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Abstract

While existing remedies failed to fully address the consequences of heart failure, stem cell therapy has been
introduced as a promising approach. The present review is a comprehensive appraisal of the impacts of using
mesenchymal stem cells (MSCs) in clinical trials mainly conducted on ischemic cardiomyopathy. The benefits of
MSC therapy for dysfunctional myocardium are likely attributed to numerous secreted paracrine factors and
immunomodulatory effects. The positive outcomes associated with MSC therapy are scar size reduction, reverse
remodeling, and angiogenesis. Also, a decreasing in the level of chronic inflammatory markers of heart failure
progression like TNF-α is observed. The intense inflammatory reaction in the injured myocardial micro-environment
predicts a poor response of scar tissue to MSC therapy. Subsequently, the interval delay between myocardial injury
and MSC therapy is not yet determined. The optimal requested dose of cells ranges between 100 to 150 million
cells. Allogenic MSCs have different advantages compared to autogenic cells and intra-myocardial injection is the
preferred delivery route. The safety and efficacy of MSCs-based therapy have been confirmed in numerous studies,
however several undefined parameters like route of administration, optimal timing, source of stem cells, and
necessary dose are limiting the routine use of MSCs therapeutic approach in clinical practice. Lastly, pre-
conditioning of MSCs and using of exosomes mediated MSCs or genetically modified MSCs may improve the
overall therapeutic effect. Future prospective studies establishing a constant procedure for MSCs transplantation are
required in order to apply MSC therapy in our daily clinical practice and subsequently improving the overall
prognosis of ischemic heart failure patients.
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Background
Heart injuries resulting in significant morbidity and
mortality remain the leading cause of death [1, 2].
Different degrees of myocardial dysfunction and fibrosis
were detected in ischemic and non-ischemic cardiomy-
opathies. Scar tissue formation which also alters the
perfusion of adjacent myocardium is the main factor to
overcome in ischemic cardiomyopathies [1, 2]. Treat-
ment modalities were largely developed during the last
decades focusing on relieving symptoms, preventing dis-
ease progression, and improving survival and quality of
life [3]. Meanwhile, mesenchymal stem cells (MSCs)
therapy has emerged as one of the promising therapeutic
approaches allowing myocardial repair and regeneration
[4]. Different types of cells such as peripheral blood/cir-
culating progenitor cells, hematopoietic and mesenchy-
mal stromal bone marrow (BM) cells, cardiac stem cells,
stem cells, myoblasts, and adpidose tissue-derived cells
have been used with hopeful results in variant settings of
cardiovascular disorders [5]. The target properties of
MSCs are their ability to promote angiogenesis and to dif-
ferentiate when implanted in the ischemic tissues [6–8].
The safety of MSC therapy is well established and
reported in several meta-analysis [9] while its efficacy is
still under investigation [3, 10]. Animal models and first
clinical trials have shown positive outcomes in terms of
left ventricular ejection fraction (LVEF) improvement, scar
burden reduction, and better tissue perfusion after
myocardial infarction (MI) [7, 11] whereas translation to
routine clinical practice is yet to be confirmed. Lastly, the
use of MSCs is lacking for available data or expert consen-
sus defining the preferred cell source, delivery route, time
for intervention, and cell types. Herein, we review the clin-
ical trials on MSC therapy for ischemic cardiomyopathy
knowing that such as promising therapeutic approach
may optimize the management, prognosis, quality of life,
and survival of numerous patients.

Origin and type of mesenchymal stem cells
Despite the intensive focus recently made on MSC ther-
apy in variant fields, the best type of stem cells to use is
still not defined [12]. MSCs are present, at different
levels, in almost all organs of the human body and isola-
tion techniques with in-vitro culture and expansion have
been described [12]. Instead, BM is the traditional
source of MSCs. BM-MSCs are characterized by their
anti-fibrosis, pro-angiogenic and immunomodulatory
effects stimulating the reparation and regeneration of
damaged myocardium [13]. The limited risk of tumor or
ectopic tissue formation and the non-complexity of
MSC isolation procedure from the iliac crest are the
major advantages [14]. View the large distribution of fat
throughout the human body, adipose tissue is considered
as another accessible source of MSCs with similar

properties to BM-MSCs. Indeed, it is worthy to mention
that adipose tissue stromal cells and BM-MSCs share
the same safety profile [15]. Lastly, the umbilical cord is
respectively a third source of MSCs characterized by a
significantly higher capacity of migration and differenti-
ation compared to MSCs derived from the two sources
listed above (Table 1) [23].
Overall, BM, adipose tissue, and umbilical cord are the

three main niches origins from which MSCs could be
isolated. Given that microenvironmental conditions are
different among these niches, many elements may subse-
quently affect MSCs characteristics [14, 29].

