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Abstract. Surfactant protein A (SP-A) increases the resistance of surfactant to
inhibition by plasma and other proteins. In a previous study we found that a mono-
clonal anti-SP-A antibody (R 5) increased the sensitivity of surfactant to inhibition
by fibrinogen in vivo and in vitro. SP-A has been shown to stimulate microbial
phagocytosis and killing by alveolar macrophages. We hypothesized that using R 5
to inactivate SP-A in an animal model mimicking congenital group B streptococcal
(GBS) pneumonia might result in increased bacterial proliferation and a deteriora-
tion in lung function. Newborn near term rabbits were delivered by Cesarean sec-
tion, anesthetized, tracheotomized, and ventilated for 5 h in a plethysmograph
system allowing measurement of dynamic lung-thorax compliance. Postnatally the
animals received one intratracheal injection (5 ml/kg) of R 5, nonspecific IgG, or
normal saline. At 30 min all animals received a standard dose of an encapsulated
GBS strain by intratracheal injection. The number of bacteria (mean log10 CFU/g
lung ± S.D.; CFU4 colony forming unit) was evaluated in lung homogenates.
Histologic lung sections were judged by light microscopy. Bacterial proliferation
was similar in rabbits treated with the monoclonal antibody (9.33 ± 0.39;n 4 14)
and in control animals receiving saline (9.16 ± 0.35;n 4 14) or nonspecific IgG
(9.26 ± 0.31;n 4 11). No significant differences were noted on the histologic
analysis or in measurements of lung function. We conclude that intratracheal in-
stillation of a monoclonal anti-SP-A antibody did not increase bacterial proliferation
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in GBS-infected newborn rabbits. These findings suggest that SP-A does not play an
important role in protection against encapsulated GBS strains in the neonatal period.
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Introduction

Surfactant therapy has markedly improved the prognosis of premature newborn infants
with respiratory distress syndrome (RDS). New targets for surfactant replacement
therapy are currently being identified. Possible new indications include meconium
aspiration syndrome, congenital pneumonia, pulmonary hemorrhage, early chronic
lung disease, and acute respiratory distress syndrome (ARDS) in children and adults.
In these conditions unlike neonatal RDS there is no primary surfactant deficiency
caused by immaturity of the surfactant system [for review, see Ref. 27]. Substances
present in the airways under pathologic conditions (like free fatty acids in meconium
aspiration syndrome) or endogenous proteins (e.g. fibrinogen or albumin entering the
airspaces because of capillary leakage in ARDS) may cause secondary surfactant
dysfunction via inhibitory mechanisms [3, 12, 17].

In the commercially available modified natural surfactant formulations the large,
relatively hydrophilic, surfactant proteins SP-A and SP-D are removed during prepa-
ration. In vitro, SP-A increases surfactant resistance to inhibition [1]. SP-A and SP-D
stimulate alveolar macrophages in vitro and seem to be important factors in the lung
defense system [24, 29]. In a recent study [20], we showed that a monoclonal antibody
to surfactant protein A (R 5) increased the sensitivity of endogenous pulmonary sur-
factant to inactivation by fibrinogen not only in vitro but also in vivo.

We used a monoclonal antibody to inactive SP-A to test the participation of SP-A
in the handling of bacterial infections in the neonatal lung. Our hypothesis was that the
blocking of endogenous SP-A by this antibody in ventilated near term rabbit fetuses
with experimental neonatal group B streptococcal (GBS) pneumonia [8] would pro-
mote bacterial growth and impair lung function.

Materials and Methods

Animals

Pregnant New Zealand White rabbits were obtained from local suppliers. Rabbit fetuses were delivered by
Cesarean section at a gestational age of 29.5 days. Term gestation for rabbits is 30–31 days. At 29.5 days
the animals have mature lung function [22].

