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Abstract

The fundamental difference between classic and modern biology is that technological innovations allow to generate high-
throughput data to get insights into molecular interactions on a genomic scale. These high-throughput data can be used to
infer gene networks, e.g., the transcriptional regulatory or signaling network, representing a blue print of the current
dynamical state of the cellular system. However, gene networks do not provide direct answers to biological questions,
instead, they need to be analyzed to reveal functional information of molecular working mechanisms. In this paper we
propose a new approach to analyze the transcriptional regulatory network of yeast to predict cell cycle regulated genes.
The novelty of our approach is that, in contrast to all other approaches aiming to predict cell cycle regulated genes, we do
not use time series data but base our analysis on the prior information of causal interactions among genes. The major
purpose of the present paper is to predict cell cycle regulated genes in S. cerevisiae. Our analysis is based on the
transcriptional regulatory network, representing causal interactions between genes, and a list of known periodic genes. No
further data are used. Our approach utilizes the causal membership of genes and the hierarchical organization of the
transcriptional regulatory network leading to two groups of periodic genes with a well defined direction of information
flow. We predict genes as periodic if they appear on unique shortest paths connecting two periodic genes from different
hierarchy levels. Our results demonstrate that a classical problem as the prediction of cell cycle regulated genes can be seen
in a new light if the concept of a causal membership of a gene is applied consequently. This also shows that there is a
wealth of information buried in the transcriptional regulatory network whose unraveling may require more elaborate
concepts than it might seem at first.
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Introduction

In recent years large parts of biology, especially molecular and

cell biology, have been transformed gradually into fields driven by

technological progress. This has been initiated by the development

of high-throughput techniques like, e.g., DNA microarray or yeast

two-hybrid. These new experimental technologies allow now to

measure on a genomic scale molecular biological entities and,

hence, an analysis on a systems level [1,2,3,4]. Due to the fact that

a functional understanding of a living cell can only be achieved by

studying interactions among genes or products thereof network

based analysis methods have attracted much attention [5,6,7,8].

For this reason we are now facing the difficulty to analyze gene

networks, e.g., metabolic, signaling or the transcriptional regula-

tory network [9,10,4,11] to extract from them sensible biological

information.

In the present paper the major purpose is to use the

transcriptional regulatory network of yeast to predict cell cycle

regulated genes of Saccharomyces cerevisiae by using a novel approach.

For predicting cell cycle-regulated genes, which are also called

periodic genes [12], we use the transcriptional regulatory network of

yeast and a list of known genes to be periodically expressed during

the cell cycle. No other data are used. This means explicitly that

we do not use time series data from, e.g., DNA microarray

experiments that would allow to test statistically for periodic

behavior or appearance of genes. We want to emphasize that our

approach is fundamentally different to all other approaches we are

aware of predicting periodically expressed genes for the cell cycle

of yeast [13,14,15,16,17,18] because all other approaches are

based on time series data. This may seem counter intuitive at first

sight, however, the seeming contradiction is resolved quickly. First,

we want to repeat that we and all other studies are aiming to detect

genes that are cell cycle regulated. That means genes that belong to

or participate in a certain biological process namely the cell cycle.

However, from a biological point of view this means we are

searching for genes that have a biological function that is

important for the biological process cell cycle. Hence, in statistical

terms we are searching for genes that are causally connected to the

cell cycle. This brief explanation makes clear that there is no need

to quantify or qualify further entities including, e.g., the periodicity

of genes regarding the shape of their signal, to enhance our

definition. The causal membership of a gene in the biological

process cell cycle is sufficient to study this problem provided we take

information into account regarding the causal interaction paths

connecting periodic genes. For this reason we use the transcrip-

tional regulatory network.

