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Abstract

common terms, lowest common parents.

Background: In Gene Ontology, the “Molecular Function” (MF) categorization is a widely used knowledge
framework for gene function comparison and prediction. Its structure and annotation provide a convenient way to
compare gene functional similarities at the molecular level. The existing gene similarity measures, however, solely
rely on one or few aspects of MF without utilizing all the rich information available including structure, annotation,

Results: We introduce a rank-based gene semantic similarity measure called InteGO by synergistically integrating the
state-of-the-art gene-to-gene similarity measures. By integrating three GO based seed measures, InteGO significantly
improves the performance by about two-fold in all the three species studied (yeast, Arabidopsis and human).

Conclusions: InteGO is a systematic and novel method to study gene functional associations. The software and
description are available at http://www.msu.edu/~jinchen/InteGO.

Background

The Gene Ontology (GO) provides a structured, con-
trolled vocabulary of terms, which are interrelated forming
a directed acyclic graph (DAG) for describing and categor-
izing (into three categories) the attributes for genes, gene
products and sequences [1]. The “molecular function”
(MF) category describes fundamental biochemical activities
(including specific binding to ligands or structures of a
gene product) at the molecular level [2]. As a popular
resource used for functional annotation, MF provides rich
information and a convenient way to study gene func-
tional similarity by comparing terms with which the genes
are annotated [3-7], which subsequently supports a wide
variety of applications, such as assessing target gene func-
tions [8], predicting gene functional associations [9], infer-
ring protein nomenclature [10], predicting sub-cellular
localization [11], discovering new pathways [12], etc.

* Correspondence: ydwang@hit.edu.cn; jinchen@msu.edu

'School of Computer Science and Technology, Harbin Institute of
Technology, Harbin, China

2MSU-DOE Plant Research Laboratory, Michigan State University, East
Lansing, MI 48824, USA

Full list of author information is available at the end of the article

In order to compute gene-to-gene functional similari-
ties using GO, various computational approaches have
been developed. These approaches can be classified into
two distinct categories: 1) group-wise, meaning calculat-
ing gene-to-gene similarity directly based on a statistical
framework considering all the terms annotated to the
target genes [13-15], and 2) pair-wise, i.e., indirectly
computing gene-to-gene similarity using term-to-term
similarities computed with GO semantic measures
[12,16-21]. Each of the aforementioned measurements
adopts one or a few kinds of knowledge in the GO effi-
ciently. However, they do not rely on all of the rich
information available in the GO databases. In this paper,
we propose a new rank-based gene semantic similarity
measure called InteGO (Integrated Gene Ontology mea-
sure), which can integrate the state-of-the-art gene-to-
gene measures [12,13,17] (therefore considering more
information than these measures) to bring the perfor-
mance of the GO-based functional similarity studies to
a higher level.

In the first GO-based measure category (group-wise),
by combining elements of the topology and annotation
information, the Yu measure calculates a probabilistic

© 2014 Peng et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons

( BioMVed Central

Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://www.msu.edu/~jinchen/InteGO
mailto:ydwang@hit.edu.cn
mailto:jinchen@msu.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Peng et al. BMC Bioinformatics 2014, 15(Suppl 2):S5
http://www.biomedcentral.com/1471-2105/15/52/S5

level of similarity from GO, in order to directly compute
gene similarity [13]. The main idea of the Yu measure is
that a pair of genes should be very similar if they are
included in a functional group with a few proteins,
whereas the similarity is lower if the gene pair belongs
to a large gene group. Mathematically, given two gene
gl and g2, the gene-to-gene similarity can be calculated
with:

GeneSimy,(81,82) = —In % 1)
where g4, 4, is the total number of gene pairs that
have the same set of lowest common ancestors (LCAs)
as g1 and gy; N is the total number of gene pairs in the
selected GO category. A LCA is the common ancestor
with the highest information content (IC). In the illus-
trative example in Figure 1, there are in total 45 gene
pairs possible among the ten genes; the LCA of gene
pair g; and g, is ¢;, and the number of gene pairs
(which LCA is also ;) is 9. Therefore, the similarity of
g1 and g, based on the Yu measure is -/n(9/45) = 1.61.
The Yu measure considers both the elements of topolo-
gical distance and the LCA distance. However, it simpli-
fies the computation of shared information of both
genes without using all of the common parents of the
GO terms annotated to g; or g5, which neglects the
locations of LCAs and the aggregate semantic contribu-
tions from the parents of the target terms (due to the
high complexity of graph matching). Alternatively, the