Antibody

R 5 rat monoclonal antibody to rabbit SP-A was generated and purified as reported elsewhere [19, 21]. The
final product contained >99% IgG as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
No cross-reactivity of this antibody with SP-D or other proteins has been detected to date. The antibody was
dissolved in normal saline at a concentration of 15 mg/ml and stored in aliquots at −70°C until use. The
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binding of R 5 to a 30-kDa protein, consistent with SP-A in a natural rabbit surfactant preparation, was
demonstrated by Western blotting [see Ref. 20]. In vitro measurements of surface activity of a ‘‘complete,’’
SP-A containing natural rabbit surfactant preparation (produced by lavage and sucrose gradient centrifuga-
tion [30]) in the pulsating bubble surfactometer demonstrated a significant increase in surface tension after
the addition of R 5 anti-SP-A antibody [20]. We estimated the pool size of endogenous SP-A in term
newborn rabbits to be 0.5mg/g body weight, based on the data of Stevens and colleagues [18]. In a fetus
weighing 40 g, this corresponds to 20mg. If all of the SP-A were in monomeric form, an equimolar amount
of antibody would thus be 100mg. If SP-A is in its natural 18-mer form, 100mg of the antibody is a very
large molar excess.

Bacteria

An abundantly encapsulated low density (LD) phase variant of GBS was processed from the reference strain
GBS 090 Ia Colindale by repeated gradient centrifugation [4]. The strain is a kind gift from Stellan
Håkansson, University of Umeå, Sweden. The strain was stored in aliquots at −70°C, precultured, washed,
centrifuged, and suspended in saline at a concentration of 109 live bacteria/ml. The number of colony-
forming units (CFU) in the stock suspension was determined for each individual experiment by serial dilution
and bacterial counting on blood agar plates after a 24-h incubation period at 37°C in an atmosphere with 5%
CO2. Details have been described elsewhere [8].

Experimental Protocol

Ventilator System.Near term rabbit fetuses were delivered, anesthetized, and tracheotomized at birth and
transferred to a warmed plethysmograph system [22] as described previously [8]. They were ventilated in
parallel in sealed Plexiglas chambers with a common ventilator system (Servo 900 B) delivering 100%
oxygen. The working (4 maximum) pressure was set at 50 cmH2O. The frequency was 40/min, the
inspiration/expiration time ratio was 1:1. No positive end-expiratory pressure (PEEP) was applied, as PEEP
might mask differences in compliance because of variations in surfactant function. The peak inspiratory
pressure was recorded with a pressure transducer (EMT 34) and adjusted individually for each animal to
obtain a tidal volume of 8–10 ml/kg of body weight. Tidal volume was recorded with a specially designed
‘‘Fleisch-tube,’’ a differential pressure transducer (EMT 31), an integrator (EMT 32), an amplifier (EMT 41)
and a recording system (Mingograf 81; all equipment, Siemens-Elema, Solna, Sweden). Lung-thorax com-
pliance (ml/kg × cmH2O

−1) was calculated from the quotient of tidal volume (expressed in ml/kg) and peak
inspiratory pressure (expressed in cmH2O). All recordings were obtained at 0, 15, 30, 45, 60, 90, 120, 150,
180, 210, 240, 270, and 300 min. ECG was recorded at the same intervals, and animals were counted as
survivors if the heart rate was >100/min without evidence of arrhythmia or atrioventricular block.

Experimental Groups.At birth the animals were allocated in random order to three different treatment
groups. Using a specially designed tracheotomy tube with an indwelling wedged plastic catheter tubing
(inner diameter, 0.75 mm, Portext, Hythe, Kent, UK) 5 ml/kg body weight of the antibody preparation
(corresponding to 75 mg/kg IgG) was injected immediately postnatally into the liquid-filled lungs of the
animals. Controls received the same dose and volume of a nonspecific rat IgG preparation (Sigma Chemicals,
St. Louis, MO, USA) or normal sterile saline. The animals were connected to the ventilator system. At 30
min all experimental groups received an intratracheal bolus injection of 5 ml/kg of the GBS suspension.
Before reconnecting the animals to the ventilator system the instilled liquid was moved from the central
airways to peripheral airspaces by injecting three times 10 ml/kg body weight of air with a microsyringe. The
three experimental groups that originated from this procedure were as follows:

1. Antibody-treated infected animals (anti-SP-A/GBS)
2. IgG (nonspecific)-treated infected rabbits (IgG/GBS)
3. NaCl-treated infected controls (NaCl/GBS)

The animals were ventilated for 5 h. At the end of the experiments the animals were killed, and the chest was
opened with sterile instruments after the diaphragm had been examined for the evidence of pneumothorax.
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Blood from the right cardiac ventricle was aspirated for a blood culture (Bactec Plus blood culture system,
Becton Dickinson, Sparks, MD, USA). A heparinized sample was taken for blood gas analysis. The left lung
was excised, weighed, placed immediately into the sterilized tube of a tissue homogenizer (Kontes Scientific
Glassware Instruments, Vineland, NJ, USA), and stored on ice until further processing.

Bacterial Counting.The weight of the lung specimens was adjusted to 1 g with sterile 0.9% NaCl. The
samples were homogenized with a high speed (15,000 rpm) nylon microchamber tissue homogenizer (Sor-
valt Omnimix, Dupont Instruments, Newton, CT, USA). A serial dilution was performed, and the diluted
suspensions were spread on blood agar plates. Colony counting was performed after a 24-h incubation.
Because bacterial proliferation follows a logarithmic growth curve, the results were expressed as mean log10

CFU/g of lung (wet weight).

Histologic Examination of the Lungs.At the end of the experiment a catheter was tied into the pulmonary
artery. The lungs were opened by inflating them with a transpulmonary pressure of 30 cmH2O via the
tracheotomy. After 60 s this pressure was lowered to 10 cmH2O and maintained throughout the fixation
procedure. The right lung was fixed with a mixture of 4% formaldehyde and 1% glutaraldehyde infused for
30 min into the main pulmonary artery at a pressure of 65 cmH2O. The lungs were stored in 4% formal-
dehyde and subsequently embedded in paraffin. Transverse sections, stained with hematoxylin-eosin or
Gram stain, were examined by light microscopy with special reference to the presence of intra-alveolar
edema, hyaline membranes, epithelial necrosis, bacterial proliferation, and recruitment of inflammatory cells
to the airspaces. Volume density of alveolar gas (Vv) in histologic sections was evaluated by a conventional
point-counting method with total parenchyma as the reference volume as described previously [16]. The
coefficient of variation (CV) of alveolar Vv was calculated by the standard formula from the mean and the
S.D. CVVv is a measure of the field-to-field variability of alveolar expansion. The slides were coded so that
the evaluator was unaware of the experimental conditions of the individual animals.

Ethical Approval.The study design and the management of the animals complied with national legislation.
The trial protocol was approved by the local committee for animal research.

Statistical Analysis

Data are given as mean ± S.D. Values for lung weight and physiologic data were subjected to analysis of
variance (ANOVA) using the CRISP software program (Crunch Software, San Francisco, CA, USA).
Between-group differences were evaluated byt-test. Differences in the incidence of complications between
the groups were analyzed with thex2 test. The limit level of statistical significance was defined asp 4 0.05.

Results

Characterization of the Experimental Animals

Thirty-nine rabbits from six litters were included in the final data analysis. Fourteen
animals received the SP-A antibody (anti-SP-A/GBS), 11 nonspecific rat IgG (IgG/
GBS), and 14 saline (NaCl/GBS). Eight fetuses (two in the anti-SP-A/GBS group, four
in the IgG/GBS group, and two in the NaCl/GBS group) were not included because
they demonstrated ECG abnormalities already at 30 min (n 4 2) or did not survive
the 5-h ventilation period. There were no significant differences in body weight,
lung weight, and other physiologic measures in survivors at the end of the experiment
(Table 1).
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Bacterial Proliferation

All animals were infected with a similar number of bacteria. The number of bacteria
applied was 8.79 ± 0.28 (mean ± S.D. log10 CFU/rabbit) in the anti-SP-A/GBS group,
8.71 ± 0.35 in the IgG/GBS group, and 8.72 ± 0.30 in the NaCl/GBS animals. A
significant proliferation of bacteria occurred during the experimental period (Fig. 1).
Assuming a uniform distribution of the instilled bacteria between the right and the left
lung and a total lung weight of 1 g, the estimated average increase in bacterial numbers
was 845% for anti-SP-A/GBS animals, 653% for the IgG/GBS and 585% for the
NaCl/GBS group. After logarithmic transformation these differences in bacterial pro-
liferation did not reach the limit level of statistical significance (Fig. 1). With two
exceptions (one in the anti-SP-A/GBS group and one in the IgG/GBS group) all blood
cultures were GBS positive at the end of the experiment.

Lung Function

After connection of the animals to the ventilator and an initial stabilization period the
first compliance values were calculated at 15 min. At 15 and 30 min IgG and anti-
SP-A-treated animals had similar compliance values. The values in the NaCl controls
were considerably higher (Fig. 2). The difference approached statistical significance (p
4 0.07 at 15 min, andp 4 0.06 at 30 min vs the IgG/GBS group). Compliance values
were similar in the different groups throughout the rest of the experimental period
(Fig. 2).

Histology

The histologic examination did not detect differences among the experimental groups.
Lung expansion patterns were similar among the different treatment groups. Volume
density (Vv) of the alveolar spaces and the coefficient of variation of alveolar volume
density (CVVv) are demonstrated in Table 2. Hyaline membrane formation, the pres-
ence of epithelial necrosis, and the severity of the inflammatory reaction were similar
in the different groups.

Table 1. Characterization of animals in the experimental groups

Parameter Anti-SP-A/GBS
(n 4 14)

Rat IgG/GBS
(n 4 11)

NaCl/GBS
(n 4 14)

Treatment at birth Monoclonal
anti-SP-A, 5 ml/kg

Nonspecific rat
IgG, 5 ml/kg

Sterile 0.9% NaCl,
5 ml/kg

Treatment at 30 min GBS, 5 ml/kg GBS, 5 ml/kg GBS, 5 ml/kg
Body weight (g) 48 ± 8 46 ± 7 43 ± 12
Left lung weight (g) 0.45 ± 0.12 0.44 ± 0.11 0.42 ± 0.15
Final heart rate (min−1) 209 ± 65 223 ± 33 221 ± 57
Final pCO2 (kPa) 7.0 ± 1.8 8.2 ± 1.8 6.7 ± 0.8

Values are the mean ± S.D.
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Discussion

In the last decade the structure and function of the proteins of the surfactant system
have been well characterized [9]. The availability of recombinant surfactant prepara-
tions [14] with proteins or protein fragments has been connected with the hope of
‘‘designer surfactants’’ allowing treatment of different kinds of pulmonary diseases
with surfactant preparations that are optimized in terms of surfactant protein and lipid

Fig. 1. Bacterial proliferation at the
end of the experiment in the different
groups. Values are mean log10 CFU/g
lung ± S.D.

Fig. 2. Lung-thorax compliance
in different experimental groups.

Table 2. Results of the histologic evaluation of alveolar expansion in the experimental groups

Parameter Anti-SP-A/GBS,
n 4 14

Rat IgG/GBS,
n 4 11

NaCl/GBS,
n 4 14

Vv 0.57 ± 0.09 0.54 ± 0.10 0.59 ± 0.08
CVVv 0.23 ± 0.07 0.25 ± 0.08 0.21 ± 0.08

Alveolar volume density (Vv) and coefficient of variation of Vv (CVVv) were determined by a point
counting method [16] with total lung parenchyma as a reference volume. Values are the mean ± S.D.

