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A B S T R A C T

With improving living standards, functional and healthy foods are accounting for an increased 
share in human food. The development of dairy products that are rich in virgin omega-3 poly-
unsaturated fatty acids (n-3 PUFAs) has become a topic of interest. Virgin n-3 PUFA milk can 
provide high-quality protein and calcium, as well as provide n-3 PUFAs to improve human health. 
This review aims to investigate the effect of virgin n-3 PUFAs in milk on human health and discuss 
the content of virgin n-3 PUFAs in milk regulated by dairy animal diet and the effect of food 
processing on the content of virgin n-3 PUFAs in dairy production. The interaction between n-3 
PUFAs and proteins in milk is the key to improving the nutritional value of n-3 PUFAs in milk. n-3 
PUFA supplementation in the diet of dairy animals is the key method to improve n-3 PUFAs in 
raw milk, as well as to adjust the types of virgin n-3 PUFAs. Compared with a common source, 
virgin n-3 PUFAs in milk show higher antioxidant activity, but elevated temperatures and long- 
term thermal processing should be avoided.

1. Introduction

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are essential fatty acids (mainly including α-linolenic acid: ALA, C18:3, cis-9,cis- 
12,cis-15-octadecatrienoic acid; C20:3, cis-11,cis-14,cis-17-eicosatrienoic acid, ETE; C20:5, cis-5,cis-8,cis-11,cis-14,cis-17-eicosa-
pentaenoic acid, EPA; C22:5, cis-7,cis-10,cis-13,cis-16,cis-19-docosapentaenoic acid, DPA; and C22:6, cis-4,cis-7,cis-10,cis-13,cis-16,cis- 
19-docosahexaenoic acid, DHA) that play critical roles in most vital organs. The n-3 PUFAs are important substances for brain and 
muscle structure [1,2]. n-3 PUFAs are also beneficial for cardiovascular health and other conditions [3,4]. Some n-3 PUFA every day is 
good for health. Studies found that 1 g/day of ALA intake can reduce cardiovascular disease [3], and the optimal intake of DHA + EPA 
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is 0.25 g/day [5]. Even in the context of the Coronavirus disease 2019 (COVID-19) outbreak, n-3 PUFAs have been shown to reduce the 
risk of death [6].

The main n-3 PUFA foods for humans are fish, oil seeds (flax, chia, perilla, etc.), and microalgae [7–9] as shown in Fig. 1, and other 
n-3 PUFA products such as eggs that are specifically rich in n-3 PUFAs [10]. The n-3 PUFAs in microalgae are mainly DHA and in 
flaxseed are mainly ALA. Fish oil is a good source of n-3 PUFAs, but its quality is affected by marine pollutants [11]. Milk contains 
multiple virgin n-3 PUFAs (such as ALA, ETE, EPA, DPA, and DHA) which are potential dietary sources. In addition, n-3 PUFAs in milk 
play a special role, and studies have found that virgin n-3 PUFA milk could reduce the risk of asthma in children [12].

Milk is considered a complete food source because of its extraordinary nutritional value [13]. Milk fat is the most important 
constituent of milk and is easily digested and absorbed compared with other fats. Thus, unlike other n-3 PUFA sources, n-3 PUFAs in 
milk are easily absorbed by the human body. Similar to calcium, n-3 PUFAs can also combine with proteins to form nanocomplexes 
[14], and this nanocomplex shows many benefits for fatty acids: 1) increases fatty acid absorption, 2) protects fatty acids from 
oxidation or other stresses, and 3) changes the bioavailability of fatty acids [15]. In milk, there are numerous kinds of proteins, such as 
β-lactoglobulin (β-LG), α-lactalbumin (α-LA), and lactoferrin (LF). The n-3 PUFAs exert multiple functions by binding to different 
proteins. For example, compared with other complexes, only the LF–ALA complex showed a higher inhibitory effect on cancer cells. 
Therefore, increasing the n-3 PUFA content in dairy production is a good way to improve human health [16].

The concentration of virgin n-3 PUFAs in milk can be adjusted via the diet of the mammal [17,18]. Supplementation of flaxseed in 
the diet can increase the content of ALA, ETE, EPA, DHA, and total n-3 PUFAs in raw milk [19]. Fish oil and microalgae can increase the 
concentration of virgin n-3 PUFAs in milk, but the type varies [17]. The processing of dairy products, such as heat treatment, also 
affects the concentration of virgin n-3 PUFAs in milk [20].