Yo

Figure 1 An illustrative example of Gene Ontology (GO). An
illustrative example of GO forming a directed acyclic graph (DAG),
in which nodes and edges represent GO terms and “is-a” or “part-
of” relationships between terms. {t;, .., t;, root} is the set of GO
terms, and {g;, .., 10} is the set of genes annotated to these terms.
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SORA [15] measure computes the IC of a term set by
means of combining inherited and extended information
content of the terms based on the structure of GO.
Gene functional similarity is estimated using the IC
overlap ratio of term sets. However, like the Yu mea-
sure, it ignores valuable information implicit in the
semantics, i.e., the common parents of the GO terms,
when calculating the shared IC and relationships among
involved terms.

In the measures in the second category (pair-wise),
the pair-wise term comparisons originally developed
for natural language processing [16,18-21] are utilized,
and are strongly dependent on the specific taxonomy.
Among the earlier developed methods, an IC based
measure called the Resnik measure has showed strong
correlations between its results and gene expression
similarities on yeast [16,22]. Mathematically, given a
GO term ¢, its IC is defined as a negative log likelihood
IC(2) = - 1og(|G4/|Groosl), where G, and G,,,; are the
sets of genes annotated to term ¢ and the root term
(including all of its descendants) respectively. In the
Resnik measure, the similarity between term ¢; and ¢,
is defined as the IC of LCA: TermSimpesnix (t1, t2) = IC
(LCA;,). Although the Resnik measure strongly corre-
lated with the gene expression data [22], terms sharing
the same LCA have the same semantic similarity, even
if they are at very different levels of GO. Consequently,
it cannot differentiate term pairs that are far from LCA
with term pairs close to the same LCA. In the illustra-
tive example in Figure 1, the common parent of ¢, and
t; is t1, which is the same as the LCA of ¢3 and ts.
According to the Resnik measure, Simpsuix (L2, £7) =
Simpesni (£3, tg) = 0.51, but clearly the distance from ¢,
and ¢, to the LCA is shorter. To take both the distance
from LCA to the target terms and the distance from
LCA to root into account [17], a later-developed mea-
sure called the Schlicker measure was proposed:

1 |Grca,, | ) @)

. 2 x IC(LCA
TermSimschiirer (t1, t2) = L x ( (Groarl
Toot

IC(El) + IC(Ez)

where Gica,, is the set of genes annotated to the LCA
of t; and £,.

In Eq 2, the first part on the right side of the equation
quantifies the distance from terms ¢; and £, to their
LCA, and the second part measures the distance from
the LCA to the root, where a short former distance and
a long later distance indicate a higher similarity. Experi-
mental results revealed that the Schlicker measure
agrees with sequence similarity [17]. In the same exam-
ple in Figure 1, the Schlicker measure is able to differ-
entiate term pair (¢, £;) and (3, tg) with TermSimsepicker
(£, t7) = 0.15 and TermSimscpjicker(t3, ts) = 0.09. How-
ever, the common problem of the Schlicker measure
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and the Resnik measure is that they only consider a sin-
gle common ancestor, neglecting the fact that two GO
terms may have multiple common ancestors in the GO
structure [23].

Recently, the Wang measure was proposed to consider
all of the parent terms of the target terms [12]. Given a
term ¢; and its parent term p, the semantic contribution
of p to t;, denoted as S;;,,, is defined as the maximal
semantic contribution of the paths from ¢; to p. The
GO term similarity in the Wang measure is defined in
Eq 3, where P; (or P,) are the sets of all of the parents
of t; (or £).

Z (Sfl,p + sz,p)

pePiNP;

Z Stl,p+ Z St2,p

teP; tepP,

3)

TermSimwang(t1, t2) =

The experiment result shows that this measure per-
forms significantly better than Resnik measure on yeast
protein functional similarities [12]. However, the Wang
measure ignores both the topological distances among
the LCAs and the statistics of gene annotations that the
Yu measure has taken into consideration. For the same
example in Figure 1, to compare the similarity of term
t3 and tg, all of the common parents of the two terms,
Py = {ty, ty, ts, Ly, 5, oot} and Pg = {t;, ts, te, t7, tg, root},
are considered by the Wang measure.