In a previous work we used already the concept of a causal

membership of a gene to study the organizational principle of the cell
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cycle of yeast [19]. There we analyzed a subnetwork of the

transcriptional regulatory network and could demonstrate that the

obtained subnetwork is statistically significant with respect to

several properties, e.g., the number of periodic genes reachable

from the strongly connected component (SCC). Further, we

hypothesized that this subnetwork may act as a pacemaker of the

cell cycle itself because the implied hierarchy between periodic

genes is directed from periodic genes in the SCC to genes outside

and only genes in the SCC can exhibit truly periodic behavior due

to the cyclicity of the SCC. In the present paper we do not focus

on the network topology or study structural properties thereof but

utilize its topology to make functional predictions regarding genes

that are cell cycle regulated. Our prediction will utilize the concept

of a causal membership of a gene.

The paper is organized as follows. In the next section we

introduce our method and describe the data we use for our

Figure 1. Subnetwork of the TRN of yeast. Shown are 230 genes. Nodes in orange correspond to periodic genes that are not in the SCC (170),
green genes are periodic and in the SCC (9), red genes (27) are in the SCC but are not periodic and blue nodes (25) are genes not categorized as
periodic according to [18]. The connections shown are shortest paths connecting the periodic genes. All other connections are omitted.
doi:10.1371/journal.pone.0006633.g001

Table 1. Length of the shortest paths from all nine periodic genes in the SCC (first row) to periodic genes in G=SCC connected via
at least one non periodic gene (first column).

REB1 RAP1 HCM1 YOX1 PHO4 SPT16 ACE2 TOS4 FKH2

WSC2 4 3 4 3 12 3 4 (2) 5

MNN1 3 (2) 3 3 9 (2) 3 5 4

SPH1 3 (2) 10 10 11 9 8 7 9

ERG3 5 4 (2) 3 6 2 3 (2) 4

EEB1 6 5 6 6 12 5 6 5 (4)

YLL032C 5 4 6 7 13 8 9 (3) 6

TAO3 (2) 4 3 5 9 5 6 3 (2)

YLR049C (2) 4 3 5 9 5 6 3 (2)

PCL7 (2) (2) (2) 3 9 4 5 3 (2)

FLC3 (2) 4 3 5 9 5 6 3 (2)

KEX2 (2) 4 3 5 9 5 6 3 (2)

YFL064C (2) 4 3 5 9 5 6 3 (2)

For example the length of the shortest path from REB1 to WSC2 (first line) is 4. The number in brackets indicates the length of the minimal shortest paths.
doi:10.1371/journal.pone.0006633.t001

Predicting Periodic Genes

PLoS ONE | www.plosone.org 2 August 2009 | Volume 4 | Issue 8 | e6633



analysis. In the ‘results’ section we presents numerical results and

this article finishes with conclusions.

Methods

Data
For our analysis in the following we use the transcriptional

regulatory network (TRN) of yeast [20,21]. From this network we

extract the weakly connected component (WCC) which consists of

3357 genes and 7230 interactions. The weakly connected

component of a network is defined as the subnetwork that

connects every pair of nodes by at least one directed path [22]. In

contrast, the strongly connected component (SCC) is defined as

subnetwork that connects each pair of genes in both directions that

means for each pair of genes A and B there exists a directed path

from gene A to gene B but also a directed path from gene B to

gene A. The TRN consists of two strongly connected components.

One consists of 36 and the other of just 2 genes. When we speak in

the following about the SCC of the TRN we speak always about

the larger subnetwork also called the giant strongly connected

component [23]. The strongly connected component is part of the

weakly connected component, SCC(WCC. We use a list of

Zhao et al. as reference for periodic genes [18]. In this list they

categorized 260 genes as periodic. However, only 179 periodic

genes are in the WCC we use for our analysis. We restrict our

analysis to the WCC because the WCC can be seen as filtered

network providing the highest quality subnetwork of the TRN.

