P,0.05 and **, P,0.01 vs corresponding vehicle control (n = 3, from three independent experiments).
doi:10.1371/journal.pone.0004968.g008
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prognosis. The origin of this subtype tumor is unclear, but

suggested to be the basal/myoepithelial cells, derived from

epithelial-to-mesenchymal transition as a result of dedifferentia-

tion, or from stem cells [43]. It will be interesting to investigate

which types of tumor cell transformation could be facilitated by

the altered microenvironment associated with adiponectin

haploinsufficiency. It has long been noticed that cancer cells

exhibit increased glycolysis for ATP production due, in part, to

respiration injury (the Warburg effect). The increase in NADH

caused by respiratory deficiency inactivates PTEN through a

redox modification mechanism, leading to Akt activation. Our

group has recently reported that adiponectin deficiency leads to

dysregulated mitochondrial functions, which result in decreased

activities of the respiratory chain and subsequent accumulation of

reactive oxygen species [55]. We have also found that

adiponectin can modulate redox-regulated transcription factor

Sp1 activities [56]. Interestingly, the expression of both Trx1 and

TrxR1 can be regulated by Sp1 [57]. Whether these mechanisms

contribute to the dysregulated Trx/TrxR redox system in

adiponectin insufficiency-related carcinogenesis are currently

under investigation in our laboratory. Nevertheless, these findings

might provide a novel mechanistic insight to explain how

metabolic alteration in adiponectin haplodeficient tumor may

gain a survival advantage.

Figure 9. Inactivation of PTEN was at least partially caused by the augmented Trx1/TrxR1 redox activities in PyVT(+/2)/ADN(+/2)
tumor cells. A, activities of PTEN, TrxR1 and Trx were evaluated in the lysates derived from PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) tumor cells
using colorimetric assays. Briefly, cells were treated with vehicle control (CON), 10 mM curcumin (CUR) or 15 mg/ml adiponectin (ADN) for 24 hrs.
Immunoprecipitation and phosphatase assay were performed as described in Methods. Results were expressed as fold changes relative to the
enzyme activities in PyVT(+/2)/ADN(+/+) tumor cells treated with vehicle control. B, total protein levels of PTEN, TrxR1 and Trx1 in cell lysates from
PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) tumors were analyzed by Western Blotting. C, co-immunoprecipitations were performed with the
specific antibodies against PTEN or Trx1 in both PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) tumor cell lysates. The immune-complexes were
analyzed by SDS-PAGE and Western Blotting using antibodies as indicated. D, intrinsic transcriptional activities of TrxR1 promoter (left panel) and the
mRNA levels of TrxR1 and Trx1 (right panel) were evaluated in PyVT(+/2)/ADN(+/+) and PyVT(+/2)/ADN(+/2) tumor cells treated without (CON) or
with adiponectin (ADN, 15 mg/ml) using TrxR1 reporter assay (left panel) and quantitative RT-PCR respectively (right panel). *, P,0.05 vs PyVT(+/2)/
ADN(+/+) cell control; #, P,0.05 vs PyVT(+/2)/ADN(+/2) cell control (n = 3, from three independent experiments).
doi:10.1371/journal.pone.0004968.g009
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Materials and Methods

Materials
Antibodies against PI3K p110-alpha (#4255), PI3K p85

(#4292), phospho-Akt (Ser473) (#9271), Akt (#9272), GSK3beta

(#9315), phospho-GSK3beta (Ser9) (#9336) and phospho-beta-

catenin (Ser33/37/Thr41) (#9561) were obtained from Cell

Signaling Biotechnology (Beverly, MA). Anti-Trx1 (sc-20146),

anti-TrxR1 (sc-28321), and anti-beta actin (sc-1615) antibodies

were from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-

PTEN (MAB4037) was from Chemicon International, Inc.

(Temecula, CA), anti-Cyclin D1 (CC12) was from CalBiochem-

Novachem Crop. (San Diego, CA), and sheep anti-beta-catenin

was from Symansis (Auckland, New Zealand). Pharmacological

inhibitors, including Akt-1/2 inhibitor, PI3K p110alpha inhibitor

PIK-75, PI3K p110beta inhibitor TGX221, and PI3K p110delta

inhibitor IC87114 were provided by Dr Peter R. Shepherd

[34,35]. The general PI3K inhibitor, LY294002, was from Cell

Signaling Biotechnology. ImProm-IITM Reverse Transcription

System and Bright-GloTM luciferase assay system were from

Promega (Madison, WI). TOP/FOPflash (T-cell factor-lymphoid

enhancer factor-1 (TCF-LEF) reporter plasmid) was from Upstate

(Lake Plasid, NY). pGL-TrxR1 reporter plasmid was generated by

cloning the proximal promoter of the human TrxR1 gene using

the GenomeWalker kit from Clontech (Palo Alto, CA). The

human TrxR1 and Trx1 were purchased from Sigma. The rat

TrxR1 was purified from rat liver according to published

procedure [36] and the purity confirmed by mass spectrometry

analysis. Unless specified, all chemicals were obtained from Sigma-

Aldrich Co. (St Louis, MO). Recombinant full length adiponectin

(ADN) was produced as we described previously [28].

