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Abstract

Cholera toxin subunit B (CTB) and Fluorogold(FG) are two widely utilized retrograde tracers

to assess the number and function of retinal ganglion cells (RGCs). However, the relative

advantages and disadvantages of these tracers remain unclear, which may lead to their

inappropriate application. In this study, we compared these tracers by separately injecting

the tracer into the superior Colliculi (SC) in rats, one or 2 weeks later, the rats were sacri-

ficed, and their retinas, brains, and optic nerves were collected. From the first to second

week, FG displayed a greater number of labeled RGCs and a larger diffusion area in the

SC than CTB; The number of CTB labeled RGCs and the diffusion area of CTB in the SC

increased significantly, but there was no distinction between FG; Furthermore, CTB exhib-

ited more labeled RGC neurites and longer neurites than FG, but no difference was evident

between the same trace; The optic nerves labeled using CTB were much clearer than those

labeled using FG. In conclusion, both CTB and FG can be used for the retrograde labeling of

RGCs in rats at 1 or 2 weeks. FG achieves retrograde labeling of a greater number of RGCs

than CTB, whereas CTB better delineates the morphology of RGCs. Furthermore, CTB

seems more suitable for retrograde labeling of some small, non-image forming nuclei in the

brain to which certain RGC subtypes project their axons.

Introduction

Retinal ganglion cells (RGCs) are the main projecting retinal neurons in the visual pathway.

They project their axons directly to the brain to perform image-forming and non-image form-

ing functions, and they are the only afferent neurons from the retina [1–4].

Numerous studies have demonstrated that diseases such as glaucomatous optic neuropathy

[5–7], traumatic optic neuropathy [8–10], ischemic optic neuropathy [11–13], and retinal

degeneration [14, 15] can lead directly or indirectly to RGC dysfunction or loss. RGCs are

often monitored during the investigation of such diseases, especially when evaluating the
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effects of neuroprotective therapies [16–18]. Therefore, accurate and reliable methods of

assessing the number and functional capacity of surviving RGCs are highly sought after. Tech-

niques for evaluating RGC loss and dysfunction have been reviewed by Mead and Tomarev

[19].

Retrograde tracing is a feasible and effective way to investigate RGCs via animal experimen-

tation [19]. A retrograde tracer is injected at or close to the axon terminals of RGCs, which in

higher primates mainly reside in the lateral geniculate nucleus (LGN) and Superior Colliculi

(SC) [20, 21] and in rodents mainly reside in the SC [22, 23]. The axon terminals then take up

the tracer via an active or passive mechanism and transport it from peripheral axons to the

parent somata and dendrites by axonal flow [24, 25]. Later, RGCs containing tracers can be

visualized using techniques specific to each tracer. Via this mechanism, RGCs alone can be

stained in the retina [22]. In addition, because healthy axonal flow is essential for the retro-

grade labeling of RGCs, which is considered to involve active transport [25], any axonal dys-

function will directly influence the number of labeled RGCs [19, 26]. Therefore, retrograde

tracing may be more sensitive to RGC dysfunction or loss.

Cholera toxin subunit B (CTB) and Fluorogold(FG) are retrograde tracers widely used in

many laboratories [27–33]. CTB is a nontoxic subunit of the cholera toxin protein complex

secreted by Vibrio cholerae that binds to cellular surfaces via the pentasaccharide chain of

monosialotetrahexosylganglioside [34]. Subsequently, CTB is selectively taken up into the

cytoplasm by adsorptive endocytosis [35]. In fact, CTB can also be used as an anterograde

tracer [28, 35, 36], whereas FG can only be utilized as a retrograde tracer [27]. FG was first uti-

lized as a retrograde fluorescent tracer by Schmued and Fallon [37]. The active constituent of

FG is hydroxystilbamidine, a weak base that emits light upon excitation with ultraviolet radia-

tion. The uptake mechanism of FG is passive incorporation [38].

