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Spinal cord injury (SCI) is a devastating type of neurological disorder of the central nervous
system (CNS) with high mortality and disability. The pathological processes of SCI can
usually be described as two stages, namely, primary and acute secondary injuries.
Secondary injury produces more significant exacerbations of the initial injury. Among all
the mechanisms of secondary damage, infection and inflammatory responses, as the
principle culprits in initiating the second phase of SCI, can greatly contribute to the severity
of SCI and numerous sequelae after SCI. Therefore, effectively antagonizing pro-
inflammatory responses may be a promising treatment strategy to facilitate functional
recovery after SCI. Olfactory ensheathing cells (OECs), a unique type of glial cells, have
increasingly become potential candidates for cell-based therapy in the injured CNS.
Strikingly, there is growing evidence that the mechanisms underlying the anti-inflammatory
role of OECs are associated with the immune properties and secretory functions of these
cells responsible for anti-neuroinflammation and immunoregulatory effects, leading to
maintenance of the internal microenvironment. Accordingly, a more profound
understanding of the mechanism of OEC immunological functions in the treatment of
SCI would be beneficial to improve the therapeutic clinical applications of OECs for SCI. In
this review, we mainly summarize recent research on the cellular and molecular immune
attributes of OECs. The unique biological functions of these cells in promoting neural
regeneration are discussed in relation of the development of novel therapies for
CNS injury.

Keywords: olfactory ensheathing cells (OECs), cell therapy, phagocytosis, anti-inflammation, immunomodulation,
spinal cord injury (SCI)
INTRODUCTION

Spinal cord injury (SCI) is a kind of servere neurological disease generally caused by a variety of
traumas or diseases that usually result in complete or incomplete neural function deficiency. Among
all the directly or indirectly causal external factors resulting in SCI, traumatic factors, such as traffic
accidents, falls and sports/recreation, are the most common aetiologies of SCI (1–3). Additionally,
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there are a number of nontraumatic causes of SCIs, mainly
arising from discopathies and tumors. Due to severe
incapacitation of the limbs below the injured segment after
SCI, SCI not only causes considerable physical suffering and
mental distress to patients themselves, but also incurs substantial
economic burdens for families and society (4). According to
incomplete statistics, SCI affects more than two million people
worldwide (4–6). Therefore, finding ways to repair damage to
spinal cord tissue is a common goal in modern medicine. Of
course, understanding the molecular and cellular mechanisms
contributing to the pathophysiology of SCI is essential for
developing more effective therapeutic interventions.

In general, the pathophysiological types of SCI are
characterized as acute, secondary and chronic phases (7, 8).
Primary damage to the spinal cord occurs as a direct result of the
initial trauma, such as compression, shearing, laceration,
transection, stretch, or distraction, leading to immediate
haemorrhage or vasospasm and rapid cell death (8–10).
Concomitantly, Secondary injury closely follows in an ongoing
way characterized by further damage to neuronal and glial cells
and is accompanied by paralysis, intense pain, and progressive
neurological damage (11–13). This phase usually occurs within
minutes after injury and can last for weeks even months (14).
The concomitant and consecutive pathological events in this
phase involve the immune response, inflammation, apoptotic cell
death, and formation of cystic cavitations and astroglial scars (15,
16). With the progression of secondary injury, a wide spectrum
of subsequent events are triggered, leading to an uncontrolled
degenerative cascade with concomitant expansion of the injury
site and paralysis to adjacent spinal cord segments (7, 8, 13, 17).
During these pathological events following SCI, a striking
inflammatory response plays a crucial role in the occurrence
and progression of SCI, and the time-course of changes in
inflammation also plays a significant role in the recovery of the
tissue and motor function (18, 19). Inflammatory stress usually
progressively exacerbates secondary cell and tissue damage (18,
20, 21). In comparison, the most susceptible, and first to be
affected, cells are the neurons in the injured spinal cord.
Furthermore, neurons, unlike other cells, have a limited
capacity for spontaneous regeneration and self-repair after SCI
(21, 22). This is mainly due to the inhospitable and further
deteriorating microenvironment resulting from SCI, which does
not support neuronal regeneration (22, 23). Therefore, to achieve
an effective neuronal regeneration, it is essential to promptly
ameliorate, or even reverse the growth-inhibiting environment
created by various unfavorable factors, including inflammation.
Although the treatment of SCI has been extensively studied over
the past several decades, including surgical, pharmacological,
physical, cell-based and biomaterial-based therapies (24, 25), few
successful therapeutic strategies are available to provide very
effective treatment for patients with SCI. At present, many trials
have shown that a wide variety of preclinical therapies are able to
only delay the progression of SCI, although some approaches do
show limited efficacy.