To our knowledge, there is no detailed information about the nutritional characteristics, production, and processing of virgin n-3 
PUFAs in dairy products. Therefore, this study aimed to highlight the nutritional characteristics and key factors affecting the con-
centration and type of virgin n-3 PUFAs in raw milk and dairy products.

2. Methodology

The scholarly articles used in this review were searched from the web using Google Scholar, Science Direct, PubMed, and subject- 

Fig. 1. Characteristics of n-3 PUFAs from various sources. n-3 PUFAs: omega-3 polyunsaturated fatty acids, ALA: α-linolenic acid, ETE: eicosa-
trienoic acid, EPA: eicosapentaenoic acid, DPA: docosapentaenoic acid, DHA: docosahexaenoic acid.

Table 1 
Mean values of n-3 PUFAs in Holstein and Jersey cows, buffalo, yak, human, goat, donkey, camel [26], moose [27], and sheep [28] milk, and flaxseed 
oil [29], fish oil [10], and microalgae [30] (g/100 g fatty acid).

Fatty acid Holstein Jersey Buffalo Yak Human Goat Donkey Camel Flaxseed oil Fish oil Microalgae oil

ALA 0.40 0.30 0.14 1.12 0.88 0.30 2.57 0.99 50.8 1.11 0.03
DPA 0.01 0.01 0.01 0.02 0.04 0.01 0.01 0.03 0.00 – –
EPA 0.03 0.04 0.03 0.06 0.04 0.04 – 0.06 0.00 7.06 0.41
ETE 0.07 0.07 0.07 0.07 0.15 0.11 0.08 0.18 0.00 1.34 –
DHA 0.01 0.01 0.01 0.03 0.38 0.03 – 0.03 0.00 6.76 29.98
Σ n-3 0.52 0.44 0.25 1.43 1.49 0.49 2.75 1.28 50.8 17.62 30.50

“-”: unreported, n-3 PUFAs: omega-3 polyunsaturated fatty acids, ALA: α-linolenic acid, ETE: eicosatrienoic acid, EPA: eicosapentaenoic acid, DPA: 
docosapentaenoic acid, DHA: docosahexaenoic acid. Σ n-3 = ALA + ETE + EPA + DPA + DHA.
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specific professional websites, and the data from 1999 to 2022. The keywords “omega-3,” “α-linolenic acid,” “eicosatrienoic acid,” 
“docosapentaenoic acid,” “docosahexaenoic acid,” “microalgae,” “fish oil,” “flaxseed,” “dairy,” and “cheese” were used in the search. 
The articles chosen in this review should show the nutrition, production, or processing of virgin n-3 PUFAs in dairy.

2.1. Virgin n-3 PUFAs in milk

There are many kinds of n-3 PUFAs in milk, such as ALA, ETE, EPA, DPA, and DHA, but their contents are low, as shown in Table 1. 
There are three main forms of n-3 PUFAs in milk: phospholipids (PLs) [21,22], triacylglycerol (TAG) type [23], and free fatty acids 
[24]. Different n-3 PUFAs have different nutritional and functional roles in human health [25].

2.1.1. n-3 PUFAs in phospholipids
Lipids distributed in milk fat globules mainly exist in the form of PLs. PLs play an important role in the human body and infant 

development [31,32]. In general, PLs have a lower content of saturated fatty acids as well as short-chain fatty acids (C4–C10), but a 
higher content of unsaturated fatty acids in milk [33,34]. PLs containing PUFAs play an important role in the body, for example, DHA 
contained in PLs could improve the function of mitochondria [35]. Previous studies in animals and humans showed that n-3 PUFAs in 
the form of PL could have superior biological and nutritional functions [36]. Compared with the traditional n-3 PUFAs, the PL forms 
showed higher efficacy in the body [37], such as EPA-PLs and DHA-PLs. EPA-PLs and DHA-PLs can reduce neuroinflammation and 
anti-oxidation in the brain through changes in the brain cell structure and neurotransmitters, which are beneficial for brain function 
[38,39]. PLs can be classified into three types according to their molecular structure: glycerophospholipids (GPLs), sphingomyelins 
(SMs), and phospholipids (PLs) [40]. Recently, n-3 PUFAs connected with PLs, such as EPA-GPLs and DHA-GPLs, have received 
increasing attention. A previous study reported that DHA-GPLs could improve learning disabilities by altering brain lipid composition 
[41]. EPA-GPLs have many nutritional functions in humans, improving brain function, favoring visual and nervous system develop-
ment, and regulating lipids in the blood [42].

