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Is the glucocorticoid receptor a key player in 
prostate cancer?
A literature review
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Abstract 
Glucocorticoids act through the glucocorticoid receptor (GR) and exert pleiotropic effects in different cancer types. In prostate 
cancer cells, GR and androgen receptor (AR) share overlapping transcriptomes and cistromes. Under enzalutamide treatment, 
GR signaling can bypass AR activation and promote castration resistance via the expression of a subset of AR-target genes. 
However, GR-dependent growth under enhanced antiandrogen inhibition occurs only in a subset of primed cells. On the other 
hand, glucocorticoids have been used successfully in the treatment of prostate cancer for many years. In the context of AR 
signaling, GR competes with AR for DNA-binding and has the potential to halt the proliferation rate of prostate cancer cells. Their 
target genes overlap by <50% and they execute unique functions in vivo. In addition, even when AR and GR upregulate the same 
transcriptional target gene, the effect might not be identical in magnitude. Besides being able to drive tumor proliferation, GR is 
also a key player in prostate cancer cell survival. Stimulation of GR activity can undermine the effects of enhanced antiandrogen 
treatment, chemotherapy and radiotherapy. GR activation in prostate cancer can increase prosurvival gene expression. Identifying 
the full spectrum of GR activity will inform the optimal use of glucocorticosteroids in prostate cancer. It will also determine the best 
strategies to target the protumorigenic effects of GR.

Abbreviations: AKT = protein kinase, AR = androgen receptor, CRPC = castration-resistant prostate cancer, Cyt B = cytochrome b, 
FK506 = tacrolimus, GR = glucocorticoid receptor, Hsp = heat shock protein, SWI/SNF = switch/sucrose nonfermentable.
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1. Introduction
Prostate cancer is one of the leading causes of cancer-related 
death worldwide.[1] The disease is primarily driven by andro-
gen receptor (AR) activity. Suppression of AR signaling through 
pharmaceutical or surgical castration, along with the use of 
newer generation antiandrogen therapy (e.g., abiraterone ace-
tate, enzalutamide, apalutamide, darolutamide), is the mainstay 
of treatment for androgen-sensitive prostate cancer.[2] Acquired 
castration resistance occurs through the restoration of AR sig-
naling via AR amplification, AR mutation, and aberrant AR 
coregulator activity.[2] Prostate cancer can also escape castration 
therapy via intratumoral androgen biosynthesis.[2] AR signaling 
can also be reactivated through the expression of constitutively 
active AR splice variants (such as androgen receptor splice vari-
ant 7), which lack the ligand-binding domain of AR, but contain 
the amino-terminal and the DNA-binding domain.[2] Ligand-
independent AR activation can also be achieved through the 
p100/p52 pathway.[3] Aberrant activation of the phosphoinosit-
ide 3-kinase/AKT pathway, which is a downstream pathway of 
several key receptor tyrosine kinases, such as c-met, insulin-like 
growth factor receptor, and epidermal growth factor receptor, 

has also been associated with the development of castration-re-
sistant prostate cancer (CRPC).[3,4] Several receptor tyrosine 
kinases, including insulin-like growth factor-1 receptor and 
epidermal growth factor receptor, have been shown to enhance 
AR stability and activity.[3,5,6] Human epidermal growth factor 
receptor 2 (HER2/neu) activity can also phosphorylate AR, 
resulting in AR activation.[6] In addition, antiandrogen therapy 
can result in upregulation of the glucocorticoid receptor (GR), 
which can bypass AR activation and promote castration resis-
tance via direct expression of a subset of AR-target genes.[7] 
Later stages of the disease are characterized by growth that is 
completely independent of AR signaling.[8] This review focuses 
on the importance of GR in the regulation of disease progres-
sion and resistance to antiandrogen therapy.

2. Methods
An electronic search of the PubMed and Google Scholar data-
bases was performed. We carefully examined data from the 
most relevant literature, with respect to the structure and 
function of the GR in prostate cancer. We emphasized GR 
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activity during the early stages of the disease, particularly in 
relation to AR activity and AR inhibition. We also searched 
for GR activity in other tissues or tumor types that might be 
useful in research regarding the role of the GR in prostate 
cancer. This is a review article, thus ethical approval was not 
necessary.

3. Discussion

3.1. The GR structure and function

GR is a member of the nuclear receptor superfamily of intracel-
lular receptors. The human gene encoding GR (nuclear receptor 
subfamily 3 group C member 1) is located on chromosome 5.[9] 
The GR gene promoters contain binding sites for several tran-
scription factors (e.g., activator protein-1, interferon-regulatory 
factor) and GR itself, thereby regulating its own expression.[10–13] 
GR promoters are also subject to epigenetic regulation.[10,14] The 
GR protein consists of 3 functional domains: the N-terminal 
domain, DNA-binding domain, and C-terminal ligand-bind-
ing domain.[9] N-terminal domain houses constitutively active 
transcriptional activation factor 1.[10] Ligand-dependent tran-
scriptional activation factor 2 is located in the ligand-binding 
domain. Both activation factor 1 and activation factor 2 are 
critical for the interaction of GR with tissue-specific coacti-
vators.[10,15] GR is the principal receptor responsible for the 
physiological and pharmacological effects of cortisol and other 
glucocorticoids in almost every cell in the body.[10] Unliganded 
GR resides in the cytosol, where it is complexed with various 
proteins such as chaperones (e.g., p23, heat shock protein 
[Hsp]70, and Hsp90) and immunophilins of the tacrolimus 
(FK506) family (e.g., FK506-binding protein 51, FK506-binding 
protein 52).[16] These proteins maintain the GR in an inactive 
conformation.[10,16] However, glucocorticoid hormones can dif-
fuse through the cell membrane into the cytosol and bind to GRs 
with high affinity (Fig. 1). The ligand-bound receptor undergoes 
conformational rearrangements that result in Hsp release and 
GR activation.[10,16] Activated GR translocates into the nucleus, 
where it binds directly to its specific response element DNA sites 
and induces or represses the transcription of its target genes.[10,16] 
The ligand-bound GR also cross-talks with other transcription 
factors, such as signal transducers, nuclear factor-kappa B, acti-
vator protein-1, and activators of transcription 5.[16] Membrane-
bound and cytosolic GR also act through nongenomic signaling 
pathways.[16] Glucocorticoids are essential for life after birth 
and exert pleiotropic effects in different tissues.[16] Some of these 
pleiotropic effects are achieved because ligand-bound GR also 
undergoes posttranslational modifications (e.g., phosphoryla-
tion, sumoylation, ubiquitination, acetylation, etc), which are 
tightly regulated through tissue-specific enzymes such as phos-
phatases or kinases.[10] GR activity also depends on the compo-
sition of the recruited cofactor complex, which is dependent on 
cell-specific cofactor expression and cell context.[10,17,18]

3.2. GR as a driver of CRPC

Given the close association between AR and GR, GR has been 
suggested to play a role in enzalutamide resistance in prostate 
cancer. GR and AR share overlapping transcriptomes and cis-
tromes (Fig.  2). Arora et al[7] developed enzalutamide-resistant 
tumors with high GR expression by adaptation to antiandro-
gen treatment in vitro. These cell lines were dependent on GR to 
maintain their drug-resistant phenotype. The addition of dexa-
methasone was sufficient to confer resistance to enzalutamide 
and drive proliferation, while inhibition of GR restored the sensi-
tivity to treatment. Although patients treated with enzalutamide 
have low pretreatment GR expression levels, the percentage of 
GR-overexpressing cells within the tumor increases posttreat-
ment, especially in patients who develop resistance and disease 

progression.[7] The latter tumors showed uneven restoration of 
AR-target genes (Fig. 2). Arora et al[7] showed that GR is the direct 
driver of a subset of critical AR-target genes in these tumors. 
Long-term treatment with abiraterone is also associated with GR 
overexpression.[19] GR-mediated resistance to antiandrogen ther-
apies is adaptive and reversible.[20] In prostate cancer, GR expres-
sion is initially silenced by a combination of enhancer of zeste 
2 polycomb repressive complex 2 subunit–mediated repression 
and AR binding at the GR locus (Fig. 1). However, in subsets of 
CRPC, GR expression is restored by reversion of both repressive 
signals.[21] Interestingly, bromodomain and extraterminal domain 
bromodomain inhibitors impair the GR signaling axis in enzalut-
amide-resistant cells and resensitizes them to treatment.[21]

3.3. Antitumor effects of GR and the AR–GR interaction in 
prostate cancer

Overwhelming data suggest that GR signaling can drive tumor 
proliferation and even neuroendocrine differentiation under 
enzalutamide treatment.[22,23] However, this is unlikely to be a 
major clinical problem for most other patients. Glucocorticoids 
have been used successfully for the treatment of prostate cancer 
for many years.[24–26] In addition to alleviating the side effects of 
antiandrogen treatment, they can also suppress serum androgen 
levels.[24,25,27] Their ability to decrease prostate-specific antigen 
levels and tumor volume is well documented.[28,29] Experiments 
in preclinical models suggest that they also exert a direct inhib-
itory effect on prostate cancer cell proliferation and angiogen-
esis.[30,31] GR-dependent growth under enhanced antiandrogen 

Figure 1.  Schematic of GR gene expression regulation and GR transactiva-
tion/transrepression in prostate cancer. In prostate cancer, GR expression 
is initially silenced by EZH2-mediated repression and AR binding at the GR 
locus. However, in subsets of castration-resistant tumors, GR expression is 
restored by reversion of both repressive signals. Unliganded GR resides in 
the cytosol, where it is complexed with proteins such as Hsp90 and FK506 
immunophilins. The c-bound receptor undergoes conformational changes 
and translocates into the nucleus. GR and AR share overlapping transcrip-
tomes and cistromes, and they compete for DNA binding. GR is the direct 
driver of a subset of critical AR-target genes. AR = androgen receptor,  
ARE = androgen response element, c = cortisol, EZH2 = enhancer of zeste 
2 polycomb repressive complex 2 subunit, FK506 = tacrolimus, GR = gluco-
corticoid receptor, Hsp90 = heat shock protein 90.
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treatments occurs only in a subset of primed cells, and only 
after a few weeks of treatment.[7] It has been shown that in 
the context of AR signaling, GR activation can slow the pro-
liferation rate of prostate cancer cells[32–34] (Fig. 2). GRs com-
pete with AR for DNA-binding (the GR is also negatively 
regulated by active AR signaling).[20,35] Although the 2 recep-
tors share nearly identical DNA-binding specificities, the tar-
get genes overlap by <50% and execute unique functions in 
vivo.[20,35] Different abilities of AR and GR to interact with 
relatively inaccessible chromatin result in divergent binding 
and corresponding gene regulation.[36] There might also be 
subtle differences in the DNA-binding preferences between 
AR and GR. Shared binding sites display receptor-specific 
cofactor recruitment, enhancer activity, and histone modifi-
cation changes.[36] In addition, even when AR and GR upreg-
ulate the same transcriptional target gene, the effect might 
not be identical in magnitude.[22] Hence, GR may be a much 
weaker activator of AR downstream signaling pathways.

3.4. Prosurvival effects of GR

Even at low levels, GR expression is very common in hor-
mone therapy–naive patients, especially at metastatic sites.[19] 
GR expression levels are not correlated with markers of 
aggressive phenotypes, such as prostate-specific antigen levels 
and tumor doubling time, etc.[20] Frequently, GR overexpres-
sion after treatment is positively associated with sensitivity to 
antiandrogen therapies and signifies a regressing rather than 
a progressing tumor.[20] Apart from long-term antiandrogen 
therapy, chemotherapy or radiation therapy also leads to GR 
overexpression.[37,38] Besides being able to drive tumor prolif-
eration, GR is a key player in prostate cancer cell survival.[22,39] 
Stimulation of GR activity can rescue prostate cancer cells 
from enzalutamide-induced death.[22] In vitro and in vivo 
experiments have shown that dexamethasone administration 
undermines the antitumor effects of paclitaxel and docetaxel, 
giving rise to chemotherapy-resistance.[19,37] It can also confer 
resistance to radiation therapy.[38] GR activation in prostate 
cancer can increase prosurvival gene expression.[7,22,39,40] This 
effect is partly mediated by modulation of the antiapoptotic 
B-cell lymphoma 2/B-cell lymphoma-extra large axis.[37] It can 

also affect adenosine monophosphate–activated protein kinase 
regulation of autophagy.[39] Interestingly, GR activation results 
in decreased miR-99a/100 expression levels in prostate cancer 
stem-like cells.[41] This promotes the regulation of DNA damage 
response via enhanced nuclear accumulation of switch/sucrose 
nonfermentable (SWI/SNF)-related, matrix-associated, actin-de-
pendent regulator of chromatin, subfamily A, member 4 and 
SWI/SNF-related, matrix-associated, actin-dependent regulator 
of chromatin, subfamily D, member 1 (i.e., SWI/SNF chroma-
tin remodeling factors) in DNA break points.[41] In addition, 
GR activation exerts prosurvival and antiapoptotic activity by 
increasing the expression of serum and glucocorticoid-regulated 
kinase-1.[22,42] Serum and glucocorticoid-regulated kinase-1 hin-
ders Foxo3a-induced cell cycle arrest and apoptosis.[43,44]

3.5. Common protumorigenic effects of GR

GRs are present in almost all nucleated cells and have several 
mechanisms of action at the cellular level. Apart from their role 
in CRPC, glucocorticoids can also contribute to treatment fail-
ure in many other cancer types.[45,46] Understanding the tumori-
genic effects of GR activation in other tumor types might provide 
useful insights and generate interesting hypotheses regarding the 
effects of GR in prostate cancer. For example, in multiple can-
cer cell types, the GR signaling axis mediates cancer cell dor-
mancy (Fig. 3). In particular, the tumors undergo cell cycle arrest 
through cyclin-dependent kinase inhibitor 1C and forkhead box 
O1/insulin receptor substrate 2–orchestrated reprogramming of 
signaling.[47] The resulting quiescence slows the tumor prolifer-
ation rate. However, quiescent cancer cells can escape conven-
tional antineoplastic treatments.[48–51] They also minimize their 
metabolic rates and energy needs.[52] Reactivation of these cells 
can eventually lead to tumor relapse and disease progression. 
Moreover, GR upregulates oxidative phosphorylation as a result 
of nuclear action on genes encoding mitochondrial transcrip-
tion factors.[53–55] In several tissues, GR activation leads to the 
translocation of the receptor into the mitochondria.[55–58] Six 
mitochondrial genome sequences show strong similarity with 
glucocorticoid response elements, suggesting a direct action of 
GR on mitochondrial transcription.[55,56,58. It is known that GR 
binds to mitochondrial DNA, mainly in the regulatory D-loop 

Figure 2.  The role of GR in prostate cancer. Corticosteroids and GR have a 
complex role in prostate cancer. Although they can decrease proliferation in 
subsets of tumor cells, their prosurvival effects might render the cells resistant 
to chemotherapy and antiandrogen treatments, hence contributing to treat-
ment failure. In the context of enzalutamide therapy, it has been shown that 
in subsets of primed cells, GR binds to AREs and activates critical AR genes. 
This results in GR-dependent tumor progression. AR = androgen receptor, 
ARE = androgen response element, GR = glucocorticoid receptor.

