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Introduction
Inflammation is a defensive response 
against harmful stimuli that induces 
defensive reactions in the body. 
Inflammation plays an important role in 
the development of pathological conditions 
in the central and peripheral nervous 
system,[1] and studies show that the main 
cause of the development and progression 
of many neurological diseases is the 
impotency of the regulatory system and 
the control of the inflammatory response in 
the brain.[2‑4] Inflammation of the nervous 
system can be caused by the damage to 
the brain tissue itself or induced by the 
peripheral inflammation. It is determined 
by activating microglia, damaging the 
blood–brain barrier (BBB) and increasing 
its permeability, introducing peripheral 
immune cells into brain tissue, excessive 
production of cytokines, nitric oxide (NO), 
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Abstract
Background: Peripheral inflammation is effective in the development of neurodegenerative 
diseases. Pentoxifylline (PTX) has an inhibitory effect on inflammatory cytokines; therefore, 
we aimed to evaluate the effect of PTX on passive avoidance learning and the expression of 
tumor necrosis factor‑alpha (TNF‑α) and caspase‑3 in the rat hippocampus, following systemic 
lipopolysaccharide (LPS) injection. Materials and Methods: Male Wistar rats were randomly 
divided into five groups: control, LPS, and LPS + PTX, receiving doses of 10, 25, and 50 mg/kg of 
PTX, respectively. The animals received daily injections of PTX (i.p.) 1 week before and 2 weeks 
after the LPS injection (5 mg/kg; i.p.). Learning and memory were evaluated by passive avoidance 
learning. Then, the expression of the associated genes was measured in the hippocampus. 
Results: The results showed that the peripheral LPS injection had no significant effect on learning 
and memory. PTX only with a dose of 10 mg/kg shows an improvement (P < 0.05). Results from 
reverse transcription polymerase chain reaction showed that LPS had no significant effect on 
the expression of caspase‑3 and TNF‑α. PTX with a dose of 10 mg/kg decreased the caspase‑3 
expression in the LPS + PTX group (P < 0.001), but the expression of both genes increased, using 
other concentrations. Conclusions: Findings showed that systemic application of LPS after 2 weeks 
had no effect on learning and memory and the expression of inflammatory genes in the hippocampus, 
but PTX led to an increase in the expression of these genes, which could be due to its direct effects 
or possible exacerbation of LPS effects.
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reactive oxygen species (ROS), and 
prostaglandins, and ultimately by the 
damage and the death of the neurons.[5,6] 
Brain tissue is thought to be unaffected by 
systemic inflammatory processes due to 
the presence of a BBB, but studies have 
shown that stimulation and activation of the 
peripheral immune system have a powerful 
effect on brain tissue.[7]

In recent years, the use of vasodilators such 
as pentoxifylline (PTX) has been considered 
as one of the suitable and new strategies 
for protecting neurons (neuroprotective). 
The vasodilator effect of this drug is 
due to inhibition of phosphodiesterase 
enzyme and the increased concentration 
of cyclic adenosine monophosphate in the 
smooth muscle cells of the blood vessel 
wall.[8‑10] Currently, various functional 
roles associated with this drug, including 
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tumor necrosis factor‑alpha (TNF‑α) inhibition, through 
reduced transcription of its gene, have been known to 
affect several stages of cytokine/chemokine pathways and 
anti‑inflammatory properties.[8] As it is suggested that PTX 
probably has neuroprotective effects against inflammation, 
the purpose of this study was to evaluate the effects of 
PTX on learning and passive avoidance memory and 
changes in the gene expression of two cytokines affecting 
the apoptosis process, namely caspase‑3 and TNF‑α, 
by induction of peripheral inflammation, using systemic 
lipopolysaccharide (LPS) injection in rats.

Materials and Methods
Subjects

The experiments were carried out on male Wistar 
rats (200–250 g), housed under standard conditions 
of temperature (22 ± 2°C) and light (12 h light‑dark 
cycle), with free access to food and water. The Ethic 
Committee for Animal Experiments at Tehran University 
of Medical Sciences approved the study (Ethic 
registration code: IR.TUMS.VCR. REC.1396.3321), and 
all experiments were conducted in accordance with the 
National Institute of Health Guide for the Care and Use 
of Laboratory Animals (NIH Publications No. 80‑23), 
revised in 1996.