Method
In this paper we use the transcriptional regulatory network

(TRN) of yeast that has been assembled from different types of

high-throughput data [20,21] to ensure that the interactions

present in the network correspond to real biologically observable

interactions (low number of false positive edges) and, hence, to

represent a causal interaction structure. We study the structure of

this causal network to predict cell cycle regulated genes which are

also called periodic genes. Because all other approaches suggested

so far to predict periodic genes are based on statistical tests

comparing differences in signal shapes of time series data from

microarray experiments [13,14,15,24,16,17,18] we first define

some terms for clarification. More precisely, we want to emphasize

again that for our prediction we use only the TRN of yeast and a

list a genes known to be periodic to predict novel periodic genes.

We do not use time series data of any kind.

Figure 2. Subnetwork of the TRN consisting of 23 genes (color code as in Fig. 1). The shown subnetwork complements the results in table 1
by providing detailed information about the genes involved in the shortest paths. Blue edges indicate the shortest path from TOS4RSTE12RWSC2.
doi:10.1371/journal.pone.0006633.g002
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Of central importance for our analysis is the notion of the causal

membership of a gene introduced in [19].

Definition 1 (causal membership). The causal membership is

an indicator function that indicates if a gene gi belongs to a certain biological

process.

Icm biological processjgið Þ~
1 gi participates in 0biological process’

0 else:

�
1ð Þ

Definition 1 emphasizes the fact that when talking about the

biological function of a gene we are interested in the causal

Figure 3. Subnetwork of the TRN consisting of 20 genes (color code as in Fig. 1). The shown subnetwork complements the results in table 1
by providing detailed information about the genes involved in the shortest paths. Blue edges indicate the shortest path connecting
RAP1RTYE7RMNN1.
doi:10.1371/journal.pone.0006633.g003
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involvement of a gene in a certain biological process instead of

mere biochemical properties. From this perspective it appears

natural that genes participating, e.g., in the biological process cell

cycle can be studied with the help of a causal network representing

interactions among these genes.

In the following we make the assumption that the transcrip-

tional regulatory network represents all possible causal interactions

among genes. No other interactions can occur.

Assumption 2. The transcriptional regulatory network G represents all

possible causal interactions among genes.

It is clear that our assumption is not entirely true because there

is also communication among genes involving, e.g., phosphoryla-

tion or signaling in general. However, as with all assumptions, we

will only know about its quality after we performed the analysis on

which the study has been based on. As we demonstrate in the

results section, despite the apparent incompleteness of our

assumption the transcriptional regulatory network seems to make

a very strong contribution.

Our study is motivated by the following hypothesis.

Hypothesis 3. Given a directed causal path, obtained from the

transcriptional regulatory network, connecting two genes known to be periodic

then all genes on this path are periodic if the following two conditions hold:

1. the connecting path is a shortest path.

2. there is just one shortest path connecting the periodic genes.

The reason why we formulated this as a hypothesis rather than

a theorem is that we assumed that the significant (molecular)

interaction path follows the shortest path connecting two genes.

Despite the fact that this assumption is frequently made [25,10,26]

it is not possible to rule out that also non-shortest paths might be

used at least under certain conditions. Hence, there is a certain,

difficult to quantify, uncertainty attached to this hypothesis.

However, a slight modification of the conditions transform

Hypothesis 3 into a theorem.

Theorem 4. Given a directed causal path, obtained from the

transcriptional regulatory network, connecting two genes known to be periodic

then all genes on this path are periodic if there is only one path connecting the

periodic genes.

Figure 4. Subnetwork of the TRN consisting of 24 genes (color code as in Fig. 1). The shown subnetwork complements the results in table 1
by providing detailed information about the genes involved in the shortest paths. Blue edges indicate the shortest path connecting
RAP1RRPH1RSPH1.
doi:10.1371/journal.pone.0006633.g004
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The condition in Theorem 4 implies that there is just one

shortest path namely the path itself.

Proof 5. Because we assume that the transcriptional regulatory network

represents all possible causal interactions (assumption 2) and information can

only be transmitted via causal interactions there is just one path along which the

information can be transmitted between the two periodic genes.