The efficiencies of these tracers for the retrograde labeling of RGCs have been confirmed in

previous studies [31, 39–41]. However, their relative advantages and disadvantages remain

unclear, which may lead to their inappropriate application. In this study, we compared CTB

and FG for the retrograde tracing of RGCs in rats with the aim of clarifying their specific

features.

Materials and methods

Tracers

Alexa Fluor (AF) 555-conjugated CTB (AF 555-CTB; Molecular Probes, Eugene, OR, USA)

dissolved in phosphate-buffered saline (PBS) at a concentration of 1% was used for CTB injec-

tion. FG (Fluorochrome, LLC, Denver, CO, USA) dissolved in 0.9% saline at a concentration

of 4% was used for FG injection. Both solutions were stored at −20˚C until use. In addition, a

mixed solution for CTB + FG injection was prepared using isopyknic 1% CTB and 4% FG

solutions.

Animals

Twenty adult Sprague—Dawley (SD) rats (female; 200–250 g; 8 weeks old) purchased from

Animal Laboratory Supplies (Xiangya School of Medicine, Central South University, Chang-

sha, Hunan Province, China) were used in this study, which were equally divided into four

groups according to postoperative survival time and the tracers injected into the SC (Table 1).

Besides, in order to observe the CTB-labeled RGCs and FG-labeled RGCs in the same rat,

additional six rats were injected with a mixed solution of CTB and FG and allowed to survive

for 1 (n = 3 rats, 6 eyes) or 2 weeks (n = 3 rats, 6 eyes). All animals were housed in comfortable

conditions with free access to food and water under a 12-hour light/12-hour dark cycle. All
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experimental procedures were reviewed and approved by the Animal Care and Use Commit-

tees of the Laboratory Animal Research Center at Xiangya Medical School of Central South

University.

Retrograde tracing

Animals were anesthetized with a mixed solution of 2% sodium pentobarbital (80 mg�kg−1)

and xylazine (10 mg�kg−1) administered by intraperitoneal injection. Fully anesthetized ani-

mals with a regular respiratory rate and no pain reaction to a toe pinch were fixed in a stereo-

taxic instrument (RWD Life Science Co., Ltd., Shenzhen, Guangdong Province, China) using

blunt earbars. Then, a surgical blade was used to make an incision to expose the bregma and

posterior fontanelle. The skull surface localizations of the bilateral SC are 6 mm posterior to

the bregma and 1.8 mm lateral to the midline. Two small holes (2.5 mm in diameter) were

made using a mini drill on both sides of the midline. A 5-μl Hamilton syringe was vertically

inserted to a depth of 4 mm, and used to slowly pressure-inject 0.5 μl of tracer into the ambilat-

eral SC. Placement of the syringe in the target zone and tracer injection took 10 and 3 min,

respectively. Following the completion of two-site injection, 4–0 nonabsorbable surgical

threads (Ethicon, Inc., Somerville, NJ, USA) were used to suture the incision. To reduce the

risk of infection and provide pain relief, an antibiotic and an analgesic were added to the rats’

drinking water. During the whole procedure, 0.9% saline was used to keep the rats’ eyes

hydrated, and a heating lamp was used to keep the rats warm.

Tissue preparation

One and 2 weeks later, the rats were re-anesthetized and perfused transcardially with PBS fol-

lowed by 4% paraformaldehyde. Then, microscissors and fine forceps were used to enucleate

each intact eye and carefully remove the cornea, lens, and vitreous humor. Simultaneously, a

small incision was made as a marker on the inferior border of the eyecup to distinguish retinal

direction. Next, the eyecups were fixed in 4% paraformaldehyde for 1 h at room temperature

before detachment of the retinas. To stretch the retinas flat, they were placed with ganglion cell

layers facing upward on superfrost plus microscope slides and incised with four 3 mm-long cuts

at their superior, inferior, temporal, and nasal sides according to the marker incision made pre-