The matter of autogenic vs. allogenic
MSCs are considered immunoprivileged due to the lack
of major histocompatibility complex class II and costimu-
latory factors [1]. Also, it was shown that paracrine signal-
ing of MSCs prevents their destruction by lymphocytes
[17]. However, allogenic MSCs may trigger the generation
of alloreactive antibodies and possibly are delivered to a
lesser extent to the target site than autogenic peers due to
the clearance action of the immune system [11].
Older age and coexisting cardiovascular risk factors or

comorbidities may negatively affect the function of au-
tologous MSCs [30]. It was conceivable that older sub-
jects have less functional stem cells [31]. Coronary artery
disease patients are more likely to have abnormal BM
function and accordingly, their BM-MSCs are impaired
[32]. A conflicting result was revealed by a study which
showed similar expression of cell membrane markers
and cell proliferation between young and old donors
[33]. Allogenic MSCs would be preferred over autogenic
MSCs at least in acute cardiovascular settings for time-
consuming concern and immediate availability [18, 34]
while autogenic MSCs would be an optimal choice for
cases with chronic coronary artery disease [34] even it
requires complex manufacturing and shipment logistics.
Otherwise, a significant difference in terms of efficacy
was noted between autogenic and allogenic MSC ther-
apy. For example, an improvement of LVEF and a reduc-
tion in major cardiac events in dilated cardiomyopathy
were only observed with allogenic MSC therapy [9, 35].
The great efficacy of allogenic MSC therapy is explained
by the lower detected level of stromal cell-derived
factor-1α (SDF-1α) compared to autogenic MSCs [36].
SDF-1α inhibits the secretion of nitrotyrosine by endo-
thelial cells and the generation of mitochondrial ROS
which play a role in angiogenesis and cellular prolifera-
tion [36]. Overall, allogenic MSCs could be prepared
from healthy donors as an off-the-shelf agent [18]. Pre-
cultured MSCs (allogenic) have some additional advan-
tages such as making ready-to-use differentiated cells
[37]. However, it should be noted that fresh (not-cryo-
preserved) MSCs might be more efficient [34].
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Table 1 Clinical efficacy of MSC therapy: data from clinical trials

Clinical trials Design Type of cells,
dose, and
delivery route

Studied population Follow-
up
(months)

Results

Rationale and design of the first
randomized, double-blind,
placebo-controlled trial of intra-
myocardial injection of autolo-
gous bone-marrow-derived
mesenchymal stromal cells in
chronic ischemic heart failure
(MSC-HF Trial) [12].

Phase II, single-
center, double-
blind, random-
ized, placebo-
controlled trial.

- Autologous
bone-marrow-
derived MSCs.

- 12 to 15
injections, of
each 0.2 mL
stem cell
solution or
placebo.

- Intra-myocardial
injection

60 patients with chronic
ischemic heart failure
randomized in a 2:1.

12 Significant improvements in left
ventricular systolic function
(↑LVESV, LVEF, SV, and cardiac
output)

Intra-myocardial transplantation
of mesenchymal stromal cells
for chronic myocardial ischemia
and impaired left ventricular
function: Results of the MESAMI
1 pilot trial [6].

Bicentric pilot
study

- Autologous bone
marrow-derived
mesenchymal
stromal cells.

- Mean of 61.5 ×
106 cells per
patient

- Intra-myocardial
injection

10 patients with chronic
myocardial ischemia, LVEF ≤
35%, and reversible perfusion
defects

24 Safety of MSC therapy with
potential improvement in
cardiac performance, left
ventricular remodeling, and
clinically functional status.

Intra-myocardial injection of
mesenchymal precursor cells
and successful temporary
weaning from left ventricular
assist device support in patients
with advanced heart failure: a
randomized clinical trial [16].

Randomized
phase 2 clinical
trial

- Allogenic
mesenchymal
precursor cells

- 150 million cells
- Intra-myocardial
injection

159 with end-stage heart failure 12 - No improvement in left
ventricular recovery

- Higher dose producing the
greatest improvement in
cardiac structure and function

Dose comparison study of
allogeneic mesenchymal stem
cells in patients with ischemic
cardiomyopathy (The TRIDENT
Study) [17].