2.1.2. n-3 PUFAs in triacylglycerols
The main form of milk fatty acids is TAGs, which account for more than 98 % of milk fat. n-3 PUFAs are located at three positions 

(sn-1, sn-2, and sn-3) in TAGs [20,43], and different positions in fatty acids play different roles in human health [44]. n-3 PUFAs in sn-1 
and sn-3 are hydrolyzed by pancreatic lipase to form free n-3 PUFAs and sn-2 monoacylglycerols [45]. Free n-3 PUFAs can bind to β-LG 
because of their higher affinity for β-LG than for other blood components [14]. The n-3 PUFAs located at the sn-2 position showed 
higher absorption efficiency in the body compared with other positions [46,47]. Owing to their high absorption efficiency, sn-2 n-3 
PUFA lipids play important roles in the body. A previous study reported that sn-2 DHA lipids are beneficial for brain functions, such as 
anxiety, cognitive decline, stress, and stroke [48]. Dietary supplementation with n-3 PUFAs in dairy animals can increase the con-
centration of n-3 PUFAs at the sn-2 position in milk [49]. Thus, regulating the dietary fatty acid composition can increase the content of 
virgin n-3 PUFAs in milk, which has many benefits for human health.

2.1.3. n-3 PUFAs in free fatty acids
The combination of fatty acids can alter the function of proteins [50]. The combination of β-LG and n-3 PUFAs can promote the 

absorption of n-3 PUFAs, and LF and n-3 PUFAs can enhance the inhibitory effect on cancer cell growth [50].

2.1.3.1. Functions of β-LG–n-3 PUFAs and α-LA–n-3 PUFAs complexes. β-LG and α-LA are milk-specific proteins synthesized by breast 
epithelial cells, accounting for about 50 % and 36 % of the total whey protein in milk [51]. As members of the lipid carrier protein 
family, β-LG and α-LA have multiple ligand binding sites, which can bind with fatty acids, such as oleic acid, linoleic acid, and con-
jugated linoleic acid (CLA) to form complexes as showed in Fig. 2a [52] and Fig. 2b [53,54]. These complexes can increase their 

Fig. 2. Protein structure representation of bovine β-lactoglobulin [52] (a) and α-lactalbumin [53,54] (b) bound to fatty acids. β-LG: β-lactoglobulin, 
FA: fatty acid, α-LA: α-lactalbumin.
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conformational stability to tryptic degradation [55], and can effectively embed, transfer, and protect bioactive components from 
oxidation and degradation [56]. β-LG and CLA can synthesize β-LG–CLA complexes. β-LG–CLA showed good stability in the gastro-
intestinal environment; thus, the complex can increase the absorption of CLA compared with CLA monomer (85.9 vs 45.8 μmol/L) 
[57]. Oleic acid (OA) and linoleic acid (LA) can bind to β-LG to form β-LG–OA and β-LG–LA, respectively. The two complexes, β-LG–OA 
and β-LG–LA, have cytotoxic activity on tumor cells and can induce cell decay [58]. In addition, β-LG–LA exhibited better thermo-
stability than β-LG–OA [58]. β-LG and n-3 PUFAs can spontaneously combine to form nanoscale complexes [54], and these nano-
complexes have a good protective effect on n-3 PUFAs [14]. β-LG–n-3 PUFAs can delay the oxidative degradation of n-3 PUFAs during 
storage. β-LG can also effectively inhibit the degradation of n-3 PUFAs in the intestine and improve their absorption in the body. Most 
studies on α-LA have focused on the complexes of α-LA and OA. Although some studies have reported that α-LA and ALA can combine 
to form the complex α-LA–ALA [54], few studies have reported on the function of α-LA–n-3 PUFAs.

2.1.3.2. Functions of lactoferrin–n-3 PUFAs complex. LF is a natural, harmless, bioactive iron-binding glycoprotein with a molecular 
weight of approximately 80 kDa. LF is produced by mammalian glandular epithelial cells and neutrophils and is widely expressed in 
various body fluids [59], such as milk. Previous studies found that LF plays a positive role in the human body [60–62]. The combi-
nation of LF and n-3 PUFAs may be similar to the complex of LF and OA, and the LF–OA complex induces apoptosis in tumor cells [63]. 
LF combined with n-3 PUFAs can enhance the inhibitory effect on cancer cells, especially in combination with ALA [51]. Thus, LF and 
n-3 PUFAs may also synthesize the LF–n-3 PUFA complex (LF–ALA complex), which may play a role in the body. Nowadays, the 
Coronavirus disease 2019 (COVID-19), which is caused by the SARS-CoV-2 virus, is rapidly spreading globally. LF may play an 
important role in the prevention of SARS-CoV-2 virus infection [64], and it can prevent SARS-CoV-2 virus infection by blocking the 
virus’s attachment to cellular heparin sulfate [65]. The LF–n-3 PUFA complex may have an inhibitory effect on SARS-CoV-2 infection.