viously. Finally, the retinas were cleaned using a soft brush, covered with anti-fade aqueous

mounting medium, and coverslipped. All detailed procedures were conducted using a stereomi-

croscope. The brains and intact optic nerves were fixed in 4% paraformaldehyde for 24 h, and

dehydrated in 30% phosphate-buffered sucrose solution at 4˚C until the tissues sank. To observe

the injection sites and morphology of the optic nerves, the dewatered brains and optic nerves

were cut into slices of different thicknesses (30 μm for brain and 15 μm for optic nerves) using a

freezing sliding microtome (CM3050 S; Leica Microsystems GmbH, Wetzlar, Germany).

Table 1. Animal grouping.

Group Tracer Survival time (days) Number of rats Number of eyes

CTB-1w 1% CTB 7 5 10

CTB-2w 1% CTB 14 5 10

FG-1w 4% FG 7 5 10

FG-2w 4% FG 14 5 10

CTB, cholera toxin subunit B; CTB-1w, rats euthanized 1 week post-CTB injection; CTB-2w, rats euthanized 2 weeks post-CTB injection; FG, Fluorogold; FG-1w, rats

euthanized 1 week post-FG injection; FG-2w, rats euthanized 2 weeks post-FG injection.

https://doi.org/10.1371/journal.pone.0205133.t001
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Fluorescence microscopy and image analysis

All flattened retinas and tissue sections were examined using a fluorescence microscope

(DM5000 B; Leica Microsystems GmbH). CTB was examined using Filter N21 (band pass 515

nm, long pass 560 nm) and FG was examined using Filter A (band pass 340 nm, long pass 380

nm). To capture the whole retina, 12 pictures of each retina were taken at high magnification

(313.28 × 235.89 μm2) at distances of 0.85, 2.26, and 3.68 mm (approximately 1/6, 1/2, and 5/6

the radius of the retina) from the optic disc in the superonasal, inferonasal, superotemporal

and inferotemporal quadrants. Brain and optic nerve sections were also photographed. All pic-

tures were analyzed using Image-Pro Plus 6.0 (Media Cybernetics, Inc., Bethesda, MD, USA).

To calculate the mean density of labeled RGCs in each retina, a manual counter was used to

count the labeled cells in each picture. An atlas of the rat brain (The Rat Brain in Stereotaxic
Coordinates; Elsevier Inc., 2007) was used to identify the injection sites.

Statistical analysis

In order to account for the correlation between the right and left eyes and analyze the statistical

differences in the mean density of RGCs (MD-RGCs), mean amount of neurites of labeled

RGCs (MAN-RGCs), mean length of neurites of labeled RGCs (MLN-RGCs), and diffusion

area in the SC (DA-SC) between the rats euthanized 1 week post-CTB injection (CTB-1w;

n = 5 rats, 10 eyes), rats euthanized 2 weeks post-CTB injection (CTB-2w; n = 5 rats, 10 eyes),

rats euthanized 1 week post-FG injection (FG-1w; n = 5 rats, 10 eyes), and rats euthanized 2

weeks post-FG injection (FG-2w; n = 5 rats, 10 eyes),two-way analysis of variance (ANOVA)

was used. In addition, Tukey test was used as post hoc test to perform multiple comparisons

between the 4 groups. All data were presented as the mean ± standard error of the mean, and

statistical significance was set at p<0.05.

Results

Mean density of labeled retinal ganglion cells

The uptake efficacy of CTB and FG was evident in the MD-RGCs (Table 2 and Fig 1). All

groups exhibited detectable staining after tracer injection, but the MD-RGCs differed signifi-

cantly between the CTB and FG Groups. The FG-1w and FG-2w Groups displayed a greater

number of labeled RGCs than the CTB-1w (p<0.001) and CTB-2w (p<0.001) Groups (Fig

1A and 1B). This difference was also demonstrated by the CTB + FG-injected rats (Fig 1C):

Table 2. Results of retrograde tracing using cholera toxin subunit B (CTB) and Fluorogold(FG) at 1 week and 2 weeks in rats.