Owing to the complexity of the CNS and the inhospitable
environment in and around the lesion site in SCI, combination
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strategies to promote tissue regeneration are currently being
pursued (24). When considering strategies to improve
therapeutic outcomes, cell therapy is envisioned as a promising
treatment approach for SCI, particularly in promoting neural
repair and/or replenishing lost cell populations in the injured
area. Recent research has identified that OEC transplantation as
a promising therapeutic approach for SCI in clinical trials due to
its unique characteristics such as anti-neuroinflammation,
growth-promoting factor secretion, and debris clearance
activity (26–29). This review will focus mainly on the
immunological role of OECs, including special bio-functions
that create an environment conducive to neural regeneration by
cell transplantation, to promote recovery following SCI.
ORIGIN AND DISTRIBUTION OF OECS

Olfactory ensheathing cells (OECs) are a specialized type of glial
cell population in the olfactory nervous system that accompany
and envelop bundles of primary olfactory axons (28, 29). The
olfactory system is capable of continually and rapidly turning
over its neuronal population throughout the lifespan, mainly
owing to the glial environment (29, 30). Among these glial cells,
OECs are thought to play pivotal role in neurite outgrowth and
the establishment of functional connections along the olfactory
neuraxis when new olfactory sensory neurons are generated from
the stem cells in the olfactory epithelium (30–32). Unlike other
types of glial cells derived from neural crest (peripheral glia) or
neural tube (central glia), OECs are speculated to arise from
neural progenitors in the neural crest (33–35)and populate as
OEC precursors in the olfactory placode during early
development (36). Given that mature OECs derived from OEC
precursors all originate from the olfactory placode, the olfactory
placode is also viewed as the origin of OEC populations (36, 37).
During development of the olfactory nervous system, the cluster
of epithelial cells in the lamina propria (LP) mainly consists of
two different types of neural precursor cells, namely, globose
basal cells (GBCs) and horizontal basal cells (HBCs) (31, 32).
GBCs are likely to be the prominent progenitor cells in the
olfactory epithelium that give rise to both neurons and
nonneuronal cells such as OECs. In general, HBCs remain
relatively quiescent. When HBCs are specifically induced to
divide in response to certain cues and reconstitute the
olfactory epithelium by regenerating GBCs, repopulation of
both the neuronal and glial lineages of the olfactory epithelium
is achieved. Differentiating OEC progenitors leave the
invaginating olfactory placode and gradually migrate towards
the telencephalic vesicles (31, 32). The differentiated cells keep
contact with the developing olfactory nerve, and ultimately
penetrate the forebrain to form the olfactory nerve layer
(ONL) in the olfactory bulb (OB), indicative of their location
(38, 39). The olfactory system mainly consists of the olfactory
epithelium in the nasal cavity and olfactory nerves which reside
in the peripheral nerve system (PNS), and the OB, which resides
in the CNS (Figure 1). Currently, it is widely accepted that OECs
mainly reside along the olfactory nerve and the outer nerve layer
May 2022 | Volume 13 | Article 881162
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of the OB (38, 40, 41). With development and maturation, OECs
gradually exit the LP to encase the olfactory nerves, and pass
through the cribriform plate and reach the OB at the olfactory
nerve layer (Figure 1). In the event of lesion formation, OECs
guide the olfactory axons of newly generated olfactory neurons
through the LP towards the ONL and into the glomeruli layer
where they reinnervate their target cells (42). Overall, OECs
accompanying the olfactory nerves are connected end-to-end to
form a continuous sheath structure enveloping the olfactory
axons from their origin in the LP to their termination in the OB.
ANTIGENIC PROPERTIES OF OECS

Although OECs are a specialized type of glial cells that bridge the
boundary between the peripheral and central olfactory systems,
and exhibit numerous molecular and cellular properties of both
Schwann cells and astrocytes, they are obviously distinguishable
from both Schwann cells and astrocytes by differential molecular
expression characteristics (43, 44). Early evidence that
antigenically distinct OEC subpopulations exist in the olfactory
system was largely attributed to their different locations and
developmental stages. It is now clear that OECs in the peripheral
olfactory nerves and the central ONL of the OB express a series
of antigens that can be detected with a variety of cellular and
molecular techniques (Figure 1). Despite the uncertainties
regarding the distinct molecular characteristics of OECs from
different species, the general consensus is that all OECs in the LP
exhibit S100b expression and weak GFAP as well as neural cell
adhesion molecule (NCAM) expression, while those in the ONL
are positive for the low-affinity neurtrophic receptors p75,
NCAM and GFAP (35, 45). Nonetheless, there are distinct
molecules expressed in OECs that reside in the LP versus those
Frontiers in Immunology | www.frontiersin.org 3
in the ONL. To date, it has been shown that OECs in the LP are
positive for integrins, vascular endothelial growth factor (VEGF)
and fibroblast growth factor receptor-1 (FGFR1) in addition to
the aforementioned molecules, whereas those in the olfactory
nerve layer of the OB are negative for these factors (29, 30, 46). In
contrast, those in the ONL are positive for fibroblast growth
factor-2 (FGF2), platelet-derived growth factor-beta (PDGF-b),
ciliary neurotrophic factor (CNTF), tropomyosin receptor
kinases (Trks), Neuropeptide Y (NPY) and estrogen receptor
(ER) etc., while those in the LP are not (30, 46, 47). More
surprisingly, apparent differences in OECmarkers have also been
found in the inner and outer layers of the ONL. For instance,
NPY was reported to be coexpressed with p75 in OECs in the
outer layer but expressed without p75 in the inner layer (48).
Although researchers have proposed the possible functions for
some OEC markers, such as VEGF, NCAM, p75, and FGF2, the
markedly distinct expression patterns remain elusive.

S100b belongs to the S100 family of Ca2+-binding proteins
that participate in regulating numerous intracellular events
including protein phosphorylation, cell differentiation and
proliferation, and is extensively expressed in Schwann cells
(49, 50). GFAP, an intermediate filament cytoskeletal protein,
is generally accepted to be an astrocