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Simple Summary: All cells in our body are activated by several different signals. The calcium ion is
one of the most versatile signaling molecules, and regulates a multitude of different events in the
cells. These range from activation of muscle contraction, to the regulation of cell movement, just to
name a few. In normal thyroid cells, calcium signaling is of importance for the normal physiology
of the cells. In thyroid pathologies, e.g., thyroid cancer, calcium is important for the regulation of
proliferation and invasion, and may also activate gene transcription programs important for cancer
cell survival. In this Commentary, we summarize what is known regarding calcium in the normal
thyroid, and highlight the importance of calcium signaling in thyroid pathologies.

Abstract: Calcium signaling participates in a vast number of cellular processes, ranging from the
regulation of muscle contraction, cell proliferation, and mitochondrial function, to the regulation of
the membrane potential in cells. The actions of calcium signaling are, thus, of great physiological
significance for the normal functioning of our cells. However, many of the processes that are
regulated by calcium, including cell movement and proliferation, are important in the progression
of cancer. In the normal thyroid, calcium signaling plays an important role, and evidence is also
being gathered showing that calcium signaling participates in the progression of thyroid cancer. This
review will summarize what we know in regard to calcium signaling in the normal thyroid as, well
as in thyroid cancer.
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1. Introduction

Perhaps the most versatile cellular signaling molecule is the calcium ion. The mech-
anisms by which calcium signaling occurs in cells are very disperse. Several cellular
signaling pathways evoke potent changes in intracellular calcium concentrations through
different pathways. One extremely important pathway, both from a physiological and
clinical point of view, is the activation of G protein coupled receptors. Phospholipase C can
become activated both through the activation of Gi and Gq, resulting in the breakdown
of phosphoinositol bisphoshate (PIP2) to inositol trisphosphate (IP3) and dicaylglycerol.
IP3 diffuses through the cytosol and activates IP3 receptors on the endoplasmic reticulum
(ER), resulting in a rapid and transient increase in cytosolic free calcium concentrations
([Ca2+]i). Depending on the intensity of stimulation, the IP3-evoked changes in [Ca2+]i
result in rapid oscillation and the vastly different frequencies of these oscillations result in a
multitude of downstream signals. The produced DAG, in turn, can activate different types
of calcium channels in the plasma membrane, depending on the cell type. Interestingly,
experimental evidence has also shown that arachidonic acid-regulated calcium-selective
(ARC) channels are of importance for oscillatory calcium entry when cells are stimulated
with low agonist concentrations. This response is, thus, not linked to the release of ER
calcium stores. The PLC-IP3 signaling pathway can also be activated by tyrosine kinase
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receptors. As a prolonged increase in cytosolic calcium is poisonous, the calcium entering
the cytosol is pumped out of the cell by plasma membrane calcium ATPAses (PMCAs),
and back to the ER by different types of sarcoplasmic-endoplasmic calcium ATPAses (SER-
CAs) in the ER membrane. In particular, in excitable cells, the sodium–calcium exchange
through the Na+/Ca+ exchanger (NCX) also transports calcium out of the cells but may
also participate in non-excitable cells. The calcium signal can result in the activation of
gene transcription, energy production in the mitochondria, regulate membrane potential,
or evoke proliferation and migration of the cell, just to name a few examples (for excellent
reviews, see [1–4]).

In addition to the above described receptor-evoked changes in [Ca2+]i, the emptying
of the ER induces store-operated calcium entry (SOCE) [5]. This is the result of the tetramer-
ization of the ER calcium sensor stromal interacting molecule 1 (STIM1), followed by
diffusion along the ER membrane and coupling with the plasma membrane Orai calcium
channels (Figure 1). This results in a rapid entry of extracellular calcium into the cytosol,
and refilling of the ER calcium store through pumping by the sarcoplasmic-endoplasmic
calcium ATPase (SERCA). It is also of importance to note that Orai isoforms, and plasma
membrane-residing STIM1 molecules are needed for forming the ARC channels [4].

Figure 1. Mechanisms of cellular calcium signaling. A hormone or ligand binds to the G protein-coupled receptor and
activates G-protein subunits Gi, Gq (G) or both, which activates phospholipase C (PLC), stimulating production of two
secondary messengers; diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG potentially stimulates TRPC
calcium channels in the plasma membrane and triggers calcium influx into the cells, referred to as receptor-operated calcium
entry. IP3 binds to the IP3 receptors present on the endoplasmic reticulum (ER) membranes. This leads to the release of
calcium from ER stores. These mechanisms rapidly increase cytosolic free calcium concentrations ([Ca2+]i). The depletion of
the ER is sensed by STIM1 molecules on the ER membrane, which rapidly tetramerize and bind to ORAI1 calcium channels
on the plasma membrane, resulting in the opening of these channels and a huge influx of calcium into the cells, referred to
as store-operated calcium entry. To avoid an overload of ([Ca2+]i) in the cytoplasm, the pumps SERCA, NCX and PMCA,
are activated and calcium is shuttled back into the ER to refill the stores, or exported out from the cells, respectively. The
events described are shown in three different panels for clarity.

In addition to coupling to the Orai proteins, STIM1 can also couple to members of
the transient receptor potential (TRP) family of ion channels, in particular, to members
of the TRPC subfamily [6]. Transient receptor potential (TRP) channels are a large family
of cation channels (Figure 2). The expression of these calcium channels is diverse and
has been identified in different animal species, including humans. These channels are
classified into seven subgroups of TRP channels, i.e., TRPC (canonical), TRPM (melastatin),
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TRPV (vanilloid), TRPML (mucolipin), TRPA (ankyrin), TRPP (polycystin) and TRPN (no
mechanoreceptor potential C). In humans, all other TRP channel subgroups have been
detected except for TRPN. These calcium channels have been found to regulate several
cellular processes including fluid secretion, pain, inflammation, heat sensation, odor and
smell, cell adhesion, proliferation, migration and invasion and cell death in both healthy
and diseased cells. For a thorough review on the importance and diversity of the TRP
family of cation channels, see [7].

Figure 2. Classification of transient receptor potential ion channels.

In addition to the TRP channels, cells can also express different types of voltage-
dependent channels (VOCCs). In non-excitable cells, such as the thyroid cells, the VOCCs
are of less importance (but might be expressed). Calcium can also be released from the ER
and the sarcoplasmic reticulum through ryanodine receptors by calcium-induced calcium
release. However, as for VOCCS, these channels are mostly expressed in excitable cells. In
muscle and neuronal cells, VOCCs and ryanodine receptors are of crucial importance for
their function [1].

The aim of this review is to provide an overview of how calcium ions participate
in regulating the normal function of the thyroid follicular cells, and how disturbances in
calcium signaling might be of importance in thyroid cancer.

2. Thyroid and Calcium Signaling

Traditionally, TSH-evoked activation of the cyclic AMP (cAMP) pathway has been
considered to be the most important signaling pathway in the thyroid [8]. However, a vast
number of investigations have clearly shown that calcium signaling in the thyroid has a
surprisingly important role. Using rat thyroid FRTL-5 cells, several laboratories have made
a multitude of investigations. These studies have shown that, e.g., both the proliferation
and DNA synthesis is crucially dependent on calcium signaling [9–12]. We showed, that
the TRPC2 ion channel, a member of the TRPC family, was needed for proliferation of
FRTL-5 cells [12]. Although TRPC2 is a pseudogene in humans, our observation is the first
to show that the TRPC family of calcium channels is of importance in the thyroid. The fact
that only the TRPC2 ion channel of the TRPC family was expressed in the FRTL-5 cells
made it easy to dissect the importance of the channel for different functions in the cells.
TRPC2 seems to be of importance in regulating the general calcium homeostasis in these
cells, as well as stromal interacting molecule 2 (STIM2) [13]. Furthermore, several agonists,
including ATP, UTP, sphingosine 1-phosphate (S1P), TSH, carbachol, and noradrenalin,
evoke potent calcium signals in these cells [11,14–19]. Additionally, in human and dog
thyroid cells, several agonists evoke calcium signals [20,21]. These agonist-evoked calcium
signals are mediated by the PLC-IP3 pathway, but the FRTL-5 cells (at least) also show
strong activation of the SOCE pathway [22]. Some results also suggest that, the FRTL-5
cells (at least), might express ARC channels, but the molecular mechanisms have not been
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determined in detail [23]. Taken together, agonist-evoked release of stored calcium, and
SOCE participate in the regulation of [Ca2+]i in thyroid cells. Furthermore, members of the
TRPC family seem to participate in the regulation of calcium in thyroid cells.

As mentioned above, TSH can, in addition to activating the cAMP/PKA pathway, also
evoke calcium signals, albeit at rather high concentrations. An amount of 0.3 mU TSH/mL
results in strong activation of the cAMP/PKA pathway, whereas at least 10 mU TSH/mL,
or even up to 100 mU/mL, depending on species, is needed to evoke a calcium signal [24].
Of note, cAMP, in turn, can attenuate agonist-evoked calcium signals, at least in the FRTL-5
cells [25,26]. It is still unclear how this effect is mediated, but the calcium-binding protein
S100A4 seems to be involved [26]. cAMP also attenuated calcium signals in other cell
types [27]. This is interesting, as cAMP has been shown to potently enhance agonist-
evoked calcium signals through PKA-mediated phosphorylation of the IP3 receptors [28].

It is also interesting to note that the regulation of TSH receptor expression is dependent
on calcium signaling [29]. In the FRTL-5 cells, we showed that the TRPC2 channel seems to
have an important role in this regulation [30]. Furthermore, both the uptake and extrusion
of iodide is regulated by calcium, as shown in both FRTL-5 cells, and dog and human
thyroid slices [24,31–35]. The importance of the transport protein pendrin has been shown
in this process ([36], but see [37]), but no information is presently available in regard to
calcium and the function of pendrin. However, the anion channel anoctamin-1/TMEM16A
has been shown to effectively enhance iodide efflux in a calcium-dependent manner [38–40].
In FRTL-5 cells, the TRPC2 channel is of importance in regulating anoctamin-1 function [38].
An interesting observation is that 3-iodothyronamine decreases the expression of genes
involved in iodide metabolism and inhibits iodide uptake in PCCL3 thyroid cells [41]. It
is possible that the TRPM8 ion channel and calcium signaling might be involved in this
process, as 3-iodothyronamine appears to be an endogenous modulator of TRPM8 [42]. It
has also been shown that the expression and dimerization of thyroglobulin is dependent on
calcium [43], and that the DREAM (downstream regulatory element antagonist modulator)
protein participates in this process [44]. Furthermore, the thyroid hormone synthesis,
mediated by the H2O2 producing oxidase Duox, is dependent on calcium signals [45]. It
is also worth mentioning that the TSH-evoked activation of the cAMP pathway can be
modulated by calcium signaling, as the adenylyl cyclase isoforms V and Vl are negatively
regulated by calcium, and these isoforms are found in both human, dog, and rat FRTL5
thyroid cells [30,46].

Both human thyroid cells, rat FRTL-5 cells and several human thyroid cancer cells
express several calcium binding proteins belonging to the S100 class of calcium binding
proteins. Interestingly, in both human thyroid cells in culture, and in FRTL-5 cells, TSH par-
ticipates in the regulation of these proteins, i.e., S100A4 and S100A6 [26,47]. Furthermore,
TSH-prestimulation of the cells attenuated the ATP-evoked calcium signaling, presumably
through enhanced expression of, e.g., S100A4. These results were confirmed by either
knock-down or overexpression of 100A4, and stimulation with ATP.