CTB-1w

(n = 10 eyes)

CTB-2w

(n = 10 eyes)

FG-1w

(n = 10 eyes)

FG-2w

(n = 10 eyes)

MD-RGCs (cells/mm2) 948 ± 93 1394 ± 70ΔΔ 2411 ± 21�� 2443 ± 45��

MAN-RGCs 1.81 ± 0.05 1.88 ± 0.06 1.03 ± 0.05�� 1.09 ± 0.04��

MLN-RGCs (μm) 46.7 ± 2.9 54 ± 2.5 20.5 ± 1.4�� 20.3 ± 0.8��

DA-SC (mm2) 0.405 ± 0.017 0.955 ± 0.028ΔΔ 2.967 ± 0.166�� 3.180 ± 0.201��

Means ± standard error of the mean unless otherwise stated.

CTB-1w, rats euthanized 1 week post-CTB injection; CTB-2w, rats euthanized 2 weeks post-CTB injection; DA-SC, diffusion area in the superior colliculus; FG-1w, rats

euthanized 1 week post-FG injection; FG-2w, rats euthanized 2 weeks post-FG injection; MAN-RGCs, mean amount of neurites of labeled retinal ganglion cells;

MD-RGCs, mean density of labeled retinal ganglion cells; MLN-RGCs, mean length of neurites of labeled retinal ganglion cells.
ΔΔTwo-way analysis of variance (ANOVA), p <0.001(same tracers compared at different times);

��two-way ANOVA, p <0.001 (CTB and FG compared at the same time).

https://doi.org/10.1371/journal.pone.0205133.t002
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the number of FG-labeled RGCs far exceeded that of CTB-labeled RGCs in an identical visual

field. Regarding the MD-RGCs of the same tracer at different times, there was no distinction

between the FG-1w and FG-2w Groups (p = 0.982), but the CTB-2w Group showed a greater

MD-RGCs than the CTB-1w Group (p<0.001). In addition, no difference between the right

and left eyes (p = 0.287) and no interaction between the groups and eyes (p = 0.114) were

found in this study.

Morphology of labeled retinal ganglion cells

To further study the properties of CTB and FG, 10 retinal images photographed at 5/6 the reti-

nal radius (3.68 mm from the optic disc) were randomly selected from each group to analyze

the MAN-RGCs and MLN-RGCs (Table 2 and Fig 2). The MAN-RGCs in the FG Groups

were less than those in the CTB Groups at both 1 (p<0.001) and 2 (p <0.001) weeks, but no

differences were evident between the CTB-1w and CTB-2w Groups (p = 0.749) or between the

FG-1w and FG-2w Groups (p = 0.842; Fig 2A). In terms of MLN-RGCs, there was no distinc-

tion between the same tracer at 1 and 2 weeks: the CTB-1w Group was similar to the CTB-2w

Group (p = 0.111), and the FG-1w Group resembled the FG-2w Group (p = 1.0). However,

Fig 1. The mean density of retinal ganglion cells (MD-RGCs) retrograde labeled by cholera toxin subunit B (CTB) and Fluorogold(FG)

at 1 week and 2 weeks in rats. (A) MD-RGCs in CTB-1w (rats euthanized 1 week post-CTB injection) and CTB-2w (rats euthanized 2

weeks post-CTB injection) were less than those in FG-1w (rats euthanized 1 week post-FG injection) and FG-2w (rats euthanized 2 weeks

post-FG injection) (p<0.001), MD-RGCs in CTB-2w was greater than that in CTB-1w (p<0.001), but there was no distinction between the

FG-1w and FG-2w (p = 0.982). (B) Representative photomicrographs taken at approximately 5/6 retinal radius in the superonasal quadrant

showing retinal ganglion cells (RGCs) labeled by CTB and FG at 1week and 2 weeks. (C) In the rat euthanized 2 week post-mixed injection