Figure 3.  Pleiotropic effects of GR activation. Glucocorticoids modulate 
a variety of genes, including genes encoding chemokines and cytokines, 
enzymes, receptors, inhibitory proteins, and adhesion molecules. Many of 
the effects of GR activation are directly or indirectly related to cancer. These 
effects include ion transport modulation, immune response regulation, 
decreased PTEN expression, calcium metabolism regulation, inflammation 
reduction, etc. GR = glucocorticoid receptor, OXPHOS = oxidative phosphor-
ylation, PTEN = phosphatase and tensin homolog.
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region. Among the genes induced include the mitochondrially 
encoded oxidative phosphorylation genes ND1, ND2, ND3, 
ND4, Cyt b, ATP6, ATP8, and COX1. As a result, GR acts as 
a regulator that can increase OXPHOS and mitochondrial ade-
nosine triphosphate production when the cells need it.[55] It is 
known that the upregulation of OXPHOS can confer resistance 
to androgen ablation.[59–61] These findings suggest that in pros-
tate cancer under antiandrogen treatment, the mitochondrial 
GR translocation might have prosurvival effects and contribute 
to treatment failure. This is an interesting hypothesis because 
targeting GR translocation into the mitochondria would prob-
ably be a much safer strategy than targeting the (essential for 
life) GR directly.

3.6. “Landmark” effects of GR

Glucocorticoids modulate a variety of genes, including genes 
encoding chemokines and cytokines, enzymes, receptors, inhib-
itory proteins, and adhesion molecules (Fig. 3). Many of these 
effects are pleiotropic and cell/tissue specific.[62,63] Overall, they 
upregulate anti-inflammatory proteins and downregulate proin-
flammatory proteins.[62,64] In addition, they enhance the expres-
sion of enzymes involved in gluconeogenesis, particularly in 
the liver. This results in glucose synthesis from substrates such 
as amino acids and glycerol (from triglyceride breakdown). 
Glucocorticoids inhibit glucose uptake in muscle and adipose 
tissue, and stimulate lipolysis and fatty acid release in adipose 
tissue.[65–68] GR activation can decrease phosphatase and tensin 
homolog (PTEN) expression. Increased PTEN levels are essen-
tial for the suppression of phosphoinositide 3-kinase–induced 
tumor growth.[69] Glucocorticoids also play a role in calcium ion 
metabolism. Apart from decreasing renal calcium reabsorption, 
they decrease gastrointestinal calcium absorption and increase 
bone resorption by stimulating the expression of receptor acti-
vator of nuclear factor kappa B ligand. Hence, they enhance 
osteoclastogenesis and result in osteoporosis, a common side 
effect of chronic glucocorticoid treatment.[70,71] This contrasts 
with the fact that prostate cancer bone metastases are mostly 
osteoblastic.[72] Glucocorticoids are also key players in the res-
toration of homeostasis after exposure to stress. They modulate 
critical physiological responses, such as glycogenolysis, immune 
responses, and ion transport. Glucocorticoid secretion is a clas-
sic response to stress.[73–75] Glucocorticoids are also critical for 
normal brain development.[76,77] Moreover, by affecting Na+/K+/
ATPase and nutrient transporters, they promote the develop-
ment of a functional gastrointestinal system.[78,79] In addition, 
they exert powerful effects on cellular excitability in neurons 
and neuroendocrine cells by regulating calcium-activated potas-
sium channels.[80]

4. Conclusion
Glucocorticoids act through the GR and exert pleiotropic effects 
in different cell types. In prostate cancer, their role is somewhat 
complex. In the presence of active AR signaling, they can have an 
antitumor effect. However, under specific conditions, they con-
tribute to resistance to antiandrogen therapies or even become 
the main driver of the disease. Identifying the full spectrum of 
GR activity will help inform the optimal use of glucocorticoste-
roids in prostate cancer. It will also determine the best strategies 
to target the protumorigenic effects of GR.
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