Overall, as shown in Fig. 3, protein combined with n-3 PUFAs can increase the absorption of n-3 PUFAs and exert stronger 
physiological functions. β-LG–n-3 PUFAs may increase the absorption of n-3 PUFAs and avoid oxidation of n-3 PUFAs in milk. LF 
combined with n-3 PUFAs can enhance the inhibitory effect on cancer cells. Currently, there is limited research on the functionality of 
protein–n-3 PUFAs.

2.2. Regulation of virgin n-3 PUFAs in milk by feeding

Although n-3 PUFAs are similar in structure, different types of n-3 PUFAs play different functions in the body. ALA is an essential 
fatty acid that cannot be synthesized in the body and must be obtained from food [66]. Longer n-3 PUFAs can be synthesized using 
ALA. DHA has the highest concentration of n-3 PUFAs in the brain and plays an important role in maintaining normal brain devel-
opment and function [67]. DHA is beneficial for cognitive behavior and can improve the health of children [68]. EPA mainly affects 
blood physiology and EPA intake can decrease serum and hepatic lipid levels; however, DHA is ineffective [69]. Therefore, the 
development of milk rich in different types of n-3 PUFAs may become a trend.

The kinds of n-3 PUFAs in milk, including free fatty acid, PLs and TAG, can be regulated by the diet of dairy animals [70]. The main 
n-3 PUFA feeds include flaxseed, fish oil, microalgae, and algae. These feeds can be used to produce milk that is rich in different types 
of n-3 PUFAs.

2.2.1. Regulation of virgin ALA in milk
Flaxseed has high ALA content [71], which can effectively increase the content of ALA in raw milk as dairy cow feed [72]. As shown 

Fig. 3. Potential benefits of different kinds of n-3 PUFAs to human health. n-3 PUFAs: omega-3 polyunsaturated fatty acids, ALA: α-linolenic acid, 
ETE: eicosatrienoic acid, EPA: eicosapentaenoic acid, DHA: docosahexaenoic acid, β-LG: β-lactoglobulin, LF: lactoferrin, GPL: glycerophospholipids.
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in Table 2, there are many forms of flaxseed (including whole flaxseed, extruded flaxseed, and flaxseed oil) in the diet of different dairy 
animals (buffalo, goat, and sheep). All studies found that supplementation with flaxseed in the diet can increase the content of ALA in 
milk. However, different studies have reported different results for other longer-chain n-3 PUFAs. Studies have reported that flaxseed 
supplementation in the diet can cause an increase in virgin EPA [73–75] or DPA [28] in milk. However, some studies have shown no 
influence on the concentration of EPA [28,76–79] or DPA [80,81] in milk. Several studies have reported that flaxseed supplementation 
can increase the concentration of virgin DHA in milk [82]. A study on buffalo milk found that the DHA content in milk can be increased 

Table 2 
Summary of the content of virgin n-3 PUFA in milk with dietary flaxseed supplementation.

Core material Dosage Breed n-3 PUFA in milk (g/100 g fatty acid) Results Reference

ALA ETE EPA DPA DHA

Whole flaxseed 0.00 % Holstein cows 0.52 – 0.01 0.01 – –The concentration in milk 
Increased: ALA 
No influence: EPA and DPA

[78]
5.00 % 0.66 – 0.01 0 –
10.00 % 0.82 – 0.02 0.21 –
15.00 % 0.96 – 0.01 0 –

Extruded flaxseed 0.00 % Holstein cows 0.44 0 0.03 0.008 0.003 –The concentration in milk 
Increased: ALA and EPA 
No influence: DPA and DHA

[74]
5.00 % 0.8 0.001 0.05 0.009 0

Flaxseed oil 0.00 % Holsteins cows 0.31 <0.01 0.03 – <0.01 –The concentration in milk 
Increased: ALA 
No influence: ETE, EPA and DHA

[79]
2.50 % 0.99 <0.01 0.04 – <0.01

Flaxseed oil 0 mL Holstein cows 0.21 0 0.01 0.05 – –The concentration in milk 
Increased: ALA and DPA 
No influence: ETE and EPA

[28]
110 mL 1.89 0 0.02 0.08 –
220 mL 3.3 0.01 0.02 0.08 –

Whole flaxseed 0.00 % Friesian cows 0.26 0.29 0.015 0.05 0.02 –The concentration in milk 
Increased: ALA 
No influence: ETE, EPA, DPA and DHA