We want to remark that we do not allow auto-regulations of a

genes. From the proof of Theorem 4 we can see that the

periodicity of genes does not enter the proof. More precisely, that

means it is not necessary to consider the shape of a signal to make

statements about the periodic behavior of genes. Instead, a causal

membership in the form participating in the information transmis-

sion between periodic genes defines genes as periodic (for the

condition in Theorem 4).

From a practical point of view, however, there is a problem that

might limit the use of Theorem 4. The problem is that for a known

list of periodic genes of the order O 100ð Þ (for example [23]) one

needs to study more than O 104
� �

connections between periodic

genes. Here the problem is not just computational but concep-

tional because it seems unreasonable to assume that, in principle,

every gene can communicate with every other gene. It is

implausible because it implies a homogeneity among genes.

Instead, it is widely assumed that genes and, hence, gene networks,

are hierarchically organized [27,28,29]. In the following we report

a property of the TRN that allows to introduce a two-level

hierarchy that in turn not only reduces the computational

complexity considerably but also results in a novel conceptual

view of the cell cycle.

The transcriptional regulatory network can be partitioned by

the presence or absence of cycles connecting genes. In mathemat-

ical terms a part of the network that is cyclic is also called a

strongly connected component (SCC) [22]. This leads us to the

separation of the genes in two classes. The first class consists of

genes that belong to the SCC. The genes in the second class do not

belong to the SCC. Further the two classes are not equal but the

information should flow in one direction namely from

Figure 5. Subnetwork of the TRN consisting of 20 genes (color code as in Fig. 1). The shown subnetwork complements the results in table 1
by providing detailed information about the genes involved in the shortest paths. Blue edges indicate the shortest path connecting
HCM1RECM22RERG3.
doi:10.1371/journal.pone.0006633.g005
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SCC?G=SCC. (Here ‘=’ is the difference operator giving a new

set whose elements are only in G but not in SCC.) The reason is

that only genes in the SCC can establish a periodic behavior, as

explained above, while genes in G=SCC can not. Based on this

classification and hierarchy which implies a main direction of

information flow among periodic genes, we refine our hypothesis

by restricting the set of genes from which we are searching the

shortest paths to the SCC.

Hypothesis 6. Given a causal path from a gene in the SCC to a gene

in G=SCC, obtained from the transcriptional regulatory network, connecting

two genes known to be periodic then all genes on this path are periodic if:

1. the connecting path is a shortest path.

2. there is just one shortest path connecting the periodic genes.

In the results section we apply Hypothesis 6 to the transcrip-

tional regulatory network of Saccharomyces cerevisiae.

Results

Subnetwork consisting of periodic genes
We begin our analysis by showing a subnetwork of the

transcriptional regulatory network containing all periodic genes.

This network in Fig. 1 was obtained by searching for each periodic

gene the shortest paths to all other periodic genes. If a path exists,

connecting two periodic genes, all genes on this path are shown in

Fig. 1. In Fig. 1 we use a color coding to distinguish genes with

different properties. Genes in orange (170) are periodic genes that

are not in the SCC, genes in green (9) are periodic and in the

Figure 6. Subnetwork of the TRN of yeast containing 24 genes. Color code of the nodes is as in Fig. 1. The shown subnetwork complements
the results in table 1 by providing detailed information about the genes involved in the shortest paths. Blue edges indicate the shortest path
connecting FKH2RYHP1RADR1RPIP2REEB1.
doi:10.1371/journal.pone.0006633.g006
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SCC, genes in red (27) are in the SCC but are not periodic and

blue genes (25) are not periodic and not in the SCC. We want to

emphasize that Fig. 1 shows a raw or unorganized version of a

subnetwork of the transcriptional regulatory network of yeast. The

major purpose of our analysis in the following will be to transform

this unorganized network into a representation that can be

analyzed sensibly. Before we proceed we want to make some

general remarks.

From Fig. 1 there are two things one sees immediately. First,

there are many genes that are completely unconnected. Second,

the leaf nodes of this subnetwork are periodic genes not in the

SCC (orange nodes). If a gene is unconnected (see on the left side

in Fig. 1) this means that there exists no path to or from any other

periodic gene in the whole transcriptional regulatory network.