(CTB+FG), the number of FG-labeled RGCs far exceeded that of CTB-labeled RGCs in an identical visual field, the pictures were taken at

approximately 1/2 retinal radius in the superotemporal quadrant. ΔΔTwo-way analysis of variance (ANOVA), p<0.001; ��two-way

ANOVA, p<0.001. Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0205133.g001
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CTB-labeled RGC neurites were approximately two times longer than FG-labeled RGC neur-

ites (Fig 2B). In addition, as shown in Fig 2C, round or ovoid somata labeled by CTB and FG

both exhibited a clear plasma membrane, with bright staining of the cytoplasm and no staining

of the nuclei, but the cytoplasm stained by FG had a more coarse and granular appearance

than that stained by CTB. In MAN-RGCs or MLN-RGCs, there was no difference between the

Fig 2. The morphology of cholera toxin subunit B (CTB)-retrograde labeled and Fluorogold(FG)-retrograde

labeled retinal ganglion cells (RGCs) at 1 week and 2 weeks in rats. (A) The mean amount of neurites of labeled

RGCs (MAN-RGCs) in CTB-1w (rats euthanized 1 week post-CTB injection) and CTB-2w (rats euthanized 2 weeks

post-CTB injection) were more than those in FG-1w (rats euthanized 1 week post-FG injection) and FG-2w (rats

euthanized 2 weeks post-FG injection) (p<0.001), but there was no distinction between the CTB-1w and CTB-2w

(p = 0.749) or between the FG-1w and FG-2w (p = 0.842). (B) In terms of the mean length of neurites of labeled RGCs

(MLN-RGCs), The CTB-1w and CTB-2w exhibited longer labeled RGC neurites than the FG-1w and FG-2w (p

<0.001), but no difference was evident between the CTB-1w and CTB-2w (p = 0.111) or between the FG-1w and FG-

2w (p = 1.0). (C) Representative photomicrographs taken at approximately 5/6 retinal radius in the superonasal

quadrant showing the neurites of RGCs labeled by CTB and FG at 1 week and 2 weeks. ��Two-way analysis of variance

(ANOVA), p<0.001. Scale bar = 25 μm.

https://doi.org/10.1371/journal.pone.0205133.g002
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right and left eyes (p = 0.827 in MAN-RGCs, p = 0.934 in MLN-RGCs), and no interaction

between the groups and eyes (p = 0.222 in MAN-RGCs, p = 0.957 in MLN-RGCs).

Diffusion area in the superior Colliculi

To verify the injection sites and compare the diffusion characteristics of CTB and FG, slices of

the bilateral SC were photographed and studied. All injection sites were first confirmed to be

in the SC according to the atlas of the rat brain, and then Image-Pro Plus 6.0 was used to mea-

sure the DA-SC of each injection site where the needle passage was most obvious. As shown

in Table 2 and Fig 3A, the DA-SC in the FG Groups was much larger than that in the CTB

Groups, both at 1 (p <0.001) and 2 (p<0.001) weeks. This remarkable difference was also

evident in the mixed-injection rats (Fig 3B): the SC stained by CTB was focused and small,

whereas the area stained by FG was diffuse and wide. An increasing trend in the DA-SC was

found in the CTB Groups (p<0.005) from 1 to 2 weeks, but not in the FG Groups (p = 0.513).

Besides, no difference between the right and left SC (p = 0.885) and no interaction between the

groups and bilateral SC (p = 0.748) were found.