Double-blind
randomized
clinical trials

- Allogenic bone
marrow-derived
human MSCs

- 20 million versus
100 million cells.

- Trans-
endocardial
injection

30 patients with ischemic
cardiomyopathy.

6 Both doses reduced scar size
while only high dose increases

A randomized, double-blind,
placebo-controlled, dose-
escalation study of intravenous
adult human mesenchymal
stem cells (prochymal) after
acute myocardial infarction [18].

Double-blind,
randomized,
placebo-
controlled trial.

- Allogenic
mesenchymal
stem cells

- Dose-ranging
(0.5, 1.6, and 5
million cells/kg)

- Intravenous
administration

53 patients presenting for first
myocardial infarction between
1 to 10 days before
randomization.

6 Safety of intravenous
administration of MSCs after
acute myocardial infarction.

Mesenchymal precursor cells as
adjunctive therapy in recipients
of contemporary left ventricular
assist device [19]

Multicenter,
double-blind,
sham-
procedure con-
trolled trial

- Allogenic MPCs.
- 25 million of
cells injected
during left
ventricular assist
device
implantation.

- Intra-myocardial
injection

30 patients with end-stage
heart failure planned to LVAD
implantation were randomized
2:1

12 Administration of MPCs
appeared to be safe, and there
was a potential signal of
efficacy

Intravenous allogenic
mesenchymal stem cells for
nonischemic cardiomyopathy:
safety and efficacy results of a
phase ii-a randomized trial [20].

Single-blind,
placebo-
controlled,
crossover, ran-
domized phase
II-a trial

- Mesenchymal
stem cells

- 1.5 × 106 cells/kg
- Intravenous
administration

22 patients with non-ischemic
cardiomyopathy with left ven-
tricular ejection fraction.

3 MSC therapy was safe, caused
immunomodulatory effects,
and was associated with
improvements in health status
and functional capacity.

Randomized, double-blind,
phase I/II study of intravenous
allogenic mesenchymal stromal
cells in acute myocardial

A phase I/II
randomized,
double-blind,
single-dose

- Bone marrow-
derived allogenic
MSCs
(Stempeucel).

20 patients who had
undergone percutaneous
coronary intervention for STEMI
were randomly assigned (1:1)

24 Stempeucel was safe and well-
tolerated when administered
intravenously in AMI patients 2
days after percutaneous
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Table 1 Clinical efficacy of MSC therapy: data from clinical trials (Continued)

Clinical trials Design Type of cells,
dose, and
delivery route

Studied population Follow-
up
(months)

Results

infarction [21]. study. - 2 million cells/kg
- Intravenous

coronary intervention

Adipose-derived regenerative
cells in patients with ischemic
cardiomyopathy: the PRECISE
Trial [22].

Randomized,
placebo-
controlled,
double-blind
trial.

- ADRCs.
- 3 escalating
doses 0.4×106

ADRCs/kg,
0.8×106 ADRCs/
kg, and 1.2×106

ADRCs/kg.
-Transendocardial
injections.

21 ADRC-treated and 6 control
patients with ischemic
cardiomyopathy.

36 - Isolation and trans-
endocardial injection of au-
tologous ADRCs in no-option
patients were safe and
feasible.

- ADRCs preserve ventricular
function, myocardial
perfusion, and exercise
capacity.

Safety and efficacy of the
intravenous infusion of
umbilical cord mesenchymal
stem cells in patients with heart
failure: a phase 1/2 randomized
controlled trial (RIMECARD Trial)
[23].

Phase 1/2,
randomized,
double-blind,
placebo-
controlled clin-
ical trial.

- Allogenic UC-
MSCs (Cellistem,
Cells for Cells
S.A., Santiago,
Chile).

- 1 × 106 cells/kg
- Intravenous
infusion

30 patients with heart failure
and reduced ejection fraction
under optimal medical
treatment.

12 - Intravenous infusion of UC-
MSCs was safe.

- Improvements in left
ventricular function, functional
status, and quality of life.

Adipose-derived stromal cells
for treatment of patients with
chronic ischemic heart disease
(my stromalcell trial): a
randomized placebo-controlled
study [24].

Randomized
double-blind
placebo-
controlled.

- ADSCs from the
abdomen were
culture
expanded and

stimulated with
VEGF-A165.
- 10–15 injections
of 0.2 mL of
ASCs.

- A NOGA
Myostar®
catheter was
used

for intra-
myocardial cells
delivery.