Establishment of the MMTV-PyVT transgenic mice
haplodeficient in adiponectin expression

FVB/N-Tg(MMTV-PyVT)634Mul/J transgenic mice were

obtained from the Jackson Laboratory (Bar Harbor, Maine)

[37]. Since the female PyVT transgenic mice were defective in

litter delivery and lactation, all breedings were carried out using

male PyVT transgenic mice. The male heterozygote PyVT(+/2)

mice were cross-bred with female adiponectin knockout mice [38]

and back-crossed for at least 12 generations to obtain mice with

reduced adiponectin expression in both C57BL/6J and FVB/N

backgrounds. The genotype was verified by PCR analysis of their

genomic DNA using primers listed in Table 3. In addition, serum

adiponectin levels were monitored using an in-house ELISA, with

the standard curve generated from known concentrations of

recombinant adiponectin. Note that mice with the genotype of

PyVT(+/2)/ADN(2/2) (transgenic PyVT with adiponectin null

alleles) could not be found in all generations of alive litters, which

included over 800 mice. On the other hand, their embryos were

found to be dead at the early stage of foetal development. As a

consequence, the sizes of litters with abnormal adiponectin

expressions (3–5) were consistently smaller when compared to

those of control PyVT breeding pairs (8–10). Therefore, the PyVT

transgenic mice with adiponectin deficiency were referred to those

with PyVT(+/2)/ADN(+/2) genotypes in this study. The

circulating levels of adiponectin in PyVT(+/2)/ADN(+/2)

FVB/N and C57BL/6J mice range from 3–15 mg/ml and 0.2–

5 mg/ml respectively, whereas PyVT(+/2)/ADN(+/+) mice in

both FVB/N and C57BL/6J background have a much higher

adiponectin level of over 20 mg/ml and 10 mg/ml respectively,

with the median values increased by 4–5 folds. Tumor

development was closely monitored every 2–3 days. Tumor

latency was recorded as the age of mice when palpable tumors

were first detected in at least one of the ten mammary fat pads.

Tumor sizes were measured using digital vernier calipers and

tumor volume calculated using the formula [sagittal dimension

(mm)6(cross dimension (mm)2] / 2 and expressed in mm3. All

animal experimental protocols were approved by the Animal

Ethics Committee at the University of Hong Kong and their care

was in accord with the institution guidelines.

Sandwich ELISA for murine adiponectin
The anti-murine adiponectin monoclonal antibody was bioti-

nylated with a kit from Pierce, and free biotin was removed by

dialysis. The polyclonal anti-murine adiponectin antibody was

diluted to a concentration of 2 mg/ml, added to each well of a

microtiter plate, and incubated overnight at 4 uC. The coated

plate was washed 3 times with PBS containing 1% bovine serum

albumin and blocked with 100 ml of PBS containing 1% bovine

serum albumin and 0.05% Tween for 2 h. Mouse serum was

diluted 1:10000, and 100 ml of the diluted samples were applied to

each well along with the standard, incubated at 37 uC for 1 h,

washed 3 times with PBS-Tween, and then incubated with 100 ml

of the biotinylated monoclonal antibody (2 mg/ml) for another

2 h. After washing 3 times, the wells were incubated with

streptavidin-conjugated horseradish peroxidase for 60 min and

subsequently reacted with tetramethylbenzidine reagent for

15 min. 100 ml of 2 M H2SO4 was added to each well to stop

the reaction, and the absorbance at 450 nm was measured. The

intra- and interassay coefficients of variance were determined by

measuring five plasma samples in a total of six independent assays

with duplicate determinations.

Primary tumor cell isolation, culture and re-implantation
Primary cell isolation was performed as described previously

with slight modifications [39]. Briefly, aseptically collected tumors

from PyVT mice were mechanically minced, passaged through a

100-mm sterile nylon cell strainer (BD Falcon) and suspended in

serum-free high glucose DMEM. Cells were further dissociated by

serial passaging through a syringe with 25-gauge needles. After

brief centrifugation at 1,000 r.p.m for 5 minutes to remove dead

cell debris and the low-density stromal cells, the cell pellets were

resuspended for viable cell counting using 0.4% trypan blue. 106 of

isolated primary tumor cells were implanted into the third right

mammary fat pad of female athymic nu/nu mice (4–6 weeks) by

intraductal injection. Tumor development was monitored every 3–

4 days using caliper measurements (in millimeters) in two

perpendicular dimensions (length and width). Tumor volumes

were calculated as described above.

Co-immunoprecipitation and Western Blotting
Isolated tumor tissues were homogenized in RIPA buffer

[50 mM Tris-HCl, pH 7.4; 1 mM EDTA; 150 mM NaCl; 1%

Nonidel P40; 1% Triton X-100; 0.5% deoxycholic acid sodium

salt; 1 mM NaF; 1 mM sodium orthovanadate; and complete

protease inhibitor cocktail (Roche Applied Science, IN)] on ice

and centrifuged for 5 min at 14,000 r.p.m to remove large debris.

Protein concentration of the supernatant was determined by a

BCA Protein Reagent Kit (Pierce Biotechnology, Rockford, IL).

Five hundred micrograms of the total cell lysates were firstly

incubated with rabbit IgG for 30 minutes, pre-cleared with 50 ml

of protein G-Sepharose beads (Pierce Biotechnology, Rockford,

IL), and then incubated with two micrograms of either Anti-Trx1

or Anti-PTEN antibody overnight at 4uC. 50 ml of protein G-

Sepharose beads was added and incubated for 2 hrs at 4uC. Beads

bound with immune complexes were collected by centrifugation

and washed twice prior to elution into 90 ml of buffer containing
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0.2 M Glycine-HCl, pH 2.5, which was neutralized with 10 ml of

neutralization buffer (1 M Tris-HCl, pH 9.0). The elutants were

subjected to 15% SDS-PAGE and Western blotting analysis, or

enzyme activity measurement as described below.

For Western Blotting, fifty micrograms of proteins derived from

cell or tissue lysates were separated by SDS-PAGE and transferred

to polyvinylidene difluoride membranes. Following blocking,

membranes were probed with various primary antibodies to

determine different levels of protein expressions. Immunoreactive

antibody-antigen complexes were visualized with the enhanced

chemiluminescence reagents from GE Healthcare (Uppsala,

Sweden).

[3H]-thymidine incorporation assay for cell proliferation
measurement

56104 of isolated primary tumor cells were seeded into each of

the 24-well culture plate and allowed a period of at least 24 hours

for cell settlement and attachment. After being treated under

different conditions, 1 mCi/ml of [3H-methyl] thymidine was

added into each well for 6 hours of incorporation. At the end of

experiment, the culture media were removed and cells washed

twice with cold PBS. DNA was precipitated with 0.5%

trichloroacetic acid for 30 min. Air-dried precipitates were then

solubilized with 0.2 mol/l NaOH, neutralized with 0.2 mol/l

HCl, and incorporated [3H]-thymidine was quantified with a

liquid scintillation counter (Backman LS6500).

Quantitative RT-PCR
Total RNA was isolated from primary tumor cells and used for

the synthesis of cDNA. Quantitative RT-PCR was performed

using SYBRH GreenERTM qPCR Supermix (Invitrogen, Carls-

bad, CA). The reactions were carried out on a 7000 Sequence

Detection System (Applied Biosystems, Foster City, CA). Quan-

tification was achieved using Ct values that were normalized with

18S RNA as internal control. The primers were listed in Table 4.

Beta-catenin/T-cell factor-lymphoid enhancer factor-1
(TCF-LEF) and thioredoxin reductase 1 (TrxR1)
transcription reporter assay

Nuclear activities of endogenous beta-catenin were analyzed by

the TOPflash/FOPflash reporter system as described previously

[28]. To normalize transfection efficiency in the reporter assays,

cells were cotransfected with pRL-TK plasmid, which contains a

functional Renilla luciferase gene cloned downstream of a herpes

simplex virus thymidine kinase promoter (Promega, Madison, WI).

The luciferase reporter containing a human thioredoxin reductase

promoter region (from 2386 bp to +218 bp, pGL3-TR) was

constructed into a firefly-luciferase pGL3-basic Vector (Promega,

Madison, WI). The assay was carried out as described above with

the original unmodified pGL3-basic vector as a negative control.