This means, according to the transcriptional regulatory network

we use there is no communication possible between the

unconnected periodic genes and all other periodic genes. For this

reason, for our analysis in the following these unconnected genes

will not be taken into account. The fact that only orange genes and

no green ones are leaf nodes (we inspected all green genes - leaf

nodes have no out-going edges) indicates an asymmetry. This

asymmetry which can also be seen as hierarchy because the leaf

nodes are apparently dead end streets regarding information flow

(no information can leave towards other periodic genes) is a central

part of our hypothesis 6 we raised in the ‘methods’ section. The

remainder of the results section is concerned with the organization

of the network in Fig. 1 by application of our hypothesis 6.

Predicting periodic genes
In the previous subsection we showed a subnetwork of the

transcriptional regulatory network that was obtained by searching

shortest paths between all periodic genes. Now we apply

hypothesis 6 and use only parts of this network which is obtained

as follows. We search for all periodic genes in the SCC all shortest

Figure 7. Subnetwork of the TRN of yeast containing 30 genes. Color code of the nodes is as in Fig. 1. The shown subnetwork complements
the results in table 1 by providing detailed information about the genes involved in the shortest paths. Blue edges indicate the shortest path
connecting TOS4RTEC1RSRD1RYLL032C.
doi:10.1371/journal.pone.0006633.g007

Predicting Periodic Genes

PLoS ONE | www.plosone.org 8 August 2009 | Volume 4 | Issue 8 | e6633



paths to all other periodic genes. These are apparently less paths

because, first, we search only from a subset of all periodic genes

and, second, we are no longer interested in paths starting from

periodic genes outside the SCC. This results in a network

containing only nine non periodic genes that are not part of the

SCC (instead of 27 in Fig. 1). Furthermore, this network connects

141 periodic genes which corresponds to almost 80% of all

periodic genes in the WCC we are using for our analysis. A

statistical analysis has shown that the structure of this network as

well as the number of connected periodic genes is unlikely to be

observed by chance and, hence, may manifests evolutionary

information encoded in the structure of the transcriptional

regulatory network [19]. In the following we are focusing on

these nine non periodic genes and all other genes they are

connected to.

Table 1 shows the length of the shortest paths from all 9

periodic genes in the SCC (first row) to 12 periodic genes (first

column) connected via at least one non-periodic gene (blue node).

From this table we see that there are only four periodic genes

(WSC2, SPH1, EEB1, YLL032C) that can be reached via just one

shortest path. All other genes are reachable via multiple shortest

paths. For example, MNN1 can be reached from RAP1 and

SPT16 via paths both having length 2. For this reason in the

second row in Table 1 there are two brackets () indicating that

there are two shortest paths to MNN1.

Figure 2 to 8 visualize these results by showing the subnetwork

of the TRN that connects the nine periodic genes in the SCC

(green nodes) to the periodic genes (orange nodes) via shortest

paths (only the shortest paths are shown). Due to the fact that

many of these shortest paths go through non-periodic genes in

these figures are also red nodes which correspond to non-periodic

genes in the SCC and blue nodes corresponding to non-periodic

genes outside the SCC.

In Table 2 we list all nine genes that are candidates to be

periodic according to Fig. 2 to 8 (blue nodes on shortest paths).

Considering information from the literature we find that

Figure 8. Subnetwork of the TRN of yeast containing 30 genes. Color code of the nodes is as in Fig. 1. The shown subnetwork complements
the results in table 1 by providing detailed information about the genes involved in the shortest paths. The blue edges indicate the shortest path
connecting FKH2RSWI5R FLC3,KEX2,YFL064C,YLR049C,TAO3,PCL7f g.
doi:10.1371/journal.pone.0006633.g008
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Table 2. Nine candidate genes (first column) to be periodic.