60 patients with CCS/NYHA
class II-III, left ventricular ejec-
tion fraction > 40%, and at least
one significant coronary artery
stenosis

6 - ADSCs treatment was safe but
did not improve exercise
capacity compared to
placebo.

Cardiopoietic stem cell therapy
in heart failure: the C-CURE (car-
diopoietic stem cell therapy in
heart failure) multicenter ran-
domized trial with lineage-
specified biologics [25].

A prospective,
multicenter,
randomized
trial.

- Pre-treated MSCs
with cardiogenic
cocktail.

- An average of 18
injections per
patient.

- Endo-ventricular
injection using
the NOGA.

48 patients with stable heart
failure (15–40%) and a history
of myocardial infarction.

24 - Cardiopoietic stem cell
therapy was found feasible
and safe with signs of benefit
in chronic HF.

Bone marrow-derived mesen-
chymal stromal cell treatment
in patients with severe ischae-
mic heart failure: a randomized
placebo-controlled trial (MSC-
HF trial) [26].

Randomized,
double-blind,
placebo-
controlled trial.

- Autologous bone
marrow-derived
mesenchymal
stromal cells.

- 10 to 15
injections of 0.2
mL.

- Intra-myocardial
injection.

60 patients with ischemic heart
failure were randomized 2:1

6 -Intra-myocardial injection of
autologous MSCs was safe and
improved myocardial function
in patients with severe
ischemic HF.

Cardiopoietic cell therapy for
advanced ischaemic heart
failure: results at 39 weeks of
the prospective, randomized,
double-blind, sham-controlled
CHART-1 clinical trial [27].

Large
randomized,
double-blind,
sham-
controlled mul-
ticentric study.

- Autologous
cardiopoietic
stem cells.

- 60 million cells
- Intra-myocardial
injection

240 patients with chronic HF
secondary to ischemic heart
disease, reduced LVEF (< 35%),
and at high risk for recurrent
HF-related events despite opti-
mal medical therapy.

24 Efficacy and safety of
autologous cardiopoietic stem
cells in the treatment of
chronic ischemic HF.

Comparison of allogenic vs
autologous bone marrow-
derived mesenchymal stem

Phase 1/2
randomized
comparative

- Autologous
versus allogenic
MSCs.

30 patients with left ventricular
dysfunction due to ischemic
cardiomyopathy

12 - MSC injection favorably
affected patient functional
capacity, quality of life, and
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Mechanisms of action of MSC therapy
MSCs have anti-fibrotic, anti-inflammatory, anti-apoptotic,
immunomodulatory, and pro-angiogenic properties [9].
They play a role in the expression of inflammatory media-
tors which interfere in homing, chemokine-chemokine re-
ceptors interaction, adhesion to endothelial cells, migration
into the endothelium, and invasion through the extracellu-
lar matrix [38]. MSCs inhibit several immunologic markers
liberated during chronic inflammation [39]. In dilated
cardiomyopathy patients, MSCs improve cardiac function
through restoration of endothelial function which in turn
enhances coronary circulation [35]. In ischemic cardiomy-
opathy patients, anti-fibrotic effect is the most desirable

effect as it decreases the scar burden and reverses left ven-
tricular remodeling [11, 40]. MSCs secrete a wide range of
molecules with anti-inflammatory and immunomodulatory
activities [41]. These molecules have favorable systemic
effects, like improving the skeletal muscle performance and
organ oxygen delivery especially after an intra-venous ad-
ministration of MSCs [20]. The main relationships between
the mechanisms of MSC and the key components of
cardiomyopathies are illustrated in Fig. 1.
The regenerative capacity of MSCs was attributed to

several mechanisms, in particular to their paracrine
activity. Different growth factors such as SDF-1α,
hepatocyte growth factor-1, insulin-like growth factor-1,

Table 1 Clinical efficacy of MSC therapy: data from clinical trials (Continued)

Clinical trials Design Type of cells,
dose, and
delivery route

Studied population Follow-
up
(months)

Results

cells delivered by trans-
endocardial injection in patients
with ischemic cardiomyopathy:
the POSEIDON randomized trial
[11].

trial. - 20 million, 100
million, or 200
million cells (5
patients in each
cell type per
dose level).

- Trans-
endocardial
injection

ventricular remodeling.

Trans-endocardial mesenchymal
stem cells and mononuclear
bone marrow cells for ischemic
cardiomyopathy: the TAC-HFT
randomized trial [28].

A phase 1 and
2 randomized,
blinded,
placebo-
controlled trial.

- MSCs and bone
marrow
mononuclear
cells.