For the Resnik, Schlicker and Wang measures, gene-to-
gene similarity is computed based on the GO term simila-
rities that annotate to the target genes. In Wang et al [12],
let g; and g, be two genes and T; and T, be the sets of
GO terms annotated to g; and g, the gene-to-gene simi-
larity is calculated by Eq 4:

> TermSim(t, To) + Y TermSim(t, T1)
(4

teTy teTy

ITi] + [Tz

GeneSim(g1,82) =

where t is a GO term, TermSim(t, T,) = maX;ecrx
Sim(¢, t;), which represents the highest similarity
between t and term set T,. Note that, for both |T}|
and |T5|, only the terms with T ermSim(t, T,) = O are
counted.

To the best of our knowledge, the existing measures
emphasize on only one or few types of relationships
between genes but ignores the others. One of these
measures may be better than the others on one specific
set of terms and genes, but may perform worse than the
other measures on another gene set. Since none of the
existing measures takes into account all of the aspects
of GO (structure, annotation, LCA, all of the common
parent, etc), which is of course a challenging task, it is
hypothesized that the integration of multiple measures
can improve the performance, since integration of mul-
tiple methods has been widely applied for performance

Page 3 of 10

boosting [24-26]. In this paper, we proposed a rank-
based gene semantic similarity measure called InteGO
by synergistically integrating the state-of-the-art gene-
to-gene similarity measures. The integrated measures
are called seed measures in the rest of paper. The major
contributions of our work are:

+ While the existing measures only consider one or
few aspects of the problem, InteGO is an integrative
approach, which conceptually considers all of the
information in GO to reduce incorrect score assign-
ments. In addition, InteGO employs an adaptive
approach for the optimization of the seed measure
integration.

+ A rank-based approach is used to integrate multi-
ple seed measures. Since the values from different
seed measures have different scales and distributions,
a direct integration of the values may lead to biased
results. With our rank-based approach, InteGO uni-
fies the scale and distribution among different seed
measures, ensuring fair comparison.

+ InteGO is an open framework, which adds the
flexibility to integrate more GO similarity measures,
more advanced evaluation and integration methods
in the future.

InteGO was systematically tested on three species with
different levels of complexity of GO annotations, i.e.,
yeast, Arabidopsis and human. The experimental results
on all of the three species show that InteGO performs
consistently better than the other measures in all of the
tests.

Method

In order to integrate multiple seed measures in InteGO,
two key problems need to be solved: first, how to select
the most appropriate seed measures for integration;
second, how to integrate all of the scores from the dif-
ferent seed measures. To solve these problems, InteGO
is divided into two steps: 1) to compute similarity scores
with every seed measure individually and rank the
scores, and 2) to evaluate and integrate the ranks of
multiple seed measures.

Rank-based similarity

The outputs of the different gene-to-gene similarity mea-
sures have different scales and distributions. Therefore, a
direct integration of the values may lead to biased results.
In InteGO, we unify the scale and distribution among dif-
ferent seed measures with a rank-based approach. One
common problem of rankbased approaches though is the
data size dependence, i.e., while a rank-based approach
can work well on a relative large dataset, it is often inade-
quate on a small set of data. For example, if only two
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genes are provided by a user, the similarity rank of the two
genes is always one, regardless how high or how low the
actual similarity score is. Therefore, instead of requiring
users to always provide a large set of genes to compare
(which is not reasonable all of the time), InteGO maintains
a background set of genes (BG) for every species of inter-
est to unify the similarity scores from the multiple seed
measures. BG must satisfy two requirements: 1) it is large
enough; 2) it unbiasedly includes the full spectrum of gene
similarity scores, ranging from the lowest to the highest.

The framework of InteGO is shown in Figure 2. In the
steps with grey background, the similarity scores in BG
are pre-calculated with all of the seed measures and
saved in a database called GeneSimDB. When a user
inputs a gene set G, the similarity scores of all of the
gene pairs in G and all of the gene pairs between G and
BG will be calculated with all of the seed measures, and
be merged into GeneSimDB. If G is a subset of BG,
InteGO will output the results directly. Finally, all of the
gene pairs in GeneSimDB are sorted incrementally based
on their gene similarity scores and are ranked. The
ranked gene similarity score RankSim(g,, g., m) for
genes g; and & in G is calculated as:

m
2 x s

" (IBGUGI) ®

RankSim(g1, 82, m)

where Tg| o, is the rank of gene pair g; and g, using
seed measure m, and BG is the predefined background
gene set, and G is the user provided gene set. The
ranked similarity indicates how similar a given gene pair
is in the background of all of the gene pairs.
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One advantage to use the rank-based measure is to
unify different scales and distributions among the seed
measures. Therefore, the agreement among the ranks
could indicate the functional similarities appropriately.
An illustrative example is shown in Table 1. Given ten
gene pairs, three measures (My, Mp and Mc) are used
to calculate the gene-to-gene semantic similarities
based on the GO. The first column of the values show
that the similarity scores of measure M,, Mp and Mc
have different scales and different distributions. For
example, the semantic similarity of gene pair 3 is 3.0
for measure M, and 0.9 for measure Mp, although they
both mean the highest functional similarity in their
own datasets. The second column of the values show
the ranks of the gene pairs under each seed measure in
assenting order.

