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Abstract

Isoniazid (INH) and Rifampicin (RFP) are widely used in the world for the treatment of tuberculosis, but the hepatotoxicity is
a major concern during clinical therapy. Previous studies showed that these drugs induced oxidative stress in liver, and
several antioxidants abated this effect. Metallothionein (MT), a member of cysteine-rich protein, has been proposed as a
potent antioxidant. This study attempts to determine whether endogenous expression of MT protects against INH and RFP-
induced hepatic oxidative stress in mice. Wild type (MT+/+) and MT-null (MT2/2) mice were treated intragastrically with
INH (150 mg/kg), RFP (300 mg/kg), or the combination (150 mg/kg INH +300 mg/kg RFP) for 21 days. The results showed
that MT2/2 mice were more sensitive than MT+/+ mice to INH and RFP-induced hepatic injuries as evidenced by hepatic
histopathological alterations, increased serum AST levels and liver index, and hepatic oxidative stress as evidenced by the
increase of MDA production and the change of liver antioxidant status. Furthermore, INH increased the protein expression
of hepatic CYP2E1 and INH/RFP (alone or in combination) decreased the expression of hepatic CYP1A2. These findings
clearly demonstrate that basal MT provides protection against INH and RFP-induced toxicity in hepatocytes. The CYP2E1
and CYP1A2 were involved in the pathogenesis of INH and RFP-induced hepatotoxicity.
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Introduction

Tuberculosis (TB) is an airborne infectious disease and remains

one of the major public health problems in the world today. More

than 10 million people develop tuberculosis annually, and about 2

million die each year [1]. Isoniazid (INH) and Rifampicin (RFP)

are first-line drugs for anti-TB therapy, but the hepatotoxicity that

results from use of these drugs remains a significant problem for

clinical treatment [2]. INH, the hydrazide of isonicotinic acid, is

highly bactericidal against replicating tubercle bacilli. INH is

directly or indirectly metabolized to acetylhydrazine and hydra-

zine by N-acetyltransferase and amidohydrolase [3]. Acetylhy-

drazine and hydrazine might be oxidized by CYPs to form

hepatotoxic intermediates [4]. Human genetic studies have shown

that CYP2E1 is involved in INH-related hepatotoxicity [5]. RFP is

a complex macrocyclic antibiotic that inhibits ribonucleic acid

synthesis in a broad range of microbial pathogens. It has

bactericidal action and a potent sterilizing effect against tubercle

bacilli in both cellular and extracellular locations. RFP is

considered as a powerful inducer of mixed-function oxidase that

contributes to the hepatotoxicity of INH [6]. Yuhas et al. showed

rifampin can induce inflammatory mediators and enhance

cytokine-induced production of NO and IL-8 in a liver epithelial

cell line [7]. Various forms of CYP, such as CYP1A1, CYP1A2

and CYP2E1, are involved in free radical generation and RFP-

mediated free radical generation may be associated with

alterations in the expression of CYPs.

Previous studies have demonstrated oxidative stress in patients

having anti-TB drugs induced hepatotoxicity [8]. Some studies

show the fight against oxidative stress is likely to play a role in liver

protection [9,10]. Peroxidation of endogenous lipids has been

shown to be a major factor in the cytotoxic action of INH and

RFP [11]. The mechanism is generally attributed to the formation

of the highly reactive oxygen species (ROS), which act as

stimulators of lipid peroxidation and the source for destruction

and damage to the cell membrane [12]. As far as we know, there

are two antioxidant defense systems in the organisms: one is

enzymatic, including superoxide dismutase (SOD), glutathione

peroxidase (GPx), catalase (CAT), etc, the other one is non-

enzymatic, which comprises molecules of low molecular weight

that scavenges the free radicals to minimize the fluctuations of

ROS level. Examples are glutathione (GSH) and metallothionein

(MT). Recently, it has been found that INH induced cholestasis

through enhancement of bile acid accumulation and mitochondria

b-oxidation [13]. Moreover, alterations of various cellular defense

mechanisms have been reported to be involved in INH and RFP-

induced hepatotoxicity [14].