- 10 injections.
- Trans-
endocardial
administration.

65 patients with ischemic
cardiomyopathy and LVEF less
than 50% [MSCs (n = 19) with
placebo (n = 11) and BMCs (n
= 19) with placebo (n = 10)].

12 Trans-endocardial stem cell
injection with MSCs or BMCs
appeared to be safe for
patients with chronic ischemic
cardiomyopathy and left
ventricular dysfunction.

ADRCs adipose-derived regenerative cells, ADSCs adipose-derived stromal cells, BMCs bone-marrow mononucleated cells, CCS Canadian Cardiovascular Society, HF
heart failure, LVAD left ventricular assist device, LVEF left ventricular ejection fraction, LVESV left ventricular end-systolic volume, MPCs mesenchymal precursor
cells, MSCs mesenchymal stem cells, NYHA New York Heart Association, STEMI ST-elevation myocardial infarction, SV systolic volume, UC-MSCs umbilical cord-
derived mesenchymal stem cells

Fig. 1 Target properties of mesenchymal stem cells. Relationships between the mechanisms of action of MSC (red circle) and key components of
heart failure with reduced ejection fraction (blue circle)
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vascular endothelial growth factor, fibroblast growth
factor, and placental growth factor are secreted by
MSCs [14]. Also, a wide spectrum of cytokines like
angiopoetin-1, matrix metalloproteinase, interleukine-1,
interleukine-6, and plasminogen activator is expressed by
MSCs [36]. All these agents stimulate cardiomyocyte pro-
liferation in several manners and matrix metalloproteinase
secretion leads to fibrosis reduction [14].
The prominent properties of MSCs including partici-

pating in the generation of new blood vessels in ischemic
tissues and instigating resident cardiac cells resume the
interest of MSC therapy in cardiovascular disease (CVD)
[6]. One of the unique distinctiveness of MSCs is their
ability to transform into endothelial cells, smooth muscle
cells and improve the function of resident cardiomyo-
cytes which are the important cell components of the
heart [7]. Interestingly, MSCs have a tendency to home,
accumulate, and possibly differentiate when locating
around the injured microenvironment [8, 10]. MSC ther-
apy in animal models of ischemia resulted in improved
ventricular pump function, scar tissue reduction, and
neo-angiogenesis after MI [7].
Several preconditioning methods and genetic modifica-

tions were suggested to optimize the functional efficacy of
transplanted MSCs in vitro and in vivo. Hypoxia precondi-
tioning improves the paracrine effects of MSCs by increas-
ing their metabolic activity, promoting the expression of
prion protein, and the secretion of angiogenic and growth
factors [42, 43]. In parallel, it decreases the tumorigenic
potential of MSCs, the release of lactate dehydrogenase,
and the prevalence of aneuploidy in MSCs [44, 45]. All of
these result in enhancing the safety and efficacy of stem
cell transplantation in different clinical settings. Hu et al.
have showed a significantly better improvement in left
ventricular function after transplantation of hypoxia pre-
treated MSCs compared to normoxia-cultured cells [46].
Also, Han et al. revealed a great recovery of ischemic tis-
sue after injection of hypoxia preconditioning MSCs [47].
Different pharmacological and chemical agents like

lenalidomide, vitamin E, sevoflurane, valproic acid,
astragaloside IV, apple extract, icariside II, genistein,
oxytocin, deferoxamine, atorvastatin, 2,4-dinitrophenol,
angiotensin II, angiotensin receptor blockers, low dose
lipopolysaccharide, OT, melatonin, rapamycin, all-trans
retinoic acid, and polyribocytidylic acid were used to
treat MSCs [42]. Focusing on cardiovascular disorders,
pre-conditioning of MSCs with deferoxamine and ator-
vastatin promotes in vivo their homing ability [48] and
their long-term survival [49], respectively. Transplant-
ation of pre-treated MSCs with angiotensin II or
angiotensin receptor blockers leads in vivo to a better
reduction in infarct size and subsequent cardiac fibro-
sis while it increases the differentiation efficiency of
MSCs in vitro [50, 51].