For a long time, the nature of calcium channels in thyroid cells was not well known.
We previously showed that at least FRTL-5 cells expressed several isoforms of the P2X
family of channels [11]. Some evidence also exists that these cells should express L-type
voltage operated calcium channels [9,48]. We have not been able to repeat these studies. As
the authors used, e.g., verapamil to block calcium fluxes in the FRTL-5 cells [9,48], and as
verapamil also is a blocker of channels belonging to the TRP superfamily, the authors were
probably the first to show that the cells express channels belonging to the TRP superfamily.
When these reports were published, the TRPC channels had not yet been cloned. However,
although VOCCs are mostly of importance in excitable cells and not in non-excitable
cells [49], we cannot totally exclude the possibility that, e.g., human thyroid cells may
express L- or T-type VOCCs, and that these might participate in the regulation of calcium
homeostasis. Recent studies have clearly shown that thyroid cells express several members
of the TRP superfamily. We have shown that the FRTL-5 cells express TRPC2 [13], while we
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and others have also shown that human thyroid cells express TRPC1, and TRPC3-6 [50,51].
Furthermore, the channels TRPV1 [52] and TRPV6 [53] are also expressed.

In addition to these channels participating in calcium entry in thyroid cells, release
of stored calcium from the ER results in store-operated calcium entry (SOCE). In FRTL-5
cells, we showed that emptying the ER with thapsigargin resulted in a robust influx of
extracellular calcium [22]. As mentioned above, the FRTL-5 cells express both STIM1 and
STIM2 (the calcium sensing proteins in the ER), and at least the Orai1 protein (which
functions as calcium channels in the plasma membrane) [13], important proteins in the
regulation of SOCE. Preliminary results from our laboratory show that, not unexpectedly,
these proteins are also expressed human thyroid cells (Asghar et al., submitted).

3. Calcium Signaling in Thyroid Pathologies

The importance of calcium signaling in thyroid pathologies has not been extensively
investigated. Mutations (I846F, 486M, I568T) causing constitutive activity of the TSH
receptor activated the IP3-diacylglycerol pathway and resulted in hyperfunctioning thyroid
adenomas [54]. Contrary to this, an L653V mutation strongly attenuated the TSH-evoked
IP3-Ca2+ signaling pathway in the human thyroid [55]. Homozygous individuals with this
mutation had euthyroid hyperthyrotropinemia. Furthermore, the DREAM protein has
been associated with thyroid enlargement and thyroid nodule formation, but coupling to
calcium signaling was not determined [56].

Calcium binding proteins of the S100A family have been involved in several forms
of cancer, including thyroid cancer [57]. Of these proteins, especially S100A13 [58] and
S100A4 [59,60], seem to be important for the proliferation, invasion and metastasis of thy-
roid cancer cells. Furthermore, knock-out of S100A4 has been shown to sensitize anaplastic
thyroid carcinoma cells to vemurafenib, especially cells with the BRafV600E mutation [61].
An interesting observation is that anoctamin5, a member of the anoctamin/TMEM16 fam-
ily of calcium-regulated chloride channels, seems to be important for thyroid cancer cell
migration and invasion. Anoctamin 5 was downregulated in thyroid cancer specimens, and
in vitro experiments showed that overexpression in cancer cells attenuated migration and
invasion [62]. Furthermore, although the importance and possible expression of VOCCs in
thyroid cells is still unclear, some evidence has been obtained for the expression of T-type
voltage operated calcium channels in a medullary thyroid cancer cell line [63]. Thus, the
possibility of VOCCs in thyroid cancer cells cannot be excluded [64].

One important regulator of cancer progression in many cell types, is calcium and
different calcium channels [65,66]. Calcium signaling in thyroid cancer has, however, not
been well studied. We have shown that the TRPC1 ion channel is of importance in regu-
lating follicular thyroid cancer ML-1 cell proliferation, migration and invasion [50]. Our
investigation showed that knocking down TRPC1 attenuated the expression of migratory
VEGFR2 and S1P receptors, as well as attenuating the expression and secretion of MMP2
and -9. We have shown that both STIM1 and Orai1 are upregulated in thyroid cancer cells,
as compared with normal thyroid cells, and are important regulators of thyroid cancer cell
proliferation and migration (Asghar et al., submitted). Other investigations have indicated
that the TRPV1 and TRPV6 ion channels are of importance in thyroid cancer cells. TRPV1
was shown to be upregulated in thyroid cancer [53]. In a recent report, Xu et al. showed
that, in human papillary thyroid carcinoma BCPAP cells, activation of TRPV1 with cap-
saicin, attenuated both the migration and invasion of these cells [67]. In addition, activation
of TRPV1 significantly attenuated the expression of MMP2 and 9. In a follow up study,
the same Authors showed that capsaicin-evoked activation of TRPV1 induced calcium
overload in the mitochondria, resulting in the apoptosis of anaplastic thyroid carcinoma
cells [52]. Our unpublished work also suggests that, the transcription factors TRβ1 and
RUNX2 may be regulated by calcium signaling (Lassila and Törnquist, manuscript in
preparation).

Recently, a transient receptor potential channel 4-associated protein (TRPC4AP, also
known as TNFα-receptor ubiquitous signaling and scaffolding protein, TRUSS) was sug-
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gested to be an important gene causing congenital primary hypothyroidism [51]. Knock-
down of this gene in Xenpus laevis tadpoles resulted in a decrease in the thyroid anlage, and
the authors suggested that TRPC4AP could be of importance in the regulation of thyroid
cell proliferation and the expression of thyroid-specific proteins. The link to the regulation
of calcium signaling seems strong, as previous experiments have shown that TRPC4AP
interacts with members of the TRPC ion channel family and participates in the regulation
of ER calcium stores [68].