Experimental design

The animals were randomly divided into five 
groups (n = 10), including the control, the LPS, the 
LPS‑PTX 10, 25, and 50 mg/kg. LPS was dissolved in 
saline and injected intraperitoneally (a single injection of 
5 mg/kg; Sigma, St. Louis, USA).[11,12] In the PTX‑treated 
groups, rats received daily injection of PTX (10, 25, or 
50 mg/kg; i.p., dissolved in saline; Sigma, St. Louis, 
USA), 1 week before and 2 weeks after the injection of 
LPS. Animals in the control and LPS groups received 
the same volume of placebo. At the end of the treatment 
period, animals were subjected to behavioral studies and 
then thereafter were deeply anaesthetized with chloral 
hydrates (400 mg/kg, i.p.) and decapitated. Brains 
were rapidly removed, and instantly, the hippocampi 
were dissected in ice‑cold artificial cerebrospinal fluid 
and deep‑frozen in liquid nitrogen. Then, they stored 
at −80°C, until further studies.

Passive avoidance learning test

Learning and memory performance were evaluated, using 
passive avoidance learning test. The apparatus consists 
of two separate chambers connected through a guillotine 
door. One chamber was illuminated, while the other was 
dark. The floor of both the chambers consists of steel 
grids, used to deliver electric shocks. In the acquisition 
trail, 4 h after the last PTX injection, each rat was placed 
in the illuminated chamber while its back was to the 
guillotine door. After 60 s of habituation, the guillotine 

door separating the illuminated and dark chambers was 
opened, and the initial latency to enter the dark chamber 
was recorded. The guillotine door was closed immediately 
after the rat enters the dark chamber, and an electric foot 
shock (75 V, 0.5 mA, 50 Hz) was delivered to the floor 
grids for 2 s. Then, the rat was removed from the dark 
chamber and returned to its home cage. After 24 and 48 h, 
retention latency time to enter the dark chamber was taken 
in the same way as in the acquisition trail, but the foot 
shock was not delivered, and the latency time was recorded 
up to a maximum of 600 s.[13]

Assessment of gene expression

Real‑time reverse transcription polymerase chain 
reaction (PCR) was used to evaluate the expression of 
TNF‑α and Caspae‑3. Total RNA was extracted from 
the hippocampus, using the Biofact kit (Biofact, Korea), 
according to the manufacturer’s instruction; initially, 
cells were lysed, using a chaotropic salt, then RNA was 
bound to the silica‑based membranes, and washed with 
ethanol, containing wash buffer, and subsequently purified 
RNA eluted by RNase‑free ddH2O. After isolation, the 
quality of messenger RNA (mRNA) was checked by gel 
electrophoresis, and RNA quantity was measured, using 
nanodrop (OD 260 nm and 280 nm). At the reverse 
transcription step, 5 ng of total RNA was used to synthesize 
the complementary DNA, using the Revert Aid First Strand 
cDNA Synthesis Kit and oligo (dT) primer (Biofact, 
Korea). Quantitative real‑time PCR analyses were 
performed, using Real Q Plus 2x Master Mix Green 
with high ROXTM (Biofact, Korea) and StepOnePlus 
Real‑Time PCR System (Applied Biosystems, USA). 
Beta‑actin (ACTB) was used as an endogenous control,[14] 
and samples were run in triplicate. Primers were designed, 
using AlleleID7.6. Table 1 shows the primer sequences. 
To determine the relative gene expression, the quantity of 
genes investigated in the present study was calculated as 
RQ = 2− (target gene Ct − β‑actin Ct), where Ct represents 
the number of cycles, at which the output signal exceeds 
the threshold signal.[15,16]

Statistical analysis

Data were analyzed using the SPSS Version 21 for 
Windows (IBM Corporation). Behavioral results 
were analyzed statistically, using Kruskal–Wallis 