128 E. Herting et al.



composition. In theory a surfactant suitable for treatment of RDS in a premature infant
may not be optimal for treating a patient with ARDS caused by infectious lung disease.
It has been shown that the surfactant proteins SP-B and SP-C are of prime importance
for the physiologic function of the surfactant system [9]. Inactivation of SP-B by
monoclonal antibodies results in immediate respiratory distress and destruction of a
functioning surfactant film [15]. SP-B deficiency as a disease (congenital alveolar
proteinosis) or as an experimental model (SP-B knockout mice) is a lethal condition.
However, after lung transplantation in children with congenital alveolar proteinosis,
anti-SP-B antibodies were detectable without impairment in lung function [6].

On the other hand, inactivation of SP-A in animal models by antibodies does not
lead to changes in lung function or morphology [10, 20]. As reported recently, alveolar
levels of surfactant seem to be normal in SP-A knockout mice [11]. Although SP-A
seems to participate in the formation of tubular myelin and in regulating surfactant
metabolism, application of an anti-SP-A antibody did not lead to deterioration of lung
function in our model. Initial compliance values at 15 and 30 min tended to be lower
both in the anti-SP-A and the controls receiving nonspecific IgG, indicating a slight
inhibitory effect of the immunoglobulins on surface activity, which has been described
by others before [3].

In vitro SP-A stimulates alveolar macrophages, and it increases opsonization,
phagocytosis, chemotaxis, and killing [23, 25]. These effects can be blocked by ap-
plying anti-SP-A antibodies [24, 26]. However, the observed stimulation seems to be
mediated by special receptors on alveolar macrophages [13], so that there is no stimu-
lation of other immune-competent cells like monocytes, peritoneal macrophages, or
neutrophilic granulocytes. Recent experiments indicate that SP-A is effective in de-
fense against certain pathogens (e.g. influenza A) but less effective [25] against others
(e.g. influenza B virus). The stimulatory effect seems to be dose dependent with
considerable differences in the dose-response curves for different infectious agents
[23, 25].

In our study we could not demonstrate any deleterious effect on lung function or
bacterial proliferation by intratracheal application of a monoclonal anti-SP-A antibody.
Although alveolar macrophages are the predominant phagocytic cell in the adult lung
[2], newborn rabbit lungs are relatively deficient in alveolar macrophages so that
neutrophils provide an important second line of defense in bacterial pneumonia [5].
However, SP-A does not exert a stimulatory effect on neutrophils [24].

The model used for the present experiments has certain limitations. The GBS strain
used in our experiments is a ‘‘smooth strain,’’ surrounded by a polysaccharide
capsule that protects the bacteria from phagocytosis as long as opsonins are not present
[7]. The capsule appears to be a major virulence factor [4] also in neonatal GBS
infections. Therefore, these types of studies may not be extrapolated to conclusions
regarding ‘‘rough’’ (unencapsulated) GBS strains or other bacteria. To induce repro-
ducible pneumonia within a time span of 5 h of ventilation an infectious dose of 109

bacteria was applied intratracheally. This is undoubtedly somewhat different from the
normal natural time course of an ascending infection. However, such an overwhelming
infection is a well described feature of neonatal GBS infections. Despite antibiotic
treatment and neonatal intensive care, mortality rates of up to 80% are described in
premature babies with GBS infection [28]. Applying a lower infectious bacterial in-
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oculum to spontaneously breathing animals might result in a localized pulmonary
infection. Under such conditions more macrophages might be attracted to the airspaces.
Therefore, other pneumonia models with different animals and/or different bacteria at
different doses might produce different results.

We conclude that application of the monoclonal anti-SP-A antibody R 5 does not
impair lung function or alter bacterial growth patterns in experimental neonatal group
B streptococcal pneumonia. Our findings suggest that SP-A is only of limited impor-
tance in host defense against severe systemic neonatal infections with encapsulated
group B streptococci.
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