Adaptive integration approach

The rank-based semantic similarities of gene pairs from
every seed measure provide an unique opportunity to
compute the gene-to-gene similarities with all the infor-
mation of GO utilized by the seed measures. A key
problem here is how to select the most appropriate inte-
gration approach. Although there are many integration
approaches all working well on certain domains, there
does not exist one method that is always better than the
others. In fact, to choose an appropriate integration
method is largely dependent on the content of the study.
Therefore, we propose an adaptive approach to automati-
cally select the most appropriate integration method
from a set of candidates. The main idea of the adaptive
approach is to score all of the methods in the pool of the

Construct the background sets of genes BG1,

Calculate gene-to-gene similarities for gene

BG2, BG3, ...

l

Pre-calculate gene-to-gene similarities for
gene pairs in BG,, saved in GeneSimDB

l

Identify the best integration method for
each background set BG;

Obtain a set of genes from user input, saved
in gene set G; and the selection of
background set BG;

Is G a subset
of BG?

pairs in G and for gene pairs between G and
BG

!

Append all the results to GeneSimDB and re-
build index

l

Rank all the gene pairs in GeneSimDB based
on the similarity scores

Compute Rank-based gene-to-gene
similarity for all the genes in G

|
¥

Output results

gene set.

Figure 2 Framework of InteGO for calculating the rank-based gene-to-gene similarities in MF. Framework of InteGO for calculating the
rank-based gene-to-gene similarities in MF. The boxes in the grey block are the pre-processing modules for the preparation of the background
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Table 1 lllustrative example for integration similarity.
Gene Pairs semantic Similarity Rank of Similarity Integration of Ranks

Mg Mg Mc Mgy Mg Mc MAX MIN MEAN MEDIAN

Gene pair 1 24 0.2 0.04 9 2 4 0.9 0.2 05 04
Gene pair 2 1.8 06 0.12 6 7 8 0.8 0.6 0.7 0.7
Gene pair 3 30 09 0.03 10 10 3 1.0 0.3 0.8 1.0
Gene pair 4 12 03 0.05 5 3 5 0.5 03 04 05
Gene pair 5 09 0.1 0.06 3 1 6 0.6 0.1 03 03
Gene pair 6 0.5 0.5 0.02 2 6 2 0.6 0.2 03 0.2
Gene pair 7 1.0 04 0.09 4 4 7 0.7 04 05 04
Gene pair 8 1.8 04 0.13 6 4 9 0.9 04 0.6 0.6
Gene pair 9 0.2 0.7 0.01 1 8 1 0.8 0.1 03 0.1
Gene pair 10 2.1 0.8 0.16 8 9 10 1.0 0.8 09 09

lllustrative example for integration similarity, where M, Mg and Mc are three seed

candidate integration approaches with the background set
BG, and then select the best one.

InteGO provides four integration methods: max, min,
mean and median. As an open system, InteGO also
allows users to use their own integration methods.
Mathematically, let RankSim(gl, g2, m) be rank-based
similarity of gene g1 and g2 using seed measure m,
InteGO is defined as:

maxmepmRankSim(gy, g, m) if I = max
minyepmRankSim(gy, g2, m) if I = min

InteGO(g1, 82, 1) = | meanepRankSim(g1, g2, m) if I = mean (6)
median ey RankSim(gy, 8, m) if 1 = median

integrationepRankSim(g1, 82, m) if I = other_integration

where M is a set of seed measures and I is an integra-
tion method which is max, min, mean, median of all of
the ranks, or any other integration method that is defined
by the user. For an illustrative example in Table 1, the
results based on the four different integration methods
are shown in the third column.

To automatically determine which integration method
is the best, all of the gene pair similarities in BG are cal-
culated based on each candidate integration method and
are evaluated systematically with biological data. Recent
studies used the correlation coefficient of gene expression
correlations or gene sequence similarities to evaluate the
MEF based gene similarities [22]. However, it is not always
correlated between gene functional similarities and gene
expression correlation or sequence similarities [12].
Furthermore, previous studies show that enzymes are
usually categorized biochemically with EC (Enzyme
Commission) numbers but not their nucleotide or amino
acid sequences [27,28], which indicates that it could be a
better way for using EC numbers to explain molecular
function with the criteria that the molecular functions of
a group of genes are similar if they have the same EC
numbers [12,29,30].