gene Johnansson et al. de Lichtenberg et al. Cyclebase

STE12 2888 2421 3885

TYE7 3131 753 1618

RPH1 1989 2877 4022

ECM22 3997 2710 3636

ADR1 3455 4029 2238

PIP2 5650 4762 1277

TEC1 239 104 319 (per)

SRD1 5871 2247 2882

SWI5 109 79 124 (per)

Genes declared to be periodic by Cyclebase are indicated by (per). The numbers in the second, third and fourth column correspond to the ranking according to
Johnansson et al. [31], de Lichtenberg et al. [12] and Cyclebase [30].
doi:10.1371/journal.pone.0006633.t002

Table 3. All non-periodic genes in the SCC.

gene Johnansson et al. de Lichtenberg et al. Cyclebase

CLN3 344 781 158 (per)

SWI4 149 402 122 (per)

SIN3 3768 4465 5029

CYC8 2213 2738 1375

HAP1 3624 1749 2404

MOT3 2070 2942 1193(4.946E-4, 0.0269)

MCM7(YBR202W) 64 53 70 (per)

ROX1 1409 2094 1027(1.756E-4, 0.0162)

YHP1 147 236 282 (per)

YAP6 1098 2003 2995

HPR1 2892 4927 5712

GCN4 3200 5037 2975

UME6 5478 2132 791 (0.0012, 5.597E-4)

HSF1 2806 3541 2033

CIN5 1364 725 832 (0.0032, 2.298E-4)

GLN3 5190 5979 5580

SOK2 3645 3801 2501

SPT20 4755 5901 5022

SWI1 1388 1675 3459

YAP1 5681 4483 6139

PHD1 690 175 495 (per)

MSN4 3877 1379 1192 (0.0064, 0.0034)

CUP9 5746 3546 1094 (2.794E-4, 0.0201)

FHL1 636 1455 722

BDF1 2836 2949 2728

MCM1 3544 1639 3311

NOT5 4380 6103 4635

The first column gives the gene name, the second and third give the rank of the gene according to Johnansson et al. [31] and de Lichtenberg et al. [12] and the fourth
column gives the ranking according to Cyclesbase [30]. In brackets we indicate if a gene is declared periodic (per) or alternatively the p-values (p1,p2) for periodicity (p1)
and regulation (p2).
doi:10.1371/journal.pone.0006633.t003
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Cyclebase [30] declares TEC1 and SWI5 as periodic genes that

appear not in the list of Zhao et al. [18]. These genes are also

ranked low by two further studies [12] and [31]. By including this

information in our analysis this explains the connectivity from

FKH2 to FLC3,KEX2,YFL064C,YLR049C,TAO3,PCL7f g
shown in Fig. 8 completely because now we found a shortest path

consisting of only genes to be known to be periodic. This leaves us

with seven candidate genes to be periodic.

For the genes in the SCC that are non-periodic we perform a

similar literature search which results are listed in Table 3. Also for

these genes we find five genes (CLN3, SWI4, MCM7, YHP1,

PHD1) that are declared periodic by Cyclebase [30]. Using this

information two further scenarios shown in Fig. 3 and 5 are

clarified and demonstrated to be conform with our hypothesis.

This implies also that neither TYE7 nor ECM22 needs to be

periodic because we found alternative (shortest) paths. We want to

make clear that this does not give us information to make the

statement that these genes are not periodic. They may be periodic

but based on our analysis we can not support this hypothesis

because we found alternative (shortest) paths to connect MNN1

(Fig. 3) and ERG3 (Fig. 5) to periodic genes in the SCC.

Considering in addition also genes that have a low p-value for

periodicity and regulation (shown in Table 3) according to

Cyclebase [30] but without a clear defined peaking point during

the cell cycle the number of candidate genes to be periodic can not

be further reduced. Hence, there remain only five candidate genes

we predict to be periodic (STE12, RPH1, ADR1, PIP2, SRD1)

(see Fig. 2, 4, 6 and 7) according to our analysis for which we could

not find information from the literature to back up our prediction.

All these genes are involved in a single (shortest) path, as

demonstrated by table 1, connecting a periodic gene from the

SCC to a periodic genes outside.