Metallothionein (MT) is a low-molecular mass (6–7 kDa),

inducible, intracellular protein that is rich in cysteine (33% as

cysteine residue). There are four isoforms of MTs, namely MT-I,
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MT-II, MT-III and MT-IV. MT-I and MT-II are widely

expressed in all tissues, whereas MT-III and MT-IV are expressed

mainly in the central nervous system and the squamous epithelia

respectively [15]. MTs play an important role in many physio-

logical processes including homeostasis, protection against heavy

metals and oxidant damage, immune response, metabolic

regulation, sequestration and/or redox control [16,17]. In recent

years, MT has also been proposed as an antioxidant based on its

sulfhydryl-rich nature [18,19]. Mechanisms underlying the poten-

tial antioxidant activity of MT include the direct scavenging of free

radicals, altered Zn homeostasis, or interaction with glutathione

(GSH).

It has been difficult to define the physiological function of MT

using conventional animal models because the methods used to

alter MT levels in animals also alter a wide variety of cellular

reactions [20]. With the generation of mouse models that either

overexpress [21] or do not express MT [22,23], it is now possible

to study more directly the role of MT in specific cellular processes.

Liu et al. found MT deficiency renders animals more vulnerable

to acetaminophen-induced hepatotoxicity [24]. Further, by using a

MT-overexpressing transgenic mouse model, studies from Dr.

Kang’s laboratory have demonstrated that acute alcohol hepato-

toxicity and hepatic oxidative stress are significantly inhibited in

MT-transgenic mice [25]. Our team recently revealed that MT-I/

II null (MT2/2) mice are more sensitive than wild type (MT+/+)
mice to butenolide-induced hepatic oxidative stress, indicating the

antioxidant potency of basal MT [26]. Therefore, this study is

designed to determine whether intracellular MT protects against

INH and RFP-induced hepatic oxidative stress in mice.

Materials and Methods

Ethics Statement
All animal procedures were approved by the Institutional

Animal Care and Use Committee at the Institute of Disease

Control and Prevention of the Academy of Military Medical

Sciences (2009-002).

Chemicals and Antibodies
Isoniazid and rifampicin were purchased from Sigma-Aldrich

Inc. (MO, USA). Goat anti-Cu-Zn superoxide dismutase (SOD-1)

antibody, mouse anti-Mn superoxide dismutase (SOD-2) antibody,

goat anti-CYP4501A2 antibody, donkey anti-goat IgG-HRP, goat

anti-mouse IgG-HRP and goat anti-rabbit IgG-HRP were

obtained from Santa Cruz Biotechnology Inc. (CA, USA). Rabbit

anti-CYP4502E1 antibody was purchased from Abcam Ltd.

(Hong Kong).

Animals and Drug Treatment
Homozygous MT-I and -II knock-out mice (129/Ola6C57BL/

6J background [22]) were obtained from the Murdoch Institute of

the Royal Children’s Hospital (Parkville, Australia). Genetic

background matched mice (129/Ola6C57BL/6J) were bred as

controls. All the animals were kept in a ventilated animal room

maintained at 2362.5uC with a standard 12 hr/12 hr light/dark

cycle, and given access to food and tap water ad libitum. Male 7–9-

week-old mice were used for experimental studies.

Both wild-type and MT2/2 mice were randomly assigned to

four groups of six each, including a control group and three

treatment groups. Mice in the treatment groups received 150 mg/

kg of INH, 300 mg/kg of RFP or the combination of INH

(150 mg/kg) and RFP (300 mg/kg), respectively. Control mice

were administered with equivalent volumes of 1% carboxymethyl

cellulose only. All animals were treated by intragastric adminis-

tration (0.2 ml/10 g) daily for 21 consecutive days. INH and RFP

were dissolved in 1% carboxymethyl cellulose. Animals were

sacrificed on the next morning of the last administration. Blood

was collected and livers were removed for further determination as

described below.

MT Concentration Assay
Hepatic MT concentrations were determined by a cadmium–

hemoglobin affinity assay [27]. Briefly, liver tissues were homog-

enized in 9 volumes of 30 mM Tris-HCl buffer, pH 8.0. After

centrifugation of the homogenate at 18,0006g for 15 min,

supernatants were removed for MT determination by graphite

furnace atomic absorption spectrometry.

Plasma Biochemistry Analysis
Blood collected was allowed to clot at room temperature and

then centrifuged at 3000 rpm for 10 min, and the resulting plasma

was removed for biochemical assay within 2 hr. Typical param-

eters which are indicative of hepatic injury were determined:

concentrations of alanine aminotransferase (ALT) and aspartate

aminotransferase (AST).