To systematically use EC to choose an integration
method, all of the genes in BG are grouped based on their

gene-to-gene functional similarity measures.

EC numbers (four digits), and then the differences
between the inter- and intra-EC gene-to-gene similarities
are tested. With an integration method, the higher the
ratio between intra-EC gene similarities and inter-EC gene
similarities, the better the integration method is. Quantita-
tively, we utilize the logged fold change (LogFC) measure
which has been widely used in the gene expression studies
[31]. The LogFC score of EC ei is defined in Eq 7:

Z dlffg (ei, ej)

3€G(es)

(7)
IG(ei)l

1
LogFC(e;) = Bl X

2

¢;€E;G(e))NG(e;)=0

where G(e)) is set of all of genes which EC number is
e; E is a set of ECs which do not have overlapped genes
with e; (G(e) N Gle;) = D); diffy(e;, e;) is computed as:

IG(e:)] x Y (1 — GeneSim(g, ) +c)
) 8'€G(e)
Walen ) = I TGN <> (1= Cenasim(g,g9) + ) ®
8x€G(e;)

where c is a Laplacian smoothing parameter which is a
constant small positive number; G(e;) is the set of all of
the genes assigned to EC e; except gene g; G(e)) is the set
of all of the genes assigned to EC e; g is a gene assigned to
e;. In Eq 8, the numerator represents the inter-EC distance
and the denominator represents the intra-EC distance.
The higher the diff,(e; e)) is, the more obvious the positive
difference between inter-EC difference and intra-EC differ-
ence is.

For example, given nine genes in BG, four of which have
the same EC number, labeled as e;, and the other five
genes belong to another EC number, labeled as e,. To cal-
culate the LogFC score for e;, we first compute diffy(e;, e2)
with Eq 8, meaning that every gene in e; is compared with
every other gene in e for the average intra-EC difference,
and then every gene in el is compared with every gene in
e, to get the inter-EC differences. logFC(e;) is the average
of all of the diff,(e;, e;) scores for the genes assigned to e;.
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The method that has the highest LogFC scores for all of
the ECs are considered as the most appropriate integration
method for BG. If a user input set G is much smaller than
BG (which often happens), we assume the selected method
is also the most suitable for G U BG. If the size of G is
comparable to BG, it is not necessary to use BG, then the
integration method shall be selected based on the evalua-
tion on G.

Results

To systematically evaluate the performance of InteGO,
we tested it on three model organisms with different
levels of GO annotation scale and complexity. For each
of them, we adopted EC numbers and protein sequences
as independent biological evidences.

Data preparation

The GO annotation and structure data were down-
loaded from the GO website (http://www.geneontology.
org/GO.downloads.shtml). To systematically evaluate
different GO-based gene-to-gene similarity measures on
MEF, the pathway and EC number information of Yeast,
Arabidopsis were downloaded from the Saccharomyces
genome database (http://biocyc.org/YEAST/organism-
summary?object=YEAST), PlantCyc (http://ftp.plantcyc.
org/Pathways) and HumanCyc (http://humancyc.org)
respectively. Note that our EC based evaluation method
requires that an EC has at least two genes. In yeast,
Arabidopsis and human, 95, 325 and 312 ECs satisfy the
criteria. The protein sequences were downloaded from
the Saccharomyces genome database (http://www.yeast-
genome.org/download-data/sequence), TAIR (http://
www.arabidopsis.org/tools/bulk/sequences/index.jsp) and
UniProt (http://www.uniprot.org) respectively.

Let E be the set of all of the ECs that have at least one
gene assignment, we define BG as the set of all of the genes
that has at least one EC assignments in E. This definition of
BG ensures that for any gene in BG the intra-EC similarity is
valid. The sizes of BG are 218, 1,348 and 1,504 for yeast,
Arabidopsis and human respectively. An experiment on the
variation of the background set (see Additional file 1) reveals
that the use of a relatively smaller background set may affect
performance significantly. Additional file 2, 3 and 4 show
that the distribution of the gene-to-gene similarities with Yu,
Schlicker and Wang measures, where the similarity scores
are spread in the full spectrum of the range. In summary,
the background gene sets are well prepared.