Lastly, genetic modification of MSCs consists of load-
ing a constructed genetic vector into the MSCs in order
to produce or overexpress specific genes aiming to im-
prove their migration, adhesion, survival, and reduce
premature senescence. Huang et al. revealed that overex-
pressing CCR1 increases MSCs viability, migration,
engraftment, and capillary density in the infarcted myo-
cardium [52]. Furthermore, the overexpression of integ-
rin and focal adhesion complex by genetically modified
MSCs increases by 1.5 times their survival, by fourfold
their retention rate, and by 32% their adhesion to ische-
mic cardiomyocytes when compared to non-modified
cells [53]. Also, the transplantation of pre-treated MSCs
overexpressing Integrin-linked kinase improves their
survival and angiogenic function [54]. Figure 2 showed
the novel therapeutic strategies of MSC therapy.

Clinical efficacy of MSC therapy: data from clinical
trials (Table 1)
Positive results have been achieved with MSC therapy in
acute and chronic MI in animal models but there are di-
vergent findings from clinical trials [22]. Nonsignificant
improvement in LVEF, left ventricular end-systolic vol-
ume (LVESV), and left ventricular end-diastolic volume
(LVEDV) were reported in the TAC-HFT trial while an
increased LVEF with decreased LVESV and no change
in LVEDV was seen in the MSC-HF trial. Both trials de-
ployed intra-myocardial injections of autologous BM-
MSCs in ischemic HF patients [26, 28].
An infarct size reduction, left ventricular reverse re-

modeling, improvement of regional myocardial wall con-
tractility, decreasing in end-diastolic and end-systolic
volume (LVEDV/LVESV) were shown by Williams et al.
[55] in ischemic cardiomyopathy while an ameliorated
physical capacity and LVEF were reported by Haack-
Sørensen et al. in stable chronic coronary artery disease
patients with refractory angina after 12 months of MSC
therapy [56]. Also, Lee et al. showed an improvement in
myocardial perfusion and global cardiac function after 6
months of injection of BM-MSCs in the culprit coronary
artery in ST-elevation myocardial infarction (STEMI) pa-
tients with a good safety profile [35]. Instead, Chullikana
et al. noted the absence of clinical benefits in STEMI pa-
tients after intravenous injection of BM-MSCs [21]. The
MSC-HF trial performed on ischemic HF patients
showed an improvement of echocardiographic parame-
ters of left ventricular systolic function such as LVESV,
LVEF, stroke volume, cardiac output, LV mass, and wall
thickness [26]. Thereafter, our MESAMI-1 trial con-
ducted on patients with severe left ventricular dysfunc-
tion secondary to coronary artery disease reported an
improvement in New York Heart Association (NYHA)
functional class, 6-min walk test, and LVEF [6]. The in-
creased LVEF in MESAMI 1 trial was associated to a
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decrease in summed stress scores (SSS), a cumulative
perfusion score, and higher longitudinal strains in cor-
relation with the injected myocardial segments indicat-
ing an improved myocardial viability. It is known that
the SSS predicts adverse cardiac events in patients with
prior MI. In opposition, no improvement was observed
by Yau et al., in end-stage HF patients after BM-MSC
therapy [16]. Similar findings were observed in the C-
CURE trial conducted on patients with stable HF and
previous history of MI after endo-ventricular injections
of cardiopoietic stem cells derived from cytokine cocktail
stimulated-MSCs [25]. Then, a different catheter-based
delivery system was used in CHART-1 trial improving
the intra-myocardial distribution of stem cells [27].
Ascheim et al have demonstrated the safety and signs of
efficacy of intra-myocardial injection of mesenchymal
precursor cells in patients with end-stage heart failure
and comtemporary left ventricular assist device [19].
Otherwise, trials based on injection of MSCs from

adipose tissue-like PRECISE and Athena trials showed
respectively an improvement in myocardial mass [22]
and treadmill maximum oxygen consumption test [57].
Recently, an improvement in clinical symptoms, physical

performance, and quality of life were described in
chronic coronary artery disease with refractory angina
patients after administration of adipose stem cells stimu-
lated by VEGF-A165 in two current trials conducted in
2017 and 2019 [3, 24]. In a porcine model of chronic
myocardial ischemia, intracoronary or intravenous infu-
sion of MSCs from the umbilical cord was associated to
endothelial cell differentiation, improved myocardial per-
fusion, collateral vessel development, LVEF recovery,
and reduction in myocardial fibrosis [58]. Thus, the
RIMECARD trial based on intravenous administration of
MSCs derived from the umbilical cord in patients with
HF and reduced ejection fraction described an improve-
ment in LVEF, functional status, and quality of life [23].
Lastly, comparing the efficacy of MSC therapy depend-

ing on the source (allogenic versus autogenic): no differ-
ence in terms of infarct size reduction and reverse
remodeling was observed [28] whereas LVEDV was only
improved in the allogenic group and LVEF was markedly
increased in this group [9]. Furthermore, the baseline
level of tumor necrosis factor α (TNFα) was two times
more reduced in the allogenic group [36] in correlation
with the lowest level of SDF-1 α. Notably, the improvement

Fig. 2 Novel approaches with mesenchymal stem cells. Hybrid therapy combining cells, exosomes mediated MSCs, genetically modified MSCs
and Engiennered cardiac patch with MSCs +/− ESCs are future approaches to improve cardiac repair and regeneration. MSCs, mesenchymal stem
cells; ESCs, embryogenic stem cells
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in NYHA, 6-min walk test, and Minnesota Living with
Heart Failure Questionnaire was firstly noted in the auto-
genic group [11]. Hypothesis concerning the relationship
between the injection frequency, quantity of delivered
MSCs, and procedural outcomes were raised by several tri-
als. For example, the TRIDENT trial and a study performed
by Perin et al. revealed a parallel correlation between the
clinical efficacy and the injected dose [17, 59] while the PO-
SEIDON trial reported a better result associated with the
lowest delivered dose [11]. Also, the CHART-1 trial showed
a greater reverse remodeling in patients treated with less
than 20 injections. This finding could explain that a higher
number of injections leads to more myocardial damage and
inevitably reduced efficacy [27]. Overall, it seems that the
association between dose and efficacy is a matter of
optimization, but not an endless endeavor to reach the
highest cell quantity. However, some factors like the differ-
ence in baseline characteristics of functional cardiac param-
eters and HF severity among participants may affect the
conclusion [17]. Thus, Jian et al have shown that 1 week
post MI could be the optimal time for MSCs transplant-
ation exerting the great effect on the improvement of car-
diac function, angiogenesis, and apoptosis reduction [60].
Data from clinical trials also suggest a minimal effective
dose between 100 and 150 million cells while doses ≤ to 70
million and doses ≥ to 200 million were less effective [61]
although in several trials a dose of 60 million of cells was
injected.
It is worthy to mention that multiple studies have

demonstrated the efficacy of transplantation of embry-
onic or adult cardiac progenitor cells. An improvement
in cardiac function [62, 63], generation of a large num-
ber of differentiated cardiomyocytes [64], and reduction
in scar size and cardiac remodeling were reported [62,
63]. Indeed, Fernandes et al have revealed a significantly
better improvement in cardiac function after transplant-
ation of cardiovascular progenitors from embryonic stem
cells than BM mononuclear stem cells [65]. The SCIPIO
study was the first clinical trial investigating the thera-
peutic benefits of autologous cardiac progenitor cells in
a clinical setting of ischemic cardiomyopathy, thereby
showing an increase in cardiac function parameters with
no risk of tumor development at 1 year follow-up [66]. A
similar result was found in the CONCERT-HF trial with
the combination of mesenchymal and c-kit + cardiac
stem cells [67]. However, we hope to overcome in the
near future the issues associated to the application of
cardiac progenitor cell therapy, like electrical coupling,
long-term integration, and undetermined mechanistic
aspects. Moreover, a careful analysis of the trials and the
reproducibility of the results in large clinical trials is
somewhat expected in the future to demonstrate a true
efficacy of such investigations and avoid controversies
regarding the cardiac stem cells.

Limitations of MSC therapy
Numerous hurdles like viability of the transplanted cells
and route of administration have hampered the estab-
lishment of a generalizable policy for the use of MSC
therapy in CVD. The microenvironment of an injured
myocardial tissue after acute MI is believed to be
detrimental for transplanted cells due to hypoxia and
high concentration of free radicals [68]. Intra-coronary
infusion dilutes the efficacy of MSC therapy because
transplanted cells need to extravasate in order to reach
the injured myocardium [69]. Even though cells are bio-
chemically able to determine the damaged tissue, there
might be a physical barrier (such as an occluded artery)
that will prohibit these MSCs to reach the impaired
areas [70]. Also, a small minority of intra-coronary
injected cells remains in the myocardium while a vast
proportion of these cells was found in the systemic
blood circulation [71, 72]. These and many other issues
need to be scrutinized before using cell-based therapy at
the bedside. Clinical benefits of MSC therapy have been
evidenced in some clinical trials, but there is a kind of
bewilderment, as different studies are not coordinated in
terms of efficacy criteria. These subjects may explain
why stem cell therapy has not been used in a clinical
scale up to now. Otherwise, insufficient long-term sur-
vival and integration of transplanted cells with ischemic
myocardial tissue is an important concern of regenera-
tive medicine based on stem cell therapy [73]. Another
main challenge is the potential cell-to-cell interactions
between injected cells and ischemic cardiomyocytes
contributing to attenuate engraftment efficiency [74].
Indeed, transplantation of pluripotent stem cells may
result in increasing the level of intracellular reactive oxy-
gen species in infarcted cardiomyocytes which are harm-
ful to engraftment survival, thereby inducing cell death
by their paracrine effects or through a cell-autonomous
manner [75]. Nevertheless, each person reacts in a dif-
ferent way and the outcome of any procedure depends
on the body recovery capability.
It is noteworthy to highlight on the availability of mul-

tiple protocols of MSCs preparation (isolation, culture,
seeding, storage) which could affect the therapeutic
properties of these cells, thereby leading to unexpected
or reduced outcomes [76]. MSCs could be isolated from
the BM by cell-sorting methods or cell-adherence-based
methods. The latter is more commonly used, but it
collects a non-purified heterogeneous mixture of cells
including MSCs, hematopoietic cells, endothelial pro-
genitor cells, and endothelial cells [77]. These contamin-
ating cells affect the required expansion of MSCs and
subsequently alter the overall therapeutic result [77].
Prior Ficoll or Percoll density gradient centrifugation
isolating mononuclear BM cells from the whole BM cells
helps in collecting a larger proportion of homogenous
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MSCs [78]. Sotiropoulo et al. have demonstrated that
Corning flask allows to adhere the largest amount of
MSCs compared to other flasks (Falcon, Nunc, Greiner)
[79]. A low cell seeding density at 100cells/cm2 was as-
sociated to faster MSCs proliferation [80]. Also, studies
showed that cryopreservation does not impair the main
properties of MSCs by reporting a similar biological
behavior between fresh and cryopreserved cells [81].
Recently, Panès et al have obtained an approval to
commercialize an allogenic expanded adipose stem cells
(Cx601) product for the treatment of complex perianal
fistulas in Crohn’s disease [82]. Application of this
protocol in the cardiac setting could be beneficial and
constitutes a step toward defining a standard approach
for stem cell preparation.

Perspective on MSCs
Promising advantages were observed while using stem
cell-released exosomes (Fig. 2). Exosomes are small
enough to travel throughout the tissue barrier decreasing
the potential risks of MSC therapy, like undesired en-
graftment, ectopic tissue formation, and infusion toxic-
ities due to cell homing and cellular rejection [83, 84].
Recently, Pan et al. have demonstrated protective effects
of exosomes mediated miR126 MSCs on endothelial
cells against ischemic hypoxia via activating the PI3K/
Akt/eNOS pathway and inhibiting cleaved caspase 3,
thereby promoting migration, survival, and angiogenic
function [85]. The ultimate goal of this area will be the
routine use of stem cells for different conditions of heart
injury by moving beyond the clinical trials. MSC therapy
is an exciting non-pharmacological treatment of HF.
The conflicting outcomes and the wide spectrum of used
protocols from clinical trials result in a lack of consensus
defining the optimal procedural parameters like cell
source, type, and delivery system [86]. Otherwise, the
different types of HF and subsequent pathophysiological
mechanisms are another challenging concern. Despite
the evolution of therapeutic strategies to ischemic HF,
the general approach remains limited in terms of
benefits, survival, and quality of life. MSC therapy is a
promising approach for ischemic HF highlighting on the
ability of cardiomyocytes to regenerate after myocardial
injury. A translation of preliminary clinical trials into
clinical practice after providing a baseline uniformed
procedure is desirable and may revolutionize the man-
agement and overall prognosis of ischemic HF patients.

Conclusion
MSC therapy has proved its safety and efficacy in differ-
ent forms of ischemic heart disease. However, existing
discrepancies in results among clinical trials have been
delaying reaching a consensus and a standardized prac-
tical approach. Some issues including, but not limited to,

duration of myocardial exposure to ischemic conditions,
the effect of host variation on the quality of allogenic
versus autologous MSCs, and patient-to-patient variabil-
ity may affect outcomes of MSC therapy. It remains un-
clear whether the improvement of myocardial function
arises from the cell type (like MSCs in the case of our
review) or cell donor origin (allogeneic or autogenic).
Conducting comparison head-to-head studies have been
initiated on these issues and could determine the main
impactful player. Existence of diverse criteria and incon-
sistent findings make it difficult to conclude yet about
MSC therapy in heart diseases.
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