Characteristics of labeled optic nerves

The characteristics of labeled optic nerves were also examined (Fig 4). The optic nerves labeled

by FG showed discrete linear fluorescence without detectable dye leakage. The axons were seg-

mentally stained and presented a granular appearance; in fact, most axons were not clearly

labeled. In contrast, the optic nerves labeled by CTB were much more distinct: the axons dis-

played complete linear structure. In addition, the number of CTB-labeled axons was much

greater than that of FG-labeled axons at 1 and 2 weeks. A slight increase was found in the CTB

Groups from 1 to 2 weeks, but no obvious difference was found between the FG-1w and FG-

2w Groups.

Discussion

Our study first comprehensively compared the differences between the two commonly used

retrograde tracers, CTB and FG, in retrograde labeling of RGCs. In previous studies, many

investigators prefer CTB for the retrograde labeling of RGCs because of its high efficiency: a

relatively low concentration and low dose of CTB could achieve a satisfactory labeling effect

[35]. While Some researchers prefer FG for the retrograde labeling of RGCs because of its

Fig 3. The diffusion area of cholera toxin subunit B (CTB) and Fluorogold(FG) in the superior colliculus (SC) at 1 week and 2 weeks in

rats. (A) The diffusion area of tracers in the SC (DA-SC) in FG-1w (rats euthanized 1 week post-FG injection) and FG-2w (rats euthanized 2

weeks post-FG injection) were much larger than those in CTB-1w (rats euthanized 1 week post-CTB injection) and CTB-2w (rats euthanized 2

weeks post-CTB injection) (p <0.001), CTB-2w displayed a larger DA-SC than CTB-1w (p <0.005), but the DA-SC in FG-1w and FG-2w were

similar (p = 0.513). (B) In an identical visual field of SC of a rat euthanized 2 week post-mixed injection (CTB+FG), the SC stained by CTB was

focused and small, whereas the area stained by FG was diffuse and wide. ΔΔTwo-way analysis of variance (ANOVA), p<0.001; ��two-way

ANOVA, p<0.001. Scale bar = 200 μm.

https://doi.org/10.1371/journal.pone.0205133.g003
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intense fluorescence, extensive filling of dendrites, high resistance to fading, and wide latitude

of survival time [27, 37, 38]. However, up to now, no study has expressly indicated which

tracer is more suitable for retrograde labeling RGCs.

In order to elucidate the specific features of CTB and FG, we not only compared their dif-

ferences in labeling the mean density of RGCs, but also compared their diffusion ability in SC

and their morphological differences in labeling the neurites of RGCs and optic nerve. In terms

of survival time, there is no benchmark of CTB: from 4 days to 4 weeks is feasible [35]. The

axonal transport rate of CTB is approximately 160 mm/day in rats [25]. The time taken by FG

to travel from the SC to the RGC somata is reportedly within 1 week in SD rats [22]. Also, it is

recommended that the survival time of FG should be kept short because evidence has shown

that, with long-term use, FG can diffuse into amacrine cells and microglial cells and disrupt

neuronal function [42–45]. Accordingly, we chose 1 and 2 weeks as the time points to observe

the results of retrograde tracing.

Our results demonstrate that FG can retrogradely label RGCs more completely than CTB at

both 1 and 2 weeks. The mean densities of FG-labeled RGCs observed in our experiments

(2411 ± 21 cells/mm2 at 1 week and 2443 ± 45 cells/mm2 at 2 weeks) are consistent with that

reported in Chien’s study (2359 ± 423 cells/mm2), Chang’s study (2430 ± 120 cells/mm2),

Lindqvist’s study (2511 ± 20 cells /mm2), and Jehle’s study (2456 ± 141 cells/mm2) [31, 46–48],

but differ from that presented in studies by Wang et al (1802.00 ± 115.40 cells/mm2) [49], a

possible explanation for this discrepancy is that the fluorescent images were obtained at differ-

ent distances from the optic disc. The densities of CTB-labeled RGCs in our study (948 ± 93

cells/mm2 at 1 week and 1394 ± 70 cells/mm2 at 2 weeks) also differ from that reported in a

Fig 4. The characteristics of optic nerves retrograde labeled using cholera toxin subunit B (CTB) and Fluorogold