InteGO was implemented with Java JDK 1.6 and
JUNG library [32]. The experiments were run on a win-
dows 7 computer with Intel i7 CPU and 10 GB RAM.

Selecting seed measures
In order to select the most appropriate seed measures for
InteGO, we screened four existing measures (Yu, Resnik,
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Schlicker and Wang) using the EC based evaluation
method. Figure 3 shows that for the Yu, Schlicker and
Wang measures, it is not distinguishable that one measure
is significant better than another. The Yu, Schlicker and
Wang measures all performed the best on yeast with the
highest median value. The Schlicker measure performs
best on Arabidopsis, while the Yu measure is best on
human. Therefore, we chose all of the three as the seed
measures in InteGO. We did not choose the Resnik
measure, because it is clearly not as good as the other mea-
sures in all of the three species. Note that the upper-bound
and the lower-bound of the LogFC scores in Figure 3 were
set to 5 and -0.05 respectively to eliminate outliers.

In addition, Figure 4 shows that although all of the
three seed measures perform equally well in some ECs,
each measure has its own favorable EC groups. For
example, the Schlicker and Wang measures perform the
best in 51 and 52 out of the total 325 Arabidopsis ECs
respectively (see Figure 4(b)), which is greater than the
Yu measure (20 ECs). However, the Yu measure per-
forms the best in 159 out of the total 315 human ECs,
which dominant the EC group distribution in human
(see Figure 4(c)). Therefore, an appropriate integration
of these measures may combine the advantages of differ-
ent measures and improve the overall performance.
Note that although only four measures were screened in
the experiment, more measures can be evaluated and
added later since InteGO has an open framework.

Selecting integration method

In order to select the most appropriate integration
method, four different approaches (MAX, MIN, MEAN
and MEDIAN) were tested and compared. Figure 5
shows that MAX performs the best among the four
integration methods. In yeast, although almost all of the
measures have the same median value, the 25th percen-
tile of MAX is 5, significantly higher than the Yu,
Schlicker and Wang measure (1.68, 3.00 and 2.04
respectively) and the other integration methods. In
Arabidopsis and human, the median of MAX are both
5, which is also significantly higher than that of all of
the other integration methods. It indicates that the per-
formance of MAX, a simple integration approach, has
been increased to around 2-fold. This is because the
integration considers all of the aspects of GO, while an
individual seed measure, although nicely designed, is
compromised in that it focuses on only one of few kinds
of knowledge in GO. The other integration measures,
especially MIN, however, cannot distinguishably
improve the gene similarity performance. As shown in
Figure 5(c), the result of MIN is even worse than the
seed measures. It indicates that the performance of
gene-to-gene similarity could be significantly improved
only by the appropriate integration.
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Figure 3 Logged fold change (LogFC) score comparison. Logged fold change (LogFC) score comparison for four different similarity measures
in Molecular Function (MF) category on yeast (a), Arabidopsis(b) and human (c).

As mentioned in the previous section, the seed mea-  with the three seed measures using TukeyHSD test [33].
sures have their own favorable EC groups. To test The p-values shown in Table 2 and the 95% family-wise
whether MAX take advantage of all of the strength of confidence level (Additional file 5, 6 and 7) indicate that
the seed measures, we compared MAX with the Yu, the results of MAX are significant better than the results
Schlicker and Wang measure on all of the ECs. Figure 6  of all of the seed measures in yeast, Arabidopsis and
(a), (b) and (c) show that MAX dominant the EC  human, with the only exception that the Schlicker mea-
groups, clearly different to the results in Figure 4. In  sure’s results are comparable in yeast, in that the
detail, MAX performs the best in 140 and 172 out of  Schlicker measure performs very well in yeast, so there
325 and 315 ECs in Arabidopsis and human respectively, is little room for InteGO to improve.
while the numbers are only 2, 9, 6 in Arabidopsis and 2,

2, 1 in human for the Yu, Wang and Schlicker measures  Protein sequence based performance evaluation

respectively. In summary, the experiment indicates that In addition to use EC as the evaluation criteria, protein
integrating multiple measures could improve the perfor-  sequence similarities were employed as independent evi-
mance of gene similarity measurement and MAX is the  dence for further performance study. Although the corre-
best integration method. lation coefficient between semantic similarity and

Statistics analysis was carried out to test whether the  sequence similarity is not as strong as EC, it is generally
results of the best integration measure (MAX) of accepted that as sequence similarity increases, so does
InteGO is statistically the best. We compared InteGO  the chance that these proteins are homologues, in which

Yu  ccum g . Schlicker Yu .="7777S e ol S+. Schlicker Yu e=ST7T0e e il * .«  Schiicker
" " \. b‘ " " Q. Q. .' " \‘ \‘
’ ’ - - ’ , .~ .~ ’ ’ -~ -
,' '0 5 “ “ " .J 30 “ |‘ " '0 6 “ \‘
. . . L] * . Al . ) . Al ‘
. . . . . L]
4 12 P 3 12 ™ 20 4 ' 51 - 159 4 ' 60 v
' @ g - " (I . ae==a, " [ ) g - " (]
' 2 At "l- 1 P i -'p. [ B -"I» ]
. Al . () P (] A (I o ' e (]
L] . . . . . . . ’ . .
‘ [ R - ' SR ;o SN 18 3
. o . 0 - . . o . . 5 ) * # . . s *
) i ) ) L ’ . e . ’ iy ’ . ’ . ’ b .
. . s . " '] . i s . 'l ] L3 i A} [} 'l .
., 0 ‘. e 20 L .* ., 16 o 44 922 ', 6 s " 36
i.‘ \‘ - ’l l‘ \“- .- ‘q \“- ’J
|"'-.. ..'.t‘-, _-"I |"-._ .-” - .-"J |.*... ..'. W _."I
‘ =T =T . ' = == ' ' - i '
. [ . 1] . [
L] L L] r . L
1‘ 6 ‘f l‘ 52 '0 !‘ 30 ‘f
. . . . . .
- - - s - rd
- . - . . .
. 5 . . . -
‘q"- --" *. ----- ’-' “"- o-"
(a) (b) (c)
Figure 4 Venn Diagram for Yu measure, Schlicker measure and Wang measure with number of ECs on which perform best on yeast
(a), Arabidopsis (b) and human (c). Venn Diagram for Yu measure, Schlicker measure and Wang measure with number of ECs on which
perform best on yeast (a), Arabidopsis (b) and human (c). Blue, green and yellow represent Yu measure, Schlicker measure and Wang measure
respectively.
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Figure 5 Logged fold change (LogFC) score comparison for four integration measures and three integrated measures. Logged fold

change (LogFC) score comparison for four integration measures (MAX, MIN, MEAN and MEDIAN) and three integrated measures (Yu measure,
Schlicker measure and Wang measure) in Molecular Function (MF) category on yeast (a), Arabidopsis (b) and human ().

LogFC score

T T
Schiicker Wang

T T
Schiicker Wang

T T
Yu

T T T
MAX MEAN MEDIAN  Yu

(e}

MIN

case they are likely to have identically annotated molecu-
lar functions [34]. In our test, sequence similarity scores
(In(BitScore)) of all genes in the BG of the three species
were calculated with BLAST, resulting in 20,652 yeast,
772,609 Arabidopsis and 942,609 human gene pairs. As
shown in Figure 7, the semantic similarity measurements
show a correlation with sequence similarity. The covar-
iance scores (see Additional file 8) on all of the three spe-
cies reveal that InteGO is overall the best measure.

Conclusions

Comparing gene at the functional level is vital for various
of applications [3-7]. The existing GO semantic based
measures either calculate gene-to-gene similarities
directly [13], or indirectly compute gene-to-gene similari-
ties with term-to-term similarities [12,17]. Unfortunately,
none of them takes into account all of the respects of
rich information in GO (structure, annotation, LCA and
all of the parents term, etc). In this paper, we proposed a
new measure called InteGO to appropriately integrate

the seed measures with the following advantages: 1)
InteGO employs an adaptive approach which enables the
optimization of seed measure integration; 2) it applies a
rank-based integration approach, which unifies the scale
and distribution differences among different seed mea-
sures; 3) InteGO is an open-platform measure that allows
users to add/delete seed measures, redefine the back-
ground gene set and change the rank-based integration
method.