Liver Histopathology
Formalin-fixed livers were processed according to the routine

procedure, and 5 mm of thickness was sectioned. The sections

were stained with haematoxylin and eosin (H&E) for light

microscopic examination.

Lipid Peroxidation Assay
Lipid peroxidation was determined by measurement of mal-

ondialdehyde (MDA) formation using the thiobarbituric acid

reactive substance assay as described previously [28].

Determination of GSH Content and the Activities of GR,
GPx, and SOD
The content of GSH was quantified following the method as

previously reported by Beutler et al. using GSH as a standard

[29]. Results were expressed as micromoles per milligram of

protein. Glutathione reductase (GR) activity was assayed by

measuring the rate of NADPH oxidation in the presence of GSSG

[30]. Glutathione peroxidase (GPx) activity was assayed by

measuring the rate of NADPH oxidation based on the reduction

of peroxide hydroperoxide by GPx in the presence of GSH [31].

SOD activity was measured in liver homogenates using a

commercialized kit (Nanjing Jiancheng Bioengineering Institute,

PR China).

Western Blot Analysis
Frozen portions of the livers were homogenized in liquid

nitrogen and then lysed for 30 min on ice. The homogenized

tissues were centrifuged thereafter at 4uC with 14,0006g for

25 min and supernatants were taken. Protein concentrations were

determined and b-actin was used to normalize the protein loading.

Protein (20 mg per lane) was separated on a 12% SDS-PAGE and

electrophoretically transferred onto polyvinylidene fluoride

(PVDF) membranes. After blocking, the membranes were

processed for immunodetection with mouse anti-b-actin antibody,

goat anti-SOD-1 antibody, mouse anti-SOD-2 antibody, goat

anti-CYP4501A2 (NP034123.1) antibody and rabbit anti-

CYP4502E1 (NP067257.1) antibody. The bound primary anti-

bodies were detected with appropriate secondary antibody. The

immunoreactive bands were visualized using the enhanced

chemiluminescence method reagents (Amersham Pharmacia
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Biotech, NJ, USA) according to manufacturer’s protocol and were

quantitated by densitometric scanning of X-ray films (HP Scanjet

G3010) and analyzed by the Quantity One 4.1.1 program (Bio-

Rad).

Statistical Analysis
Results were expressed as mean6 S.D. Statistical analysis of the

data was determined by one-way ANOVA for multiple group

comparisons. Differences between MT2/2 mice and MT+/+
controls were analyzed by Student’s t test. A level of p,0.05 was

considered significantly different.

Results

Hepatic MT Contents in MT2/2 and MT+/+ Mice
To explore the potential antioxidant protection of MT, the

present study employed MT-I/II null mice and the corresponding

wild-type mice. As shown in Fig. 1, the basal concentration of

hepatic MT in MT2/2 mice was less than one-tenth that of

MT+/+ mice. These results demonstrated the reliability of the

animal models used in the study.

Serum ALT, AST Concentration and Liver Index
As shown in Table 1, there were almost no significant

alterations in the biochemical parameters following exposure to

INH alone. Compared with control groups, RFP treatment

produced remarkable increases in the concentrations of ALT,

AST and liver index in both types of mice. Co-administration of

RFP with INH dramatically increased the concentration of AST

and liver index in MT2/2 mice compared to control group.

Liver Histopathological Changes under Light Microscopy
Liver histopathologic examination was performed to further

evaluate the hepatotoxicity of INH and RFP. As shown in Fig. 2,

control livers showed no signs of obvious abnormality in both types

of mice. After INH/RFP (alone or in combination) administration,

apparent histopathological changes were observed in hearts from

both types of mice, including hepatocellular swelling, vacuoliza-

tion, fatty degeneration, and the alterations were more severe in

MT2/2 mice.

Hepatic Lipid Peroxidation
Malondialdehyde, the well-known end product of lipid perox-

idation, has been used as a biomarker of hepatic oxidative

damage. As shown in Table 2, compared with the corresponding

wild-type mice, the MDA level was markedly increased in the

INH, RFP and combined group in MT2/2 mice.