4. Conclusions

It can be clearly stated that calcium signaling certainly has an important role in
the normal physiology of the thyroid. However, the importance of different calcium
channels and transporters in thyroid pathologies, including cancer, is still not well known.
The expression of, e.g., many ion channels belonging to the TRP family of ion channels
in the thyroid, as well as both STIM- and Orai proteins, strongly indicates that these
may have an important role on the etiology of thyroid cancer, in a manner similar to
cancers in other tissues (please see, e.g., [64]). The problem in regard to calcium channels,
similarly to members of the TRPC family or either the STIM or Orai proteins, as targets for
drug development, is their ubiquitous expression in many different tissues. A possibility
could be the use of functionalized, cancer cell targeted nanoparticles, carrying suitable
inhibitors. Such an approach has proven to be effective in mice with breast cancer [69],
and we have shown that thyroid cancer cells effectively take up nanoparticles carrying
metothrexate in vitro, inducing cell death of the cancer cells [57,70]. Furthermore, siRNA
loaded nanoparticles for knock-down of channel proteins are also an attractive option [71].
We have shown that these can effectively be used for thyroid cancer cells, at least in vitro
(Asghar et al., submitted). However, it is clear that for using these approaches, more
research is needed to optimize an effective treatment strategy for clinical use.

Author Contributions: All Authors contributed to writing the manuscript, M.Y.A. produced Figures.
All authors have read and agreed to the published version of the manuscript.

Funding: Work emanating from the Törnquist lab has been generously supported by the Sigrid
Juselius Foundation, the Academy of Finland, the Liv och Hälsa Foundation, and the Magnus
Ehrnrooth Foundation, which is gratefully acknowledged.

Conflicts of Interest: The Authors state no conflict of interest.

References
1. Berridge, J.M.; Lipp, P.; Bootman, M.D. The versatility and universtility of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1,

11–21. [CrossRef]
2. Berridge, J.M.; Bootman, M.D.; Roderick, H.L. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell

Biol. 2003, 4, 517–529. [CrossRef] [PubMed]
3. Carafoli, E.; Krebs, J. Why calcium? How calcium became the best communicator. J. Biol. Chem. 2016, 291, 20849–20857. [CrossRef]

[PubMed]
4. Thompson, L.J.; Shuttleworth, T.J. Exploring the unique features of the ARC channel, a store independent Orai channel. Channels

2013, 7, 364–373. [CrossRef] [PubMed]
5. Hogan, G.P.; Rao, A. Store-operated calcium entry: Mechanisms and modulation. Biochem. Biophys. Res. Commun. 2015, 460,

40–49. [CrossRef] [PubMed]
6. Huang, N.G.; Zeng, W.; Kim, J.Y.; Yan, J.P.; Han, L.; Muallem, S.; Worley, P.F. STIM1 carboxyl-terminus activates native SOC I

(CRAC) and TRPC1 channels. Nat. Cell Biol. 2006, 8, 1003–1010. [CrossRef]
7. Smani, T.; Shapocaloc, G.; Skryma, R.; Prevarskaya, N.; Rosado, J.A. Functional and physiopathological implications of TRP

channels. Biochim. Biophys. Acta 2015, 1853, 1772–1782. [CrossRef]
8. Kimura, T.; van Keymeulen, A.; Golstein, J.; Fusco, A.; Dumont, J.E.; Roger, P.P. Regulation of thyroid cell proliferation by TSH

and other factors: A critical evaluation of in vitro models. Endocr. Rev. 2001, 22, 631–656. [CrossRef]
9. Takada, K.; Amino, N.; Tada, H.; Miyai, K. Relationship between proliferation and cell cycle-dependent Ca2+ influx induced by a

combination of thyrotropin and insulin-like growth factor-1 in rat thyroid cells. J. Clin. Investig. 1990, 86, 1548–1555. [CrossRef]
10. Törnquist, K.; Ekokoski, E.; Dugué, B. ATP functions as a comitogen in thyroid FRTL-5 cells. J. Cell. Physiol. 1996, 166, 241–248.

[CrossRef]

http://doi.org/10.1038/35036035
http://doi.org/10.1038/nrm1155
http://www.ncbi.nlm.nih.gov/pubmed/12838335
http://doi.org/10.1074/jbc.R116.735894
http://www.ncbi.nlm.nih.gov/pubmed/27462077
http://doi.org/10.4161/chan.26156
http://www.ncbi.nlm.nih.gov/pubmed/24025406
http://doi.org/10.1016/j.bbrc.2015.02.110
http://www.ncbi.nlm.nih.gov/pubmed/25998732
http://doi.org/10.1038/ncb1454
http://doi.org/10.1016/j.bbamcr.2015.04.016
http://doi.org/10.1210/edrv.22.5.0444
http://doi.org/10.1172/JCI114874
http://doi.org/10.1002/(SICI)1097-4652(199602)166:2&lt;241::AID-JCP1&gt;3.0.CO;2-P


Cancers 2021, 13, 1994 7 of 9

11. Ekokoski, E.; Webb, T.E.; Simon, J.; Törnquist, K. Mechanism of P2 receptor-evoked DNA synthesis in thyroid FRTL-5 cells. J. Cell.
Physiol. 2001, 187, 166–175. [CrossRef] [PubMed]

12. Sukumaran, P.; Lof, C.; Pulli, I.; Kemppainen, K.; Viitanen, T.; Tornquist, K. Significance of the transient receptor potential
canonical 2 (TRPC2) channel in the regulation of rat thyroid FRTL-5 cell proliferation, migration, adhesion and invasion. Mol.
Cell. Endocrinol. 2013, 374, 10–21. [CrossRef]

13. Sukumaran, P.; Lof, C.; Kemppainen, K.; Kankaanpaa, P.; Pulli, I.; Nasman, J.; Viitanen, T.; Tornquist, K. Canonical transient
receptor potential channel 2 (TRPC2) as a major regulator of calcium homeostasis in rat thyroid FRTL-5 cells: Importance of
protein kinase C delta (PKCdelta) and stromal interaction molecule 2 (STIM2). J. Biol. Chem. 2012, 287, 44345–44360. [CrossRef]
[PubMed]

14. Okajima, F.; Tokumitsu, Y.; Kondo, Y.; Ui, M. P2-purinergic receptors are coupled to two signal transduction systems leading to
inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J. Biol. Chem. 1987, 262, 13483–13490.
[CrossRef]