Table 1: Primers used in real‑time reverse transcription 
polymerase chain reaction experiments

Name Sequences (5’ to 3’)
ACTB‑F AGGCCCCTCTGAACCCTAAG
ACTB‑R CCAGAGGCATACAGGGACAA
TNFα‑F ACGTCGTAGCAAACCACCAA
TNFα‑R CAAGGGCTCTTGATGGCAGA
Casp3‑F GAGACAGACAGTGGAACTGACGATG
Casp3‑R GGCGCAAAGTGACTGGATGA
ACTB was used as a housekeeping gene to compare the samples
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test (nonparametric analysis of variance [ANOVA]) and 
Dunn’s multiple comparisons for the posttest. Data from 
gene expression were analyzed statistically, using one‑way 
ANOVA, followed by Turkey’s test, and unpaired t‑test 
for comparing the specific group. The significant level 
was defined as P < 0.05. The results are expressed as 
mean ± standard error of mean.

Results
The results of the behavioral study showed that the 
peripheral LPS injection after 2 weeks had no significant 
effect on the first time entering into the dark room, 
compared with the control group. PTX with moderate 
and high doses did not affect the time of first entering 
into the dark room but at a dose of 10 mg/kg in rats 
receiving PTX + LPS could significantly increase this 
period, 48 h after applying shock, compared to the LPS 
group (P < 0.05) [Figure 1].

As shown in Figure 2, after a 14‑day period of LPS 
injection, no change in the gene expression of caspase‑3 
and TNF‑α was observed. However, PTX at doses of 25 
and 50 mg/kg significantly increased the expression of 
caspase‑3, in comparison with the control group (P < 0.01 
and P < 0.05, respectively) and LPS (P < 0.05), but at 
10 mg/kg dose, the caspase‑3 expression was decreased, 
in comparison with the control group (P < 0.001) and 
LPS (P < 0.001).

PTX with all three doses (10, 25, 50 mg/kg) significantly 
increased the TNF‑ expression, in comparison with the 
LPS group (P < 0.01, P < 0.05, and P < 0.05, respectively) 
and with doses (10 and 25 mg/kg), compared with the 
control group (P < 0.01 and P < 0.05, respectively).

Discussion
The results showed that the systemic injection of LPS did 
not affect passive avoidance learning after 2 weeks. PTX 
at the dose of 10 mg/kg could somehow have beneficial 
effects, but not at higher doses.

In this study, it was observed that LPS injection had 
no significant effect on the expression of genes such as 
caspase‑3 and TNF‑α, in the hippocampus. Studies have 
been shown that the systemic use of LPS can produce 
peripheral inflammatory responses and increase the 
proinflammatory cytokines and the activation of peripheral 
macrophages.[12,17] Peripheral inflammation caused by LPS 
can cause damage to the BBB,[18] and following damage 
to the BBB, peripheral macrophages enter the brain tissue 
and accelerate the process of inflammation in the brain.[5,6] 
Effects of LPS on BBB transport are dependent on the 
injection pattern that is applied and the timing of the study. 
Cytokines and chemokines show distinct profiles following 
an inflammatory reaction;[19] so, the timing of the study must 
also be taken into consideration. It has been shown that 
the use of LPS induces a transient increase of cytokines in 
the blood circulation and central nervous system, which is 

Figure 1: Effects of lipopolysaccharide and pentoxifylline on passive 
avoidance learning. (a) Initial latency before and (b) step through latency 
24 h and (c) 48 h after the foot shock. Data are expressed as mean ± standard 
error of mean. +P < 0.05 with respect to the lipopolysaccharide group (n = 10)