Assessing errors
Our analysis presented above rests on the assumption that the

used transcriptional regulatory network corresponds to the true

(error free) TRN of yeast. Despite the fact that we filtered the

TRN using only the WCC this assumption is certainly over-

optimistic. For this reason the question arises what influence does

the addition or removal of interactions (edges in the network) have

on our results. To simplify the analysis we assume in the following

either false positive or false negative edges but not both types at the

same time. We would like to estimate the probability Pp that our

prediction is wrong, that means the probability that a non-periodic

gene we predict to be periodic is actually non-periodic. Hence, Pp

is the false positive probability of a prediction. Because this is for

combinatorial reasons intricate we estimate the probability that

‘the non-periodic gene does not need to be periodic’ as

approximation for Pp. This implies that a new path needs to be

Figure 9. Expression profile for STE12 for time series data from SPELLMAN et al. [32].
doi:10.1371/journal.pone.0006633.g009
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either used or established to connect the periodic genes with each

other. Different cases are discussed in detail in the following.

For evaluating the effect of false negative edges (addition of

edges) we assume that the probability of a false negative edge is c
to connect two genes. From our analysis of the subnetwork we

obtained (not shown) that there are three principle scenarios we

need to distinguish. One, two periodic genes are connected via one

non-periodic gene. Two, two periodic genes are connected via two

non-periodic genes and, three, there is one non-periodic gene used

to connect to more than one periodic gene (the non-periodic gene

occurs on multiple shortest paths to periodic genes).

For scenario one the probability Pp that the non-periodic gene

is not needed, that means that our prediction is a false positive, is c.

For scenario three the probability that the non-periodic gene is

actually non-periodic Pp is c6 because there are six shortest paths

this gene occurs on and the non-periodic gene is no longer needed

as link between periodic genes if all of the six periodic genes at the

end of the paths receive simultaneously a direct connection to

another periodic gene. For scenario two one needs to distinguish

two cases. Pp for the non-periodic genes closer to the SCC is 2c
because either the periodic genes receives a direct connection to

another periodic gene or the second non-periodic gene receives a

connection from a periodic gene. Both cases make the use of the

first non-periodic gene on the shortest path redundant. Pp for the

second non-periodic gene on the path is c because this situation

corresponds to scenario one. If c would be known we could, for

each non-periodic gene separately, estimate the probability that

our prediction is a false positive. In general, for 0ƒcv1 we obtain

the ordering

c6
vcv2c, 2ð Þ

which makes scenario three (see Fig. 8) the most unlikely case to be

a false positive prediction from a theoretical point of view. This

corresponds to the fact that SWI5 is declared periodic by

Cyclesbase [30] (see table 3). By this analysis we can assign the

false positive probability c to (STE12, RPH1, PIP2, SRD1) and 2c
to ADR1.

Next, we study the situation for false positive edges (edge

removals). In the following we assume d to be the probability of a

false positive edge. First of all, we want to remark that the removal

of edges can not create new paths but just destroy existing ones.

This implies that there are two cases that need to be considered.

First, the removal of an edge destroys the shortest path between

two periodic genes and there exists no other path in the TRN that

could connect these genes. In this situation additional edges need

to be included (false negative edges need to exists) that would allow

to create a new path. As mentioned above we will not consider

Figure 10. Expression profile for RPH1 for time series data from SPELLMAN et al. [32].
doi:10.1371/journal.pone.0006633.g010

Predicting Periodic Genes

PLoS ONE | www.plosone.org 12 August 2009 | Volume 4 | Issue 8 | e6633



such situations because such combinatorial events are increasingly

unlikely (higher power in c and/or d). Second, removal of an edge

makes an already existing path in the TRN a (new) shortest path

connecting the two periodic genes. In the following we will assume

that this is actually the case. Also for this situation we need to

distinguish three scenarios (as described above). The probabilities

for these three scenarios are 2dzd2, 3dz3d2zO d3
� �

(for both

genes regardless of their position on the path) and

dz6d2zO d3
� �

. The term O d3
� �

indicates that there are also

terms of order 3 or higher in d that influence the probabilities. For

dv0:15 neglecting higher order terms we find the ordering (due to

the non linearity of the equations there exist different regimes)

dz6d2
v2dzd2

v3dz3d2 3ð Þ

which corresponds to the ordering of the three scenarios for the

false negative edges discussed above.