15. Sho, K.; Okajima, F.; Majid, M.A.; Kondo, Y. Reciprocal modulation of thyrotropin actions by P1-purinergic agonists in FRTL-
5 thyroid cells. Inhibition of cAMP pathway and stimulation of phospholipase C-Ca2+ pathway. J. Biol. Chem. 1991, 266,
12180–12184. [CrossRef]

16. Törnquist, K.; Saarinen, P.; Vainio, M.; Ahlström, M. Sphingosine 1-phosphate mobilizes sequestered calcium, activates calcium
entry, and stimulates DNA synthesis in thyroid FRTL-5 cells. Endocrinology 1997, 138, 4049–4057. [CrossRef]

17. Jiménez, E.; Pavía, J.; Morell, V.; Martín, E.; Montiel, M. Muscarinic receptor subtypes and calcium signaling in Fischer rat thyroid
cells. Biochem. Pharmacol. 2001, 61, 337–342. [CrossRef]

18. Wang, D.X.; Kiang, J.G.; Atwa, M.A.; Smallridge, R.C. Evidence for the involvement of protein kinase C isoforms in alpha-1
adrenergic activation of phospholipase A2 in FRTL-5 thyroid cells. J. Investig. Med. 1996, 44, 566–674.

19. Marsigliante, S.; Elia, M.G.; di Jeso, B.; Greco, S.; Muscella, A.; Storelli, C. Increase of [Ca(2+)](i) via activation of ATP receptors in
PC-Cl3 rat thyroid cell line. Cell Signal. 2002, 14, 61–67. [CrossRef]

20. Raspe’, E.; Laurent, E.; Andry, G.; Dumont, J.E. ATP, bradykinin, TRH and TSH activates the Ca2+-phosphatidylinositol cascade
of human thyrocytes in primary culture. Mol. Cell. Endocrinol. 1991, 81, 175–183. [CrossRef]

21. Raspé, E.; Laurent, E.; Erjans, B.C.; Erneux, C.; Dumont, J.E. Control of intracellular Ca2+-concentration and the inositol phosphate
accumulation in dog thyrocyte primary culture: Evidence for different kinetics of Ca2+-phosphatidylinositol cascade activation
and for involvement in the regulation of H2O2. J. Cell. Physiol. 1991, 146, 242–250. [CrossRef]

22. Törnquist, K. Modulatory effect of protein kinase C on thapsigargin-induced calcium entry in FRTL-5 cells. Biochem. J. 1993, 290,
443–447. [CrossRef] [PubMed]

23. Törnquist, K.; Ekokoski, E.; Forss, L.; Matsson, M. Importance of arachidonic acid metabolites in regulating ATP-induced calcium
fluxes in thyroid FRTL-5 cells. Cell Calcium 1994, 15, 153–161. [CrossRef]

24. Corvilain, B.; Laurent, E.; Lecomte, M.; Vansande, J.; Dumont, J.E. Role of the cyclic adenosine 3′,5′-monophosphate and the
phosphatidylinositol-Ca2+ cascades in mediating the effects of thyrotropin and iodide on hormone synthesis and secretion in
human thyroid slices. J. Clin. Endocrinol. Investig. 1994, 79, 152–159.

25. Törnquist, K.; Ahlström, M. Modulatory effects of cyclic AMP on calcium fluxes in FRTL-5 cells. J. Cell. Physiol. 1993, 157, 625–630.
[CrossRef]

26. Lorenz, S.; Eszlinger, M.; Paschke, R.; Aust, G.; Weick, M.; Führer, D.; Krohn, K. Calcium signaling of thyrocytes is modulated by
TSH through calcium binding protein expression. Biochim. Biophys. Acta 2010, 1803, 352–360. [CrossRef] [PubMed]

27. Taylor, E.J.A.; Pantazaka, E.; Shelley, K.L.; Taylor, C.W. Prostaglandin E(2) inhibits histamine.evoked Ca(2+) release in human
aortic smooth muscle cells through cAMP signaling junctions and protein inase A. Mol. Pharmacol. 2017, 92, 533–545. [CrossRef]

28. Taylor, C.W. Regulation of IP 3 receptors by cyclic AMP. Cell Calcium 2017, 63, 48–52. [CrossRef]
29. Saji, M.; Ikuyama, S.; Akamizu, T.; Kohn, L.D. Increases in cytosolic Ca++ down regulates thyrotropin receptor gene expression

by a mechanism different from the cAMP signal. Biochem. Biophys. Res. Commun. 1991, 176, 94–101. [CrossRef]
30. Lof, C.; Sukumaran, P.; Viitanen, T.; Vainio, M.; Kemppainen, K.; Pulli, I.; Nasman, J.; Kukkonen, J.P.; Tornquist, K. Communication

between the calcium and cAMP pathways regulate the expression of the TSH receptor: TRPC2 in the center of action. Mol.
Endocrinol. 2012, 26, 2046–2057. [CrossRef]

31. Weiss, S.; Philp, N.J.; Grollman, E.F. Iodide transport in a continuous line of cultured cells from rat thyroid. Endocrinology 1984,
114, 1090–1098. [CrossRef]

32. Corda, D.; Marocci, R.; Kohn, L.D.; Axelrod, J.; Luini, A. Association of the changes in cytosolic Ca and iodide efflux induced by
thyrotropin and by the stimulation of alpha 1-adrenergic receptors in cultured rat thyroid cells. J. Biol. Chem. 1985, 260, 9230–9236.
[CrossRef]

33. Marcocci, C.; Luini, A.; Santisteban, P.; Grollman, E.F. Norepinephrine and thyrotropin stimulation of iodide efflux in FRTL-5
thyroid cells involves metabolites of arachidonic acid and is associated with the iodination of thyroglobulin. Endocrinology 1987,
120, 1127–1133. [CrossRef] [PubMed]