Luminescence was measured using a Bright-GloTM Luciferase

Assay System (Promega, Madison, WI) on Lumat LB9507, and

normalized to control Renilla luciferase signal. Luciferase activity

was calculated against the negative control signals and fold

differences were compared among groups in separate assays.

Measurement of PTEN lipid phosphatase activities
The lipid phosphatase activity of PTEN was measured as

described previously with slight modifications [40]. Phosphatase

reactions were performed in 25 ml assay buffer (100 mM Tris-HCl

pH 8, 10 mM DTT, and 200 mM water-soluble diC8-PIP3) with

25 ml sample. PTEN proteins immunoprecipitated on protein G-

Sepharose beads (Pierce Biotechnology, Rockford, IL) were washed

twice in a low stringency buffer (20 mM HEPES, pH 7.7, 50 mM

NaCl, 0.1 mM EDTA and 2.5 mM MgCl2) and once in the

phosphatase assay buffer lacking PIP3. Reactions were done in a 96-

well plate with an incubation period of 40 minutes at 37uC. The

release of phosphate from the substrate was measured in a

colorimetric assay by using the Biomol Green Reagent in

accordance with the instructions of the manufacturer. The

absorbance at 620 nm was measured with a mQuant MQX200

microplate reader (Biotek Instruments, Inc., Highland Park, VT). A

standard curve was performed in each assay, and the amount of free

phosphate was calculated from the standard curve line-fit data.

Measurement of TrxR1 and Trx1 activities
The assays for measuring the activities of TrxR and Trx were

performed in 96-well plates using an insulin reduction endpoint assay

as described previously [41] with slight modification. For determi-

nation of TrxR1 activity, 25 mg of the primary tumor lysates were

mixed thoroughly with a 50 ml reaction buffer containing 55 mM

HEPES, pH 7.6, 0.02 mM insulin, 0.4 mM NADPH, 2 mM EDTA

and 2 mM human Trx1 in the mQuant MQX200 microplate reader

(Biotek Instruments, Inc). Reaction solutions without human Trx1

were used as the control. After performing a 20-min incubation at

37uC, 200 ml of 1 mM DTNB in 6 M guanidine hydrochloride

solution was added to stop the reaction. The free thiols of the reduced

insulin were determined by DTNB reduction, and the activity of

TrxR was represented as the absorbance at wavelength 412 nm,

where 1 mole of NADPH reduced 1 mole of disulfide, giving rise to 2

Table 3. List of primers used for genotyping.

Primer name NCBI GeneBank accession IDs Sequence range
Product
size (bp) Primer sequences

AdipoWT NT_039624 11673–12146 473 (F) 59- CCA GAG AAC AAC GAA CAA GGA- 39

(R) 59 – CGA ATG GGT ACA TTG GGA AC- 39

Neo User_PGKneobpA Sequence sequence 4575 bp DNA
circular SYN 08/24/2007

2950–3101 171 (F) 59 – TGA ATG AAC TGC AGG ACG AG- 39

(R) 59 – ATA CTT TCT CGG CAG GAG CA- 39

MMTV/PyVT J02288 881–1437 556 (F) 59- GGA AGC AAG TAC TTC ACA AGG G- 39

(R) 59- GGA AAG TCA CTA GGA GCA GGG- 39

Tcrd NG_007044 1715433–1715638 206 (F) 59- CAA ATG TTG CTT GTC TGG TG- 39

(R)59 GTC AGT CGA GTG CAC AGT TT- 39

doi:10.1371/journal.pone.0004968.t003
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mole of free TNB with the extinction coefficient 13.6 mM21 cm21.

For accessing the activity of Trx, assays were performed as above

with the similar reaction cocktail except that 600 nM rat TrxR1 but

not Trx1 was included. Reaction solutions without TrxR1 were used

as the control.

Data analysis and statistics
All experiments were performed with six to eight samples per

group, and all results were derived from at least three independent

experiments. Data are shown as mean values 6standard deviation

(SD). Comparison between groups was done using Student’s

unpaired t-test. Tumor latency was analysed using a Kaplan-

Meier survival analysis followed by log rank tests. In all statistical

comparisons, P,0.05 was used to indicate a significant difference.

Note that for the ex vivo and in vitro experiments, while tumor cells

derived from male and female mice showed similar characteristics

in both FVB/N and C57BL/6J backgrounds, only results derived

from the tumor cells of female FVB/N mice were shown.

Table 4. List of primers used for real time quantitative PCR analysis.