c

b

a

Figure 2: Effects of lipopolysaccharide and pentoxifylline on relative gene 
expression of tumor necrosis factor‑alpha (a) and caspase‑3 (b) in rat 
hippocampus. The extent of expression was measured by real‑time reverse 
transcription polymerase chain reaction. The messenger RNA expression 
data were normalized to the beta‑actin (ACTB) signal. Fold changes relative 
to the control are presented. Mean ± standard error of mean values of 
experiments are shown. *P < 0.05, **P < 0.01, and ***P < 0.001 with respect 
to the control group; +P < 0.05 and ++P < 0.01, and +++P < 0.001 with respect 
to the lipopolysaccharide group (n = 10)
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dose dependent,[20] and it has been reported that the level of 
serum cytokines involved in responding to the acute phase 
of inflammation (interleukin [IL]‑1 β, IL‑6, and TNF‑α) 
increases within 2 h after the injection of LPS, and within 
24 h of infusion to its basal level.[21] Furthermore, in this 
study, it is possible that in the first stages of inflammation, 
the expression of the genes increased, and then, the 
production of protein increased, and after 2 weeks, due to 
negative feedback, the expression of the genes reduced to 
the initial level. Therefore, the expression of these proteins 
should be considered.

LPS increases the release of NO, ROS and cytokines 
and prostaglandin E2[18,22,23] and initiates inflammatory 
cascades in the brain tissue with the activation of 
microglia.[24] The TNF‑α is one of the main cytokines 
that induces neuroinflammation and neurodegeneration 
and has regulatory and intervention effects in several 
cellular processes, such as inflammation and cell death.[25‑27] 
Caspases, the most active member of the apoptosis family, 
play an important role in inducing and exacerbating 
apoptosis mechanisms. These enzymes coordinate the 
apoptosis pathway and by parsing their own substrates play 
an important role in promoting cell death.[28,29] Caspase‑3 
is an executable caspase that is activated in the next steps 
by initiating caspases, such as caspase‑7, and triggering 
caspase cascades.[28] LPS stimulates the production of TNF 
α, triggering this cell death cycle. When these receptors 
are attached to their ligand, TNF‑α, the pro‑caspase‑8 is 
converted to caspase‑8 (active form), and then, caspase‑3 
gets activated and promotes cell death.

Based on the results of the present study, injection of LPS 
after 2 weeks did not affect learning and avoidance memory, 
although some studies have shown that intraperitoneal 
injection of LPS has caused cognitive impairment.[30,31] 
Various results have reported the effects of cytokines on 
learning and memory. Several studies have shown that 
acquisition of the Morris water maze and consolidation 
of contextual are disrupted during neuroinflammation,[32‑34] 
and there is also evidence that cytokines can even 
facilitate learning and memory.[35,36] It has been reported 
that male rats who received systemic LPS exhibited intact 
performance in tasks that do not require hippocampal 
pattern separation processes, novel object recognition, and 
spatial memory in the water maze.[37] Memory retrieval in 
activities that require the hippocampal pattern separation 
has been severely degraded, while there has been any gross 
effects on exploratory activity or motivation.[37]

Our results show that except for the 10 mg/kg dose of 
PTX, which reduces the expression of the caspase‑3, 
following the pretreatment with PTX, the rate of expression 
of these inflammatory factors has increased dramatically, 
perhaps the most important justification for this is the 
increased blood flow, due to the vasodilation effects created 
by PTX. However, according to previous studies, it was 

expected that PTX inhibits or reduces the production of 
these inflammatory factors, due to its anti‑inflammatory 
effects.[9,38] It seems that the use of PTX in inflammatory 
processes, despite its anti‑inflammatory effects, is a 
double‑edged sword due to its vasodilating effects and 
can increase the amount of tissue damage if not used with 
proper dosage and time.

Conclusions
Results of this study showed that systemic application of 
LPS after 2 weeks had no significant effects on learning 
and memory and the expression of inflammatory genes in 
the hippocampus. However, PTX increased the expression 
of these genes in the LPS groups. These increases could 
be due to its direct effects on the hippocampus or possible 
exacerbation of LPS effects. There is a possibility that PTX 
through vasodilation increased the flow of inflammatory 
factors in the brain vessels. Overall, the results of this study 
indicate that peripheral inflammation in the short term does 
not affect brain function. However, further studies are 
needed in this regard due to contrasting results in different 
doses.
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