34. Raspé, E.; Dumont, J.E. Control of dog thyrocyte plasma membrane iodide permeability by the Ca2+-phosphatidylinositol and
adenosine 3′,5′-monophosphate cascades. Endocrinology 1994, 135, 989–995. [CrossRef] [PubMed]

35. Yoshida, A.; Hattori, K.; Hisatome, I.; Taniguchi, S.; Ueta, Y.; Hukui, H.; Santo, Y.; Igawa, O.; Shigemasa, C.; Kosugi, S.; et al. A
TSH/dibutyryl cAMP activated Cl-/I- channel in FRTL-5 cells. Biochem. Biophys. Res. Commun. 1999, 259, 631–635. [CrossRef]

http://doi.org/10.1002/jcp.1070
http://www.ncbi.nlm.nih.gov/pubmed/11267996
http://doi.org/10.1016/j.mce.2013.03.026
http://doi.org/10.1074/jbc.M112.374348
http://www.ncbi.nlm.nih.gov/pubmed/23144458
http://doi.org/10.1016/S0021-9258(19)76452-7
http://doi.org/10.1016/S0021-9258(18)98877-0
http://doi.org/10.1210/endo.138.10.5422
http://doi.org/10.1016/S0006-2952(00)00565-7
http://doi.org/10.1016/S0898-6568(01)00208-X
http://doi.org/10.1016/0303-7207(91)90216-F
http://doi.org/10.1002/jcp.1041460208
http://doi.org/10.1042/bj2900443
http://www.ncbi.nlm.nih.gov/pubmed/8452533
http://doi.org/10.1016/0143-4160(94)90054-X
http://doi.org/10.1002/jcp.1041570323
http://doi.org/10.1016/j.bbamcr.2010.01.007
http://www.ncbi.nlm.nih.gov/pubmed/20083144
http://doi.org/10.1124/mol.117.109249
http://doi.org/10.1016/j.ceca.2016.10.005
http://doi.org/10.1016/0006-291X(91)90894-D
http://doi.org/10.1210/me.2012-1171
http://doi.org/10.1210/endo-114-4-1090
http://doi.org/10.1016/S0021-9258(17)39357-2
http://doi.org/10.1210/endo-120-3-1127
http://www.ncbi.nlm.nih.gov/pubmed/3100285
http://doi.org/10.1210/endo.135.3.8070394
http://www.ncbi.nlm.nih.gov/pubmed/8070394
http://doi.org/10.1006/bbrc.1999.0836


Cancers 2021, 13, 1994 8 of 9

36. Yoshida, A.; Taniguchi, S.; Hisatome, I.; Royaux, I.E.; Green, E.D.; Kohn, L.D.; Suzuki, K. Pendrin is a iodide-specific apical porter
responsible for iodide efflux from thyroid cells. J. Clin. Endocrinol. Metab 2002, 87, 3356–3361. [CrossRef] [PubMed]

37. Twyffels, L.; Massart, C.; Golstein, P.E.; Raspe, E.; van Sande, J.; Dumont, J.E.; Beauwens, R.; Kruys, V. Pendrin: The thyrocyte
apical membrane iodide transporter? Cell Physiol. Biochem. 2011, 28, 491–496. [CrossRef] [PubMed]

38. Viitanen, T.M.; Sukumaran, P.; Lof, C.; Tornquist, K. Functional coupling of TRPC2 cation channels and the calcium-activated
anion channels in rat thyroid cells: Implications for iodide homeostasis. J. Cell. Physiol. 2013, 228, 814–823. [CrossRef] [PubMed]

39. Twyffels, L.; Strickaert, A.; Virreira, M.; Massart, C.; van Sande, J.; Wauquier, C.; Beauwens, R.; Dumont, J.E.; Galietta, L.J.; Boom,
A.; et al. Anoctamin-1/TMEM16A is the major apical iodide channel of the thyrocyte. Am. J. Physiol 2014, 307, C1102–C1112.
[CrossRef] [PubMed]

40. Iosco, C.; Cosentino, C.; Sirna, L.; Romano, R.; Cursano, S.; Mongia, A.; Pompeo, G.; di Bernardo, J.; Ceccarelli, C.; Tallini, G.; et al.
Anoctamin 1 is apically expressed on thyroid follicular cells and controbutes to ATP- and calcium-activated iodide efflux. Cell
Physiol. Biochem. 2014, 34, 966–980. [CrossRef]

41. Schanze, N.; Jacobi, S.F.; Rijntjes, E.; Mergler, S.; del Omo, M.; Hoefig, C.S.; Khajavi, N.; Lehmphul, I.; Biebermann, H.; Mittag, J.;
et al. 3.Iodothyronamine decreases expression of genes involved in iodide metabolism in mouse thyroids and inhibits iodide
uptake in PCCL3 thyrocytes. Thyroid 2017, 27, 11–22. [CrossRef] [PubMed]

42. Khajavi, N.; Mergler, S.; Biebermann, H. 3-Iodothyronamine, a novel endogenous modulator of transient receptor potential
melastatin 8? Front. Endocrinol. 2017, 8, 198. [CrossRef] [PubMed]

43. Di Jeso, B.; Pereira, R.; Consiglio, E.; Formisano, S.; Satrustegui, J.; Sandoval, I.V. Demonstration of a Ca2+ requirement for
thyroglobulin dimerization and export to the golgi complex. Eur. J. Biochem. 1998, 252, 583–590. [CrossRef]

44. Rivas, M.; Mellström, B.; Naranjo, J.R.; Santisteban, P. Transcriptional repressor DREAM interacts with thyroid transcription
factor-1 and regulates thyroglobulin gene expression. J. Biol. Chem. 2004, 279, 33114–33122. [CrossRef] [PubMed]

45. Rigutto, S.; Hoste, C.; Grasberger, H.; Milenkovic, M.; Communi, D.; Dumont, J.E.; Corvilain, B.; Miot, F.; de Deken, X. Activation
of dual oxidases Duox1 and Duox2. Differential regulation mediated by cAMP-dependent protein kinase and protein kinase
C-dependent phosphorylation. J. Biol. Chem. 2009, 284, 6725–6734. [CrossRef]