To demonstrate the advantages of InteGO, we compared
its EC-assigned gene similarities and sequence similarities
with three existing measures (the Yu, Schlicker and Wang
measure) in yeast, Arabidopsis and human. Comparing
with these state-of-the-art measures, the experimental
results show that InteGO increases the LogFC scores to
about two-fold. It indicates that integrating multiple mea-
sures appropriately can improve the performance of the
functional similarity measure. Especially, we found that
taking the maximal ranks from all of the seed measures
performs the best. The covariances between semantic
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Figure 6 Venn Diagram for the best integration measure MAX and Yu measure, Schlicker measure and Wang measure. Venn Diagram
for the best integration measure MAX and Yu measure, Schlicker measure and Wang measure with number of ECs on which perform best on
yeast (a), Arabidopsis (b) and human (c). Purple, blue, green and yellow represent MAX measure, Yu measure, Schlicker measure and Wang
measure respectively.
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Table 2 Adjusted P-values for comparing MAX with Yu, Schlicker and Wang measure using TukeyHSD.
Measures Adjusted p-value
yeast Arabidopsis human
MAX vs. Schlicker 2.8E-1 <1.0E-7 <1.0E-7
MAX vs. Wang 1.0E-2 <1.0E-7 <1.0E-7
MAX vs. Yu 1.1E-4 <1.0E-7 <1.0E-7
Wang vs. Schlicker 59E-1 9.6E-1 3.2E-1
Yu vs. Schlicker 6.0E-2 <1.0E-7 1.9E-1
Yu vs. Wang 5.8E-1 <1.0E-7 1.2E-3
Adjusted P-values for comparing MAX with Yu, Schlicker and Wang measure using TukeyHSD. Significant p-values are in bold fonts.
P
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Figure 7 Comparing InteGO with the Yu, Schlicker and Wang measures with protein sequence similarity. Comparing InteGO with the Yu,
Schlicker and Wang measures with protein sequence similarity on yeast (a), Arabidopsis (b) and human (c), where the x-axis is BLAST sequence
similarity (In(BitScore)) and y-axis is the normalized semantic similarity based on GO.

Sequence Similarity
(=]

similarities and protein sequence similarities shows
InteGO is clear the best out of all the tested measures.

In InteGO, to maintain a large background gene set is
expensive. Therefore, extending InteGO from MF to BP
or even other biological or medical ontologies is not a
trivial problem. In the future, we will continue to
improve InteGO to be more efficient and to be applic-
able on more ontologies. As an open framework, the
performance of InteGO may be further improved by
synergistically integrating more seed measurements. We
will continue to integrate and compare InteGO with
more recent gene-to-gene measurements in the future.
We will continue to explore better integration methods,
such as using EM algorithm to optimize the weight for
each seed measure, to achieve better performance.

Additional material

Additional file 1: Average LogFC scores for different sizes of
background set. To test whether the selection of BG will affect the
integration performance, we compared the results for different
background set on yeast. First, given the full set of BG, a subset of gene
pairs were randomly selected with the percentage varying from 10% to
100%. This process was repeated for 100 times. Second, as shown in
Additional file 1, the logFC scores for each subset size were calculated

N
based on the randomly selected gene pairs. Since we do not use the full
set, the computable ECs are also a subset of all of the computable ECs.
In Additional file 1, the LogFC score increases linearly from 0 to 10 when
the coverage increases from 10% to 90%, then suddenly jumps to a high
score (13.8) when all of the background genes were used, indicating that
first, the size of the background set affects the integration measure
significantly, second, to use the full background set is the best, although
it slightly increases the computational time.

Additional file 2: Distribution of the gene-to-gene similarities with
Yu measure. Distribution of the gene-to-gene similarities with Yu
measure for all of the genes in the Background Gene Set (BG) on yeast.

Additional file 3: Distribution of the gene-to-gene similarities with
Schlicker measure. Distribution of the gene-to-gene similarities with
Schlicker measure for all of the genes in the Background Gene Set (BG)
on yeast.

Additional file 4: Distribution of the gene-to-gene similarities with
Wang measure. Distribution of the gene-to-gene similarities with Wang
measure for all of the genes in the Background Gene Set (BG) on yeast.

Additional file 5: The 95% family-wise confidence level of
TukeyHSD test on yeast. The 95% family-wise confidence level of
TukeyHSD test on yeast, which compared MAX with all the three seed
measures (Schlicker, Wang and Yu measure).

Additional file 6: The 95% family-wise confidence level of
TukeyHSD test on Arabidopsis. The 95% family-wise confidence level
of TukeyHSD test on Arabidopsis, which compared MAX with all the
three seed measures (Schlicker, Wang and Yu measure).

Additional file 7: The 95% family-wise confidence level of
TukeyHSD test on human. The 95% family-wise confidence level of
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TukeyHSD test on human, which compared MAX with all the three seed
measures (Schlicker, Wang and Yu measure).

Additional file 8: The covariance sores comparing with sequence
similarity. The covariance sores comparing with sequence similarity on
yeast, Arabidopsis and human for Max, Yu, Schlicker and Wang measure.
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