Antioxidant Status of Hepatic GSH, GPx, GR and SOD in
Wild-type and MT2/2 Mice
GSH is one the important nonenzymatic antioxidants in the

body. As presented in Table 3, RFP induced obvious increases in

the content of hepatic GSH in both types of mice, but the

percentages of GSH induction in MT2/2 mice were higher than

those in MT+/+ mice. Compared with the corresponding wild-

type mice, the GSH was also markedly increased in the combined

group in MT2/2 mice. In all treatment groups, GPx activity

showed a significant decrease compared to the control group. GR

activity was strongly increased in the RFP and combined group,

especially in the MT2/2 mice. The control values of SOD in

MT2/2 and MT+/+ mice were not identical, and SOD-1

protein level in MT2/2 mice was significantly lower than that in

wild-type mice (Fig. 3).

Protein Expression of CYP2E1 and CYP1A2 in Wild-type
and MT2/2 Mice
Previous evidence suggests that cytochrome P450s (CYPs) are

associated with the development of INH and RFP induced

hepatotoxicity, particularly CYP2E1 and CYP1A2 [32,33]. In

western blot analysis (Fig. 4), the exposure to INH alone or the

combined exposure significantly upregulated hepatic CYP2E1

protein expression, and the induction in the MT2/2 mice was

more significant. We observed that exposure to INH and RFP

alone or in combination significantly inhibited hepatic CYP1A2

protein expression.

Discussion

The administration of INH and RFP produces many metabolic

and morphological aberrations in the liver due to the fact that the

liver is the main detoxifying site for these antitubercular drugs

[11]. Increasing evidence suggests that these toxic metabolites can

induce oxidative stress in the liver of experimental rats [34,35].

Metushi et al. found that INH itself can be oxidized to a reactive

metabolite that covalently binds to mouse and human hepatic

proteins, and INH-induced liver injury is immune-mediated [36].

An antioxidant role for MT has been proposed based on the

observations that animals that overexpress MT due to chemical

Figure 1. Hepatic MT concentrations in wild-type (MT+/+) and
MT2/2 mice. The MTconcentrations in the livers of MT+/+ and MT2/
2 mice were determined by cadmium-saturation assay. Data were
expressed as means 6 standard deviations.
doi:10.1371/journal.pone.0072058.g001

Table 1. Effect of INH and RFP treatment on plasma ALT, AST
activities and liver index of wild-type (MT+/+) and MT2/2
mice.

Parameter Control INH RFP INH+RFP

ALT (U/L) MT+/+ 32.5610.1 23.0611.5 191.56124.5** 53.0627.5

MT2/2 25.068.6 24.066.8 312.36113.1** 75.0650.2

AST (U/L) MT+/+ 150.5648.3 130.5629.2 266.06130.8* 136623.9

MT2/2 135.5628.3 160.5637.0 284.0690.3**

231.5655.2**##

Liver
index (%)

MT+/+ 4.260.2 4.960.5* 6.660.4** 5.660.7**

MT2/2 4.360.2 4.760.1 8.960.7**## 7.060.5**##

**p,0.01, compared with respective control;
*p,0.05, compared with respective control;
##p,0.01, compared with MT+/+ mice for the same treatment.
doi:10.1371/journal.pone.0072058.t001
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Figure 2. Liver histopathology of wild-type (MT+/+) and MT2/2 mice treated with INH and RFP. INH/RFP (alone or in combination)
induced apparent histopathological changes in both types of mice livers as exhibited by hepatocellular swelling, vacuolization, fatty degeneration,
and these changes were more prominent in MT2/2 mice. Livers from the MT+/+ mice and MT2/2 mice were demonstrated in (A)–(D) and (a)–(d),
respectively. H&E staining. Magnification, 6200.
doi:10.1371/journal.pone.0072058.g002
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induction or to direct gene transfer are resistant to several forms of

oxidative injuries, and animals that are deficient in MT levels due

to gene knockout experience enhanced sensitivity to oxidative

injury [37–39]. In the present study, we used MT-I/II null

(MT2/2) mice to reveal the protective role of basal expression of

MT against INH and RFP-induced hepatic oxidative stress. We

found that INH and RFP treatment induced more significant

hepatic histopathological injuries, increases of MDA production,

serum AST level and liver index in MT2/2 mice than in wild-

type mice, indicating the inability to produce MT seems to be

related to the enhanced susceptibility of MT2/2 mice to hepatic

oxidative stress. Studies have demonstrated that MT acts as a

scavenger and can interact directly with oxygen free radicals [40],

and inhibits these toxic radicals inducing lipid, protein and DNA

damage [41–43].

In biological systems, the balance between pro-oxidants and

antioxidants is crucial to cellular homeostasis. As observed in the

study, INH and RFP caused the impairment of liver antioxidant

status, as evidenced by the significant decrease in the activity of

GPx, and increases in the level of GSH and the activity of GR,

especially in MT2/2 mice. As is well known, cells have evolved

an array of well-coordinated defense mechanisms comprising

antioxidant molecules such as GSH, and antioxidant enzymes

SOD, GPx and GR, all of which act synergistically to detoxify the

oxidative injury by means of scavenging oxygen free radicals. GSH

is one of the most prominent antioxidant defense components in

the liver. Besides serving as a substrate for glutathione-related

enzymes such GPx, GSH acts as a free radical scavenger, and

plays an important role in the maintenance of protein sulfhydryls.

GR is able to catalyse the reduction of the oxidized form of

glutathione. MT shares an important similarity with GSH due to

the fact that one-third of its amino acids are cysteines, and both

MT and GSH are the main sources of sulfhydryls in the liver [25].

Importantly, the sulfhydryls in MT are preferential targets of free

radical attack compared with the other sulfhydryls such as those

from GSH and protein fractions [44]. It is reasonable to consider

that the anti-oxidative capacity of the MT2/2 mice is reinforced

partly by the compensatory increase of GSH and GR because of

MT deficiency. We also find the basal level of SOD-1 protein in

MT2/2 mice was significantly lower than that in wild-type mice.

It can be inferred as the maintaince of SOD-1 in MT+/+ mice

helps ameliorate toxicity, and MT may also play a role in

stabilizing the total anti-oxidative capacity in the liver of the

MT+/+ mice.

Although INH and RFP are potentially hepatotoxic drugs, the

precise molecular mechanisms behind their adverse effects in the

body are not fully understood. INH is metabolized to acetyliso-

niazid via hepatic N-acetyltransferase2 [45]. In turn, acetylisonia-

zid is hydrolyzed to acetylhydrazine, which is oxidized by

cytochrome P450 to form some hepatotoxic intermediates

[46,47]. Cytochrome P450 enzymes (CYPs) are involved in the

metabolism of endogenous substances, drugs, hormones, and

Table 2. Lipid peroxidation in livers of wild-type (MT+/+) and MT2/2 mice treated with INH and RFP.

Parameter Control INH RFP INH+RFP

MDA (nmol/100 mg pro) MT+/+ 17.562.4 16.562.4 14.561.7 15.263.4

MT2/2 17.464.0 23.863.2**## 24.363.3**## 18.964.4##

**p,0.01, compared with respective control;
##p,0.01, compared with MT+/+ mice for the same treatment.
doi:10.1371/journal.pone.0072058.t002

Figure 3. Effect of INH and RFP treatment on the expressions of SOD-1 and SOD-2 in wild-type (MT+/+) and MT2/2 mice. The
expression of SOD-1 and SOD-2 was analyzed by Western blotting. The control values of SOD-1 in MT2/2mice and MT+/+ were not identical, SOD-1
protein in MT2/2 mice was significantly lower than that in wild-type mice. #p,0.05, compared with MT+/+ mice for the same treatment.
doi:10.1371/journal.pone.0072058.g003
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xenobiotics. There is ample evidence that elevation of hepatic

CYP2E1 plays an essential role in the INH-hepatotoxicity through

generation of free radicals from hydrazine [48,49]. The cytotox-

icity mediated by CYP 2E1 has been found to be closely related to

its oxy-radical producing ability, leading to lipid peroxidation [50].

Additionally, cytochrome P450 are thought to contribute to the

additive or synergistic effects of RFP on INH-induced hepatotox-

icity [51,52]. In addition to the activation of CYP2E1, an

inhibiting effect on CYP1A2 was considered another molecular

mechanism of the INH-toxicity [53]. Our studies showed the

significant induction of CYP2E1 protein expression and inhibition

of CYP1A2 protein expression after INH treatment in the MT2/

2 mice, indicating that MT2/2 mice were more susceptible than

MT+/+ mice to oxidative injury mediated by cytochrome P450.