46. Vanvooren, V.; Allgeier, A.; Cosson, E.; van Sande, J.; Defer, N.; Pirlot, M.; Hanoune, J.; Dumont, J.E. Expression of multiple
adenylyl isoforms in human and dog thyroid. Mol. Cell. Endocrinol. 2000, 170, 185–196. [CrossRef]

47. Lorenz, S.; Aust, G.; Krohn, K. Ca(2+)-binding protein expression in primary human thyrocytes. Biochim. Biophys. Acta 2013, 1833,
2703–2713. [CrossRef] [PubMed]

48. Takasu, N.; Murakami, M.; Nagasawa, Y.; Yamada, T.; Shimizu, Y.; Kojima, I.; Ogata, E. BAY-K-8644, a calcium channel agonist,
induces a rise in cytoplasmic free calcium and iodide discharge in thyroid cells. Biochem. Biophys. Res. Commun. 1987, 143,
1107–1111. [CrossRef]

49. Mignen, O.; Constantin, B.; Potier-Cartereau, M.; Penna, A.; Gautier, M.; Guéguinou, M.; Renaudineau, Y.; Shoji, K.F.; Félix, R.;
Bayet, E.; et al. Constitutive calcium entry and cancer: Updated views and insights. Eur. Biophys. J. 2017, 46, 395–413. [CrossRef]

50. Asghar, M.Y.; Magnusson, M.; Kemppainen, K.; Sukumar, P.; Löf, C.; Pulli, I.; Kalhori, V.; Törnquist, K. Transient Receptor
Potential Canonical 1 (TRPC1) Channels as Regulators of Sphingolipid and VEGF Receptor Expression: Implications for Thyroid
Cancer Cell Migration And Proliferation. J. Biol. Chem 2015, 290, 16116–16131. [CrossRef]

51. Choukair, D.; Eberle, B.; Vick, P.; Hermann, P.; Weiss, B.; Paramasivam, N.; Schlesner, M.; Lornsen, K.; Roeth, R.; Klutman, C.; et al.
Identification of transient receptor potential channel 4-associated proteins as novel candidate gene causing congenital primary
hypothyroidism. Horm. Res. Paediatr. 2020, 93, 16–29. [CrossRef]

52. Xu, S.-Z.; Cheng, X.; Wu, L.; Zheng, J.; Wang, X.; Wu, J.; Yu, H.; Bao, J.; Zhang, L. Capsaicin induces mitochondrial dysfunction
and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell. Signal. 2020.
[CrossRef] [PubMed]

53. Zhuang, L.; Peng, J.B.; Tou, L.; Takanaga, H.; Adam, R.M.; Hediger, M.A.; Freeman, M.R. Calcium-selective ion channel, CaT1, is
apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. Lab. Investig. 2002, 82,
1755–1764. [CrossRef] [PubMed]

54. Parma, J.; van Sande, J.; Swillens, S.; Tonacchera, M.; Dumont, J.E.; Vassart, G. Somatic mutations causing constitutive activity
of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: Identification of additional mutations
activating both the cytosolic adenosine 3′,5′-monophosphate and inositol phosphate-Ca2+ cascades. Mol. Endocrinol. 1995, 9,
725–733.

55. Grasberger, H.; van Sande, J.; Hag-Dahood, M.; Tenenbaum-Rakover, Y.; Refetoff, S. A familial thyrotropin (TSH) receptor
mutation provides in vivo evidence that the inositol phosphate/Ca2+ cascade mediated TSH action on thyroid hormone synthesis.
J. Clin. Endocrinol. Metab. 2007, 92, 2816–2820. [CrossRef]

56. Rivas, M.; Mellström, B.; Torres, B.; Cali, G.; Ferrara, A.M.; Terracciano, D.; Zannini, M.; de Escobar, G.M.; Naranjo, J.R. The
DREAM protein is associated with thyroid enlargement and nodular development. Mol. Endocrinol. 2009, 23, 862–870. [CrossRef]

57. Salama, I.; Malone, P.S.; Mihaimeed, F.; Jones, J.L. A review of the S100 proteins in cancer. Eur. J. Surg. Oncol. 2008, 34, 357–364.
[CrossRef]

58. Zhong, J.; Chang, L.; Chen, Y.-J.; Zhang, Q.-H.; Yang, J.; Kang, X.; Chen, S.-R.; Wen, G.-B.; Zu, X.-Y.; Cao, R.-X. The association
between S100A13 and HMGA1 in the modulation of thyroid cancer proliferation and invasion. J. Transl. Med. 2016, 14, 80.
[CrossRef]

http://doi.org/10.1210/jcem.87.7.8679
http://www.ncbi.nlm.nih.gov/pubmed/12107249
http://doi.org/10.1159/000335110
http://www.ncbi.nlm.nih.gov/pubmed/22116362
http://doi.org/10.1002/jcp.24230
http://www.ncbi.nlm.nih.gov/pubmed/23018590
http://doi.org/10.1152/ajpcell.00126.2014
http://www.ncbi.nlm.nih.gov/pubmed/25298423
http://doi.org/10.1159/000366313
http://doi.org/10.1089/thy.2016.0182
http://www.ncbi.nlm.nih.gov/pubmed/27788620
http://doi.org/10.3389/fendo.2017.00198
http://www.ncbi.nlm.nih.gov/pubmed/28861042
http://doi.org/10.1046/j.1432-1327.1998.2520583.x
http://doi.org/10.1074/jbc.M403526200
http://www.ncbi.nlm.nih.gov/pubmed/15181011
http://doi.org/10.1074/jbc.M806893200
http://doi.org/10.1016/S0303-7207(00)00322-1
http://doi.org/10.1016/j.bbamcr.2013.07.014
http://www.ncbi.nlm.nih.gov/pubmed/23886630
http://doi.org/10.1016/0006-291X(87)90366-4
http://doi.org/10.1007/s00249-017-1216-8
http://doi.org/10.1074/jbc.M115.643668
http://doi.org/10.1159/000507114
http://doi.org/10.1016/j.cellsig.2020.109733
http://www.ncbi.nlm.nih.gov/pubmed/32771398
http://doi.org/10.1097/01.LAB.0000043910.41414.E7
http://www.ncbi.nlm.nih.gov/pubmed/12480925
http://doi.org/10.1210/jc.2007-0366
http://doi.org/10.1210/me.2008-0466
http://doi.org/10.1016/j.ejso.2007.04.009
http://doi.org/10.1186/s12967-016-0824-x