Gene name
Gene
symbol

Accession
IDs

Sequence
range

Product size
(bp) Primer sequences

Forkhead box A1 FOXA1 NM_008259 456–588 133 (F) 59-GAA GGG CTC CTG TGC TAG TT-39

(R) 59-AGG ACA TGT TGA AGG AAG CC-39

Protein tyrosine phosphatase 4a2 PTP4A2 NM_008974 427–598 172 (F) 59-GAA GGG CTC CTG TGC TAG TT-39

(R) 59-TGC CCA TTG GTA TCT CTG AA-39

c-mer proto-oncogene tyrosine kinase MERKT NM_008587 1944–2127 185 (F) 59-AAG CAG CAT GCA TGA AAG AC-39

(R) 59-TGC AGG TGA ATG TAC TTG GG-39

Estrogen receptor 1 (alpha) ESR1 NM_007956 1560–1752 193 (F) 59-CCG GAG TGT ACA CGT TTC TG-39

(R) 59-TTG TTA CTC ATG TGC CGG AT-39

ATP synthase, H+ transporting, mitochondrial
F0 complex, subunit c

ATP5G NM_007506 167–223 57 (F) 59-GGG AAT TCC AGA CCA GTG TC-39

(R) 59-TTG AGA GAT GGG TTC CTG GC-39

Cyclin E1 CCNE1 NM_007633 160–330 171 (F) 59-ACA GCT TCG GGT CTG AGT TC-39

(R) 59-GGC AAT TTC TTC ATC TGG GT-39

Peroxiredoxin 4 PREDX4 NM_016764 716–883 118 (F) 59-CGA TGA CAA AGG AGT CCT GA-39

(R) 59-GCT GGA TCT GGG ATT ATT GT-39

Keratin 17 KRT17 NM_010663 679–851 173 (F) 59-AAG AAG AAC CAC GAG GAG GA-39

(R) 59-AAG AAC CAG TCT TCG GCA TC-39

Keratin 5 KRT5 NM_027011 1005–1170 166 (F) 59-GCA GAC ACA CGT CTC TGA CA-39

(R) 59-TTG CAG CTC CTC ATA CTT GG-39

Milk fat globule-EGF factor 8 protein MFGE8 NM_001045489 278–444 167 (F) 59-AGA CTG AGA GAG GAC CAT GC-39

(R) 59-CAT GCC CAG CTG TGT AGA AC-39

Frizzled homolog 7 FZD7 NM_008057 1477–1631 155 (F) 59-TTC CTA GGT GAG CGT GAC TG-39

(R) 59-TAG GTG AGC ACC GTG AAG AG-39

Chemokine (C-X-C motif) ligand 1 CXCL1 NM_008176 179–352 174 (F) 59-ACC CAA ACC GAA GTC ATA GC-39

(R) 59-GTT GTC AGA AGC CAG CGT T-39

v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 ERBB2 NM_001003817 2980–3162 183 (F) 59-ATT TGC TGG AGA AGG GAG AA-39

(R) 59-AGT CCT CGT TCT GGA TGA CC-39

Mediator complex subunit 1 MED1 NM_013634 1459–1623 165 (F) 59-CAG ACC TTG GAG TGA AAC CA-39

(R) 59-GAG CCC AGT CCA TTC TGT CT-39

Acyl-CoA synthase long-chain family member 1 ACSL1 NM_007981 1586–1759 174 (F) 59-CTA TGA AGG CTA CGG ACA GA-39

(R) 59-CCT TTC ACA CAC ACC TCA CC-39

Phosphatidylinositol 3-kinase, regulatory subunit,
polypeptide 1 (p85 alpha)

PIK3R1 NM_001077495 1906–2080 175 (F) 59-TCC AAA TAC CAG CAG GAT CA-39

(R) 59-ATG CTT CGA TAG CCG TTC TT-39

Thioredoxin reductase 1 TXNRD1 NM_00142523 1587–1763 177 (F) 59-TTG GAA TAT GGC TGT TGT GG-39

(R) 59-CAC GAC ACG TTC ATC GTC TT-39

Thioredoxin 1 TXN1 NM_011660 315–484 170 (F) 59-AAG CCC TTC TTC CAT TCC CT-39

(R) 59-CCT TGT TAG CAC CGG AGA AC-39

18S RNA RN18S NR_003278 1194–1294 101 (F) 59-TAA AGG AAT TGA CGG AAG GG-39

(R) 59-CTG TCA ATC CTG TCC GTG TC-39

doi:10.1371/journal.pone.0004968.t004
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