(FG) at 1 week and 2 weeks in rats. The optic nerves labeled using CTB were much clearer than those labeled using

FG. CTB-1w, rats euthanized 1 week post-CTB injection; CTB-2w, rats euthanized 2 weeks post-CTB injection; FG-

1w, rats euthanized 1 week post-FG injection; FG-2w, rats euthanized 2 weeks post-FG injection. Scale bar = 200 μm.

https://doi.org/10.1371/journal.pone.0205133.g004
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study by Choe et al (about 2000 cells/mm2) [41], what acounts for the differences is that they

injected CTB into SC at -4.5, -4.25, -4.0, and -3.75 mm depth from the skull surface to retro-

grade label RGCs, while we injected CTB only at a single -4.0 mm depth. Despite these slight

discrepancies in RGC density, all of these studies confirm our finding that FG labeled signifi-

cantly more RGCs than CTB. Thus, FG shows superiority over CTB in terms of labeling the

greatest number of RGCs, meaning that FG is more suitable for studies that aim to observe all

RGCs, such as studies on RGC apoptosis or protection [16–18, 50].

To further analyze the differences between CTB and FG, we measured the diffusion areas of

each tracer in the SC, and found that FG diffused more easily than CTB: the diffusion areas of

FG were much larger than those of CTB at 1 and 2 weeks. Simultaneously, an interesting phe-

nomenon was noted in the CTB Groups, but not in the FG Groups: the diffusion area of CTB

markedly increased from 1 to 2 weeks. A reasonable interpretation of this finding is that the

diffusion efficiency of CTB in the SC is lower than that of FG: whereas FG reached nearly

maximum diffusion at 1 week, CTB was still diffusing. In Choe’s and Abbott’s studies [25, 41],

they found that injecting CTB at four depth from the skull surface could usually diffuse well

throughout the SC, which is consistent with our conclusion that the diffusion ability of CTB in

SC is relatively weak, but they didn’t investigate the features of FG in their studies. As previ-

ously described, RGCs ingest tracers from the SC [23]: with a larger area of the SC stained, a

greater number of RGCs can be labeled by tracers, which may also explain the distinction

between the CTB-1w and CTB-2w Groups in RGC density. This result suggests that CTB is

more suitable for the retrograde tracing of RGC subtypes that project their axons to small,

non-image forming nuclei in the brain, such as the suprachiasmatic nucleus [51], dorsal raphe

nucleus [52], and caudal periaqueductal gray [53], because CTB can be injected into small

areas without staining the surrounding nuclei.

Regarding morphology, both CTB and FG intensely stained RGCs, with bright staining of

the cytoplasm and no staining of the nuclei. The labeled somata exhibited a granular appear-

ance, consistent with previous studies [27, 35, 54]. The morphologic results demonstrated that

CTB displayed RGC neurites, including axons, more clearly than FG, although the specific rea-

son for this remains unclear. We conjecture that it is due to the tracers’ individual natures;

indeed, CTB is suitable for use both as a retrograde and an anterograde tracer [28, 35, 36],

whereas FG can only be utilized as a retrograde tracer [27]. This means that CTB may be trans-

ported from cell bodies to cell processes and thereby stain neurites more clearly. No matter the

specific reason, CTB is more suitable for studies that intend to investigate the morphology of

RGCs, especially the morphology of RGC axons, such as assessments of axonal damage and

regrowth [55].

In conclusion, we compared two commonly used retrograde tracers, CTB and FG, for the

labeling of RGCs in rats at 1 and 2 weeks. Our results demonstrate that both CTB and FG can

successfully label the RGCs of rats at 1 and 2 weeks. FG labels more RGCs than CTB, whereas

CTB better outlines the morphology of RGCs. Furthermore, CTB facilitates the retrograde

labeling of some small, non-image forming nuclei in the brain to which some RGC subtypes

project their axons.
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