RFP alone or in combination with INH significantly inhibited

CYP1A2 protein expression, and this effect was exaggerated in the

MT2/2 mice. These findings clearly demonstrate that basal MT

provides protection against INH and RFP-induced toxicity in

hepatocytes. The CYP2E1 and CYP1A2 were involved in the

pathogenesis of INH and RFP-induced hepatotoxicity.

Several studies have proven that RFP increases INH toxicity,

most probably by increasing the formation of its toxic metabolite

hydrazine [54,55]. However, a low rate of hepatotoxicity was

demonstrated after INH-RFP co-administration for 12 weeks,

which was similar to INH treatment alone in a Hong Kong study

[56]. It has further been reported that RFP co-administration does

not increase INH-induced oxidative stress through hepatic

CYP2E1 during short-term treatment in experimental rats [57].

In the present study, the results from biochemistry analysis and

histopathological examinations indicated INH–RFP co-adminis-

tration did not exacerbate liver damage in mice. RFP attenuated

INH-induced CYP2E1 protein expression, indicating RFP may

not exacerbate INH-induced free radical generation, and our

results are consistent with previous findings that RFP reduced

hepatic CYP2E1 and had a protective effect on liver injury

induced by carbon tetrachloride [58,59]. In a recent paper, Shen

et al. provided interesting findings that RFP exacerbated INH

toxicity in human hepatocytes but not in rat hepatocytes because

of the difference in induction of CYP 2E1. So when comparing

Table 3. Effect of INH and RFP treatment on hepatic oxidative stress of wild-type (MT+/+) and MT2/2 mice.

Parameter Control INH RFP INH+RFP

GSH (mmol/g pro) MT+/+ 20.462.1 23.964.3 29.663.2** 19.262.3

MT2/2 21.861.7 18.762.0*# 38.562.9**## 26.062.0**##

GPx (U/mg pro) MT+/+ 37.964.0 33.662.2* 20.463.3** 25.564.1**

MT2/2 41.162.9 36.363.3* 21.664.7** 26.162.9**

GR (nmol/min/mg pro) MT+/+ 8.361.7 7.261.5 17.562.8** 11.161.0*

MT2/2 9.261.0 7.461.7 21.162.0**# 16.661.4**##

SOD (U/mg pro) MT+/+ 151.669.5 163.767.2* 149.665.3 150.3610.6

MT2/2 136.065.2## 132.968.4## 139.766.7# 136.065.8##

**p,0.01, compared with respective control;
*p,0.05, compared with respective control;
##p,0.01, compared with MT+/+ mice for the same treatment;
#p,0.05, compared with MT+/+ mice for the same treatment.
doi:10.1371/journal.pone.0072058.t003

Figure 4. Effect of INH and RFP treatment on the expressions of CYP2E1 and CYP1A2 in wild-type (MT+/+) and MT2/2 mice. The
expression of CYP2E1 and CYP1A2 was analyzed by Western blotting. **p,0.01, compared with respective control; *p,0.05, compared with
respective control; ##p,0.01, compared with MT+/+ mice for the same treatment.
doi:10.1371/journal.pone.0072058.g004
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data on drug toxicity between species, particular attention is need

to pay on drug-metabolizing enzymes [60].

In summary, the present study reveals that MT-I/II null mice

are more sensitive than wild type mice to the toxic effects of INH

and RFP, confirming basal expression of MT provides protection

against the hepatotoxicity. The CYP2E1 and CYP1A2 were

involved in the pathogenesis of INH and RFP-induced hepato-

toxicity. As a phase II detoxifying enzymes, MT contain specific

nucleotide sequences in the gene promoters that contribute to the

protection of cells against oxidative stress [61]. In recent years,

NF-E2-related factor 2 (Nrf2) has been studied by many scientists

and was considered can mediate a multitude of antioxidant

signaling and detoxification genes [62,63]. Several reports have

suggested a protective action for Nrf2-ARE signalling pathway

against CYP2E1-dependent hepatic oxidative injury [64,65],

indicating Nrf2-ARE pathway may exhibit a protective effect on

INH and RFP-induced hepatotoxicity. In addition, Weng et al.

showed expression of MT may function by activating the

phosphorylation of JNK, p38 and PI3K/Akt as well as by

enhancing Nrf2 DNA-binding activity [66]. Therefore, more

studies of relation between MT and Nrf2-ARE pathway, and the

actual mechanism underlying these activities are needed for the

elucidation of the hepatoprotective mechanisms of MT.
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