[84]
1.93 % 0.31 0.27 0.015 0.05 0.02

0.00 % Jersey cows 0.22 0.23 0.011 0.03 0.02 –The concentration in milk 
Increased: ALA 
No influence: ETE, EPA, DPA and DHA

[84]
1.93 % 0.28 0.23 0.013 0.04 0.02

Whole flaxseed 0.00 % Sarda goats 1.05 0.01 0.005 – 0.012 –The concentration in milk 
Increased: ALA and EPA 
No influence: ETE and DHA

[73]
21.00 % 1.65 0.02 0.037 – 0.013

Flaxseed oil 0 g/d Malagueña goats 0.35 – 0.03 0.09 0.02 –The concentration in milk 
Increased: ALA and EPA 
No influence: DPA and DHA

[75]
30 g/d 0.66 – 0.04 0.09 0.02

Extruded flaxseed 0.00 % Alpine goats 0.62 – 0.085 0.121 0.049 –The concentration in milk 
Increased: ALA 
No influence: EPA, DPA and DHA

[77]
21.60 % 2.19 – 0.101 0.107 0.031

Extruded flaxseed 0.00 % ewes 0.36 0.012 0.02 0.06 0.03 –The concentration in milk 
Increased: ALA, EPA and DPA 
No influence: DHA

[85]
6.00 % 1.27 0.01 0.04 0.08 0.03
12.00 % 1.91 0.01 0.04 0.08 0.03

Flaxseed 0.00 kg sheep 0.74 0.01 0.07 0.07 0.02 –The concentration in milk 
Increased: ALA 
No influence: ETE, EPA, DPA and DHA

[80]
0.22 kg 1.87 0.02 0.07 0.08 0.02

Whole flaxseed 0.00 % Comisana ewes 0.57 0.02 0.07 0.08 0.05 –The concentration in milk 
Increased: ALA, ETE and EPA 
No influence: DPA and DHA

[81]
9.06 % 1.53 0.03 0.08 0.09 0.05

Flaxseed oil 0.00 % Water buffaloes 0.383 – 0.024 – 0.016 –The concentration in milk 
Increased: ALA and DHA 
No influence: EPA

[82]
2.50 % 0.768 – 0.021 – 0.069

“-”: means not detected, n-3 PUFAs: omega-3 polyunsaturated fatty acids, ALA: α-linolenic acid, ETE: eicosatrienoic acid, EPA: eicosapentaenoic acid, 
DPA: docosapentaenoic acid, DHA: docosahexaenoic acid.

Table 3 
Summary of the content of n-3 PUFAs in fish oil and microalgae.

Core material n-3 PUFAs g/100 g fatty acid Reference

ALA ETE EPA DPA DHA

Fish oil 2.84 0.2 8.19 1.62 13.83 [86]
Fish oil – – 8.261 – 37.374 [87]
Fish oil 1.95 – 35.81 – 28.43 [88]
Microalgae 0.1 – 1.0 13.2 35.3 [89]
Microalgae oil 0 – 1.4 15.4 39.5 [89]
Microalgae 0.03 – 0.41 6.31 29.89 [30]

“-”: means not detected, n-3 PUFAs: omega-3 polyunsaturated fatty acids, ALA: α-linolenic acid, ETE: eicosatrienoic acid, EPA: eicosapentaenoic acid, 
DPA: docosapentaenoic acid, DHA: docosahexaenoic acid.
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Table 4 
Summary of the content of virgin n-3 PUFAs in milk with fish oil supplement in the diet.

Fish oil Dosage Breed n-3 PUFAs in milk g/100 g fatty acid Results References

ALA ETE EPA DPA DHA

0 g/d cow 0.41 0.013 0.06 0.09 0.03 –The concentration in milk 
Increased: ETE, EPA, DPA, and DHA 
No influence: ALA

[93]
75 g/d 0.38 0.017 0.06 0.08 0.03
150 g/d 0.39 0.056 0.07 0.1 0.05
300 g/d 0.48 0.323 0.17 0.18 0.10
0 % Holstein cows 0.51 – 0.23 – 0.59 –The concentration in milk 

Increased: EPA and DHA 
No influence: ALA

[88]
1.80 % 0.44 – 1.66 – 3.11

0 % Holstein cows 0.75 0.001 0.003 – 0.001 –The concentration in milk 
Increased: ALA, ETE, EPA, DPA, and DHA

[77]
1.10 % 0.84 0.019 0.060 – 0.117
0 Holstein cows 0.4 0 0.03 0.06 0.02 –The concentration in milk 

Increased: ETE, EPA, DPA, and DHA 
No influence: ALA

[92]
0.80 % 0.41 0.04 0.05 0.08 0.03

0 % Brown Swiss cows 1.04 – 0.14 0.2 0.06 –The concentration in milk 
Increased: EPA, DPA, and DHA 
No influence: ALA

[90]
2.00 % 1.35 – 0.39 0.3 0.15

0 % Assaf ewes 0.33 0.02 0.03 0.06 0.02 –The concentration in milk 
Increased: ETE, EPA, DPA, and DHA 
No influence: ALA

[94]
1 % 0.34 0.05 0.15 0.18 0.38

0 % Assaf ewes 0.56 – 0.06 0.09 0.16 –The concentration in milk 
Increased: EPA, DPA, and DHA 
No influence: ALA

[96]
1.70 % 0.4 – 0.42 0.44 1.18

0 % Assaf ewes 0.58 – 0.07 0.1 0.03 –The concentration in milk 
Increased: EPA, DPA, and DHA 
No influence: ALA

[95]
1.50 % 0.46 – 0.35 0.35 0.99

n-3 PUFAs: omega-3 polyunsaturated fatty acids, ALA: α-linolenic acid, ETE: eicosatrienoic acid, EPA: eicosapentaenoic acid, DPA: docosapentaenoic 
acid, DHA: docosahexaenoic acid.

Table 5 
Summary of the content of virgin n-3 polyunsaturated fatty acids (PUFAs) in milk with microalgae supplement in the diet.

Microalgae Dosage Breed n-3 PUFAs in milk g/100 g fatty acid Results Reference

ALA ETE EPA DPA DHA

0 g/d Holstein cows 0.273 – 0.022 – 0.002 –The concentration in milk 
Increased: ALA, EPA, and DHA

[29]
100 g/d 0.318 – 0.028 – 0.242
0 g/d Holstein cows 0.45 0.13 0.07 – 0.08 –The concentration in milk 

Increased: ALA, ETE, and DHA 
No influence: EPA

[99]
50 g/d 0.46 0.14 0.07 – 0.15
100 g/d 0.49 0.14 0.06 – 0.25
150 g/d 0.05 0.16 0.07 – 0.37
0 g/d Holstein cows 0.48 0.18 0.08 – 0.04 –The concentration in milk 

Increased: DHA 
No influence: ALA, ETE, and EPA

[98]
100 g/d 0.47 0.17 0.09 – 0.22

0 g/d cows 0.66 0.018 0.072 0.11 0.074 –The concentration in milk 
Increased: ETE, EPA. DPA, and DHA 
Decreased: ALA

[101]
310 g/d 0.53 0.051 0.36 0.29 1.15

0 g/d Alpine goats 1.18 – 0.09 0.22 0.04 –The concentration in milk 
Increased: ETE, EPA. DPA, and DHA 
Decreased: ALA

[103]
10 g/d 0.95 – 0.07 0.18 0.32

0 g/d goats 0.62 0.018 0.052 0.1 0.078 –The concentration in milk 
Increased: EPA. DPA, and DHA 
Decreased: ALA 
No influence: ETE

[102]
40 g/d 0.51 0.019 0.15 0.18 0.77

0 g/d ewes 3.33 0.18 0.00 0.00 0.00 –The concentration in milk 
Increased: EPA. DPA, and DHA 
Decreased: ALA and ETE

[100]
23.5 g/d 0.31 0.19 0.04 0.21 0.43
47 g/d 0.33 0.09 0.12 0.28 0.69
94 g/d 0.25 0.05 0.21 0.31 1.24
0 g/d Assaf sheep 0.49 – 0.04 0.10 0.05 –The concentration in milk 

Increased: EPA. DPA, and DHA 
No influence: ALA

[102]
0.70 % 0.48 – 0.06 0.12 0.38

n-3 PUFA: omega-3 polyunsaturated fatty acid, ALA: α-linolenic acid, ETE: eicosatrienoic acid, EPA: eicosapentaenoic acid, DPA: docosapentaenoic 
acid, DHA: docosahexaenoic acid.
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with flaxseed supplementation in the diet [81,82]. ALA can be converted to longer-chain n-3 PUFAs (ALA → ETE → EPA → DPA → 
DHA) via enzyme action in vitro [83]. In general, flaxseed is used to produce virgin ALA dairy products.

2.2.2. Regulation of virgin EPA and DHA in milk
Fish oil and microalgae contain high concentrations of n-3 PUFAs [17] (mainly EPA and DHA) and can be used as feed sources to 

increase the content of virgin milk EPA and DHA. However, as shown in Table 3, the EPA and DHA contents in fish oil and algae are 
different, and the EPA concentration in fish oil is higher than that in microalgae. The main n-3 PUFAs in microalgae are DPA and DHA.

The main n-3 PUFAs in fish oil are EPA and DHA [80], and dietary supplementation of dairy animals can increase the concentration 
of EPA and DHA in raw milk [88,91], as shown in Table 4. In addition, the addition of fish oil to the diet of dairy animals can also 
increase the levels of other kinds of n-3 PUFAs such as ETE and DPA [92–94]. Furthermore, fish oil supplementation in the diet of dairy 
animals does not influence the concentration of ALA in raw milk [91,95,96]. However, some research reported that fish oil addition to 
the diet can increase the concentration of ALA in raw milk. This may be due to the composition of n-3 PUFAs in fish oil being different. 
Some fish oils contain ALA [86], so some researchers found that the content of ALA in raw milk can be increased with ALA supple-
mentation in the diet. However, the content of ALA in fish oil is very low [87]. Thus, fish oil can be used to produce virgin EPA and DHA 
dairy products.

2.2.3. Regulation of virgin DHA in milk
As high-quality DHA feed [97], microalgae can be used to produce virgin DHA dairy products (shown in Table 5) [98]. In addition 

to DHA, microalgae can also increase the content of ETE [99], EPA [29], and DPA [100] in raw milk. One study reported that 
microalgae supplementation can increase the concentration of ETE (0.018–0.051 g/100 g fatty acid; 283 times), EPA (0.072–0.360 
g/100 g fatty acid; 500 times), DPA (0.110–0.290 g/100 g fatty acid; 264 times), and ETE (0.074–1.150 g/100 g fatty acid; 1554 times) 
[101]. In addition, some studies reported that microalgae supplementation did not affect the concentration of ETE [98] and EPA [99] 
in milk and may have even decreased the ETE concentration [102] in milk. Most studies have reported that microalgae supplemen-
tation does not influence or decrease the concentration of ALA in milk [29,101]. Thus, microalgae can be used to produce virgin DHA 
in dairy products, as a feed for cows.

2.3. Virgin n-3 PUFAs changes in various dairy products

Raw milk can be used to produce various dairy products. In particular, milk and cheese are the two main dairy foods in our daily 

Table 6 
Summary of the content of virgin n-3 PUFAs in milk with heat treatments.

Milk Heat treatments n-3 PUFAs in milk g/100 g fatty acid Reference

ALA EPA DPA DHA

Cow 65 ◦C for 30 min decrease 
29.63 %

– – – [111]

Boiling for 1 min decrease 
52.85 %

– – –

Buffalo 65 ◦C for 30 min decrease 
15.38 %

– – –

Boiling for 1 min decrease 
40.38 %

– – –

Cow 85 ◦C for 15 s no no – – [19]
135 ◦C for 15 s decrease 

8.50 %
decrease 
21.11 %

– –

Cow 72 ◦C for 15 s no no – – [105]
75 ◦C for 15 s no no – –
80 ◦C for 15 s no no – –
85 ◦C for 15 s no no – –
90 ◦C for 15 s no no – –
95 ◦C for 15 s no no – –
100 ◦C for 15 s no no – –
105 ◦C for 15 s no no – –
110 ◦C for 15 s no no – –
115 ◦C for 15 s no no – –
120 ◦C for 15 s no no – –

Human 62.5 ◦C for 30 min no no no no [106]
62.5 ◦C for 30 min and pressurized for 5 min at 400 MPa no no no no
62.5 ◦C for 30 min and pressurized for 5 min at 500 MPa no no no no
62.5 ◦C for 30 min and pressurized for 5 min at 600 MPa no no no no

Human 62.5 ◦C for 30 min – – – no [107]

Decrease = (raw milk fatty acid – dairy products fatty acid) × 100/raw milk fatty acid, no: no influence.
n-3 PUFA: omega-3 polyunsaturated fatty acid, ALA: α-linolenic acid, EPA: eicosapentaenoic acid, DPA: docosapentaenoic acid, DHA: docosahexa-
enoic acid.
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lives.

2.3.1. Dairy products

2.3.1.1. Liquid milk. Sterilization is the main process for liquid milk, which is an important means of killing pathogens and destroying 
bacteria in raw milk. The sterilization methods include thermal technology (pasteurization, ultrahigh temperature processing and 
high-pressure processing) and nonthermal techniques (ultraviolet radiation, high-power ultrasound, and bactofugation).

Thermal technology is a commonly used sterilization method in commercial production. However, because of the high unsatu-
ration, the n-3 PUFAs are easily oxidized by heat treatment [104]. The temperature and processing time of thermal technologies are the 
two main factors that influence the content of n-3 PUFAs in dairy products. As shown in Table 6, when the temperature was not higher 
than 120 ◦C, short-term (15 s) heat treatment did not affect the n-3 PUFA content in milk [105]. However, the concentration of n-3 
PUFAs (ALA, EPA, and DHA) in milk decreases [19] after treatment at 135 ◦C for 15 s. In addition, milk heated at 62.5 ◦C for 30 min 
also showed no influence on the concentration of n-3 PUFAs in milk [106,107]. However, treatment at 65 ◦C for 30 min or boiling for 1 
min decreased the ALA content in milk. In general, controlling the temperature and duration of heat treatment can provide healthy and 
safe dairy products for humans.

The main nonthermal technologies include ultraviolet radiation, high-power ultrasound, and bactofugation. Ultraviolet radiation, 
as one of the emerging food processing technologies [108], has a huge potential in milk processing. Ultraviolet radiation kills mi-
croorganisms in milk without producing heat. Thus, studies have found that ultraviolet radiation does not affect n-3 PUFAs in milk 
[109]. High-power ultrasound and bactofugation are two sterilization methods used in milk production. High-power ultrasound and 
bactofugation could reduce the loss of nutrients in milk while sterilizing [110]. Therefore, the development of nonthermal technol-
ogies is conducive to the production of n-3 PUFA-rich dairy products.

2.3.1.2. Cheese. Cheese is a nutritious and versatile food whose nutritional value is affected by the type of milk used [112]. Thus, 
increasing the concentration of virgin n-3 PUFAs in raw milk can increase the n-3 PUFA content in cheese [113,114]. Because the fat 
content in cheese is influenced by several factors, such as the method of manufacture, studies have reported that higher concentrations 
of n-3 PUFAs were observed in cheese than in raw milk (cheese vs raw milk: 4.05 vs 3.71) [115].

2.3.2. Oxidation of virgin n-3 PUFAs in dairy products
The n-3 PUFAs have high oxidation sensitivity [116], thus the concentration of n-3 PUFAs in milk decreases with storage time by 

direct incorporation of n-3 PUFA sources [117,118]. Fatty acid oxidation can cause off-flavor in milk [119]. However, virgin n-3 
PUFAs are hardly oxidized during storage time [91], and compared with added n-3 PUFAs in milk there is no odor due to the oxidation 
of virgin n-3 PUFAs during storage [91,120]. A previous study found that the concentration of virgin n-3 PUFAs in cheese was not 
influenced by storage [115]. This may be due to approximately 99 % of fatty acid being compartmented in milk fat globules, and most 
n-3 PUFAs are surrounded by the milk fat globule membrane (MFGM). The MFGM can protect n-3 PUFAs against lipolysis and 
dispersion [121] and reduce the oxidation of virgin n-3 PUFAs in milk [112], as shown in Fig. 4. In addition, nanocomplexes of n-3 
PUFA–β-LG could also protect n-3 PUFAs against lipolysis and dispersal.

In conclusion, the main factor influencing the concentration of virgin n-3 PUFAs in dairy products is heat treatment. Owing to the 
protection provided by the MFGM and milk protein, the content of virgin n-3 PUFAs remained constant during storage.

Fig. 4. Virgin n-3 PUFAs on lipid oxidation in dairy foods. BLG: β-lactoglobulin, α-LA: α-lactalbumin, LF: lactoferrin, n-3 PUFAs: omega-3 poly-
unsaturated fatty acids, MFGM: milk fat globule membrane.
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3. Conclusion

Dairy products with virgin n-3 PUFAs are potentially healthy functional foods. However, the development of virgin n-3 PUFA dairy 
products is still at the primary stage. To date, most studies only focused on how to obtain a stable content of virgin n-3 PUFA raw milk. 
However, studies on the nutrition of virgin n-3 PUFA dairy products are still insufficient, such as the relationship between the pro-
duction and preservation of virgin n-3 PUFA dairy. Thus, further studies can focus on two aspects: 1) comprehensive functional 
evaluation of virgin n-3 PUFA milk and 2) the relationship between the concentration of virgin n-3 PUFAs in milk and heat treatment, 
and the development of emerging nonthermal technologies.
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