Cancers 2021, 13, 1994 9 of 9

59. Jia, W.; Gao, X.J.; Zhang, Z.-D.; Yang, Z.-X.; Zhang, G. S100A4 silencing suppresses proliferation, angiogenesis and invasion of
thyroid cancer cells through downregulation of MMP-9 and VEGF. Eur. Rev. Med. Pharmacol. 2013, 17, 1486–1508.

60. Zhang, K.; Yu, M.; Hao, F.; Dong, A.; Chen, D. Knockdown of S1004A blocks growth and metastasis of anaplastic thyroid cancer
cells in vitro and in vivo. Cancer Biomark 2016, 17, 281–291. [CrossRef]

61. Jiao, X.; Zhang, H.; Xu, X.; Yu, Y.; Zhang, H.; Zhang, J.; Ning, L.; Hao, F.; Liu, X.; Niu, M.; et al. S100A4 knockout sensitizes
anaplastic thuroid carcinoma cells harbouring BRAFV600E/Mt to vemurafenib. Cell Physiol. Biochem. 2018, 49, 1143–1162.
[CrossRef]

62. Chang, Z.; Cai, C.; Han, D.; Gao, Y.; Li, Q.; Feng, L.; Zhang, W.; Zheng, J.; Jin, J.; Zhang, H.; et al. Anoctamin5 regulates cell
migration and invasion in thyroid cancer. Int. J. Oncol. 2017, 51, 1311–1319. [CrossRef]

63. Williams, M.E.; Washburn, M.S.; Hans, M.; Urrutia, A.; Brust, P.F.; Prodanovich, P.; Harpold, M.M.; Stauderman, K.A. Structure
and functional characterization of a novel human low-voltage activated calcium channel. J. Neurochem. 1999, 72, 791–799.
[CrossRef] [PubMed]

64. Prevarskaya, N.; Skryma, R.; Shuba, Y. Ion channels in cancer: Are cancer hallmarks oncochannelopathies? Physiol. Rev. 2018, 98,
559–621. [CrossRef]

65. Bruce, J.I.E.; James, A.D. Targeting the calcium signalling machinery in cancer. Cancers 2020, 12, 2351. [CrossRef] [PubMed]
66. Marchi, S.; Giorgi, C.; Galluzi, L.; Pinton, P. Ca2+ fluxes and cancer. Mol. Cell 2020, 78, 1055–1069. [CrossRef] [PubMed]
67. Xu, S.-Z.; Zhang, L.; Cheng, X.; Yu, H.; Bao, J.; Zhang, L. Capsaicin inhibits the metastasis of human papillary carcinoma BCPAP

cells through the modulating of the TRPV1 channel. Food Funct. 2018, 24, 344–354. [CrossRef]
68. Mace, K.E.; Lussier, M.P.; Boulay, G.; Powers, J.L.T.; Parfrey, H.; Perraud, A.L.; Riches, D.W. TRUSS, TNF-R1, and TRPC ion

channels synergistically reverse endoplasmic reticulum Ca2+ storage reduction in response to m1 muscarinic acethylcholine
receptor signaling. J. Cell. Physiol. 2010, 225, 444–453. [CrossRef]

69. Mamaeva, V.; Niemi, R.; Beck, M.; Ozliseli, E.; Desai, D.; Landor, S.; Grönroos, T.; Kronqvist, P.; Pettersen, I.K.N.; McCormack, E.;
et al. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying g-secretase inhibitors.
Mol. Ther. 2016, 24, 926–936. [CrossRef]

70. Niemelä, E.; Desai, D.; Niemi, R.; Özliseli, E.; Doroszka, M.; Kemppainen, K.; Sahlgren, C.; Törnquist, K.; Eriksson, J.E.;
Rosenholm, J. Fingolimod (FTY720) and methotrexate (MTX) multidrug carrying nanoparticles enables targeted induction of cell
death and immobilization of invasive thyroid cancer cells. Eur. J. Pharm. Biopharm. 2020, 148, 1–9. [CrossRef]

71. Prabhakar, N.; Zhang, J.; Desai, D.; Casals, E.; Gulin-Sarfraz, T.; Näreoja, T.; Westermarck, J.; Rosenholm, J.M. Stimuli-responsive
hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for
sustained intracellular siRNA delivery. Int. J. Nanomed. 2016, 11, 6591–6608. [CrossRef]

http://doi.org/10.3233/CBM-160640
http://doi.org/10.1159/000493296
http://doi.org/10.3892/ijo.2017.4113
http://doi.org/10.1046/j.1471-4159.1999.0720791.x
http://www.ncbi.nlm.nih.gov/pubmed/9930755
http://doi.org/10.1152/physrev.00044.2016
http://doi.org/10.3390/cancers12092351
http://www.ncbi.nlm.nih.gov/pubmed/32825277
http://doi.org/10.1016/j.molcel.2020.04.017
http://www.ncbi.nlm.nih.gov/pubmed/32559424
http://doi.org/10.1039/C7FO01295K
http://doi.org/10.1002/jcp.22221
http://doi.org/10.1038/mt.2016.42
http://doi.org/10.1016/j.ejpb.2019.12.015
http://doi.org/10.2147/IJN.S120611

	Introduction 
	Thyroid and Calcium Signaling 
	Calcium Signaling in Thyroid Pathologies 
	Conclusions 
	References