This gives the following combined ranking with the estimated

false positive probability: cz2dzd2 for (STE12, RPH1, SRD1),

cz3dz3d2 for (PIP2) and 2cz3dz3d2 for ADR1.

Visualization of expression profiles
Finally, in Fig. 9–13 we present a visualization of the expression

profiles (obtained from Cyclebase) of the five genes predicted to be

periodic. The time series used are from Spellman et al. [32]. In

addition we provide in table 4 the p-values assigned by Cyclebase

[30] for periodicity (second column) and for regulation (third

column) of the five genes. The p-values for periodicity for PIP2

(Fig. 12) and ADR1 (Fig. 13) are below 0.05. Also, the p-values for

regulation for STE12 and SRD1 are below 0.05. The reason why

they are not declared as periodic is because their complementary

p-value (either for regulation or periodicity) is much higher than

0.05. A possible reason for this is the high variability of the time

series data with respect to different experiments. This variability

makes it also very difficult to assign an unique peak time to these

time series and, hence, for conventional methods based solely on

the shape of a signal to clarify this situation. The only gene that has

neither a low p-value for periodicity nor for regulation is RPH1

(Fig. 10). However, as one can see from Fig. 10 there are

pronounced peaks occurring at certain phases of the cell cycle but

these peaks are not precisely reproducible for different cycles and

also experiments. This might be an indicator, if this gene is truly

cell cycle regulated, of the redundancy of this gene meaning it is

not involved in an unique signaling path but occurs on a parallel

pathway that is not used during every cell cycle. This would

provide a plausible explanation of the observed variability in the

expression profile for different cell cycles as well as different

experiments.

Figure 11. Expression profile for SRD1 for time series data from SPELLMAN et al. [32].
doi:10.1371/journal.pone.0006633.g011
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Discussion

In this paper we presented a novel approach to predict genes

causally involved in the cell cycle in S. cerevisiae. Our approach is

based on the transcriptional regulatory network and a list of genes

known to be periodic. No further data are used. Partitioning of the

set of periodic genes in two groups according to a graph theoretical

property leads to a hierarchy in the transcriptional regulatory

network from the SCC to G=SCC that allows to make predictions

about the involvement of genes in the cell cycle. Based on our

analysis we found five genes that are candidates to be periodically

expressed. The estimated probability that theses genes are false

positives is cz2dzd2 for (STE12, RPH1, SRD1), cz3dz3d2 for

(PIP2) and 2cz3dz3d2 for ADR1. Here c is the probability for a

false negative edge and d is the probability for a false positive edge.

Generally, we want to remark that the property cyclicity of a

network, used in this paper to define the SCC, has been already

used previously to meaningfully separate molecular networks [33]

but in the context to identify structural domains of proteins.

Finally, we want to emphasize that our approach is not intented as

alternative to existing methods to predict periodic genes but to

complement such methods because we utilize different informa-

tion.

From a theoretical point of view it would be interesting to study

in a follow-up work the connection of our proposed method to a

related framework based on Markov random fields [34]. Markov

random fields have been used previously to predict the function of

proteins by utilizing a protein network and information about

functional categories of proteins for which such information is

available [35]. This allows not only to predict a certain functional

category for proteins but also to assess the confidence of this

prediction. An interesting point would be to investigate the

influence of the directedness of the network because Markov

random fields are only defined for undirected networks whereas

our approach utilizes the information provided by the directed

edges. Also it would be interesting to study if our approach can be

used to study undirected networks like the protein interaction

network and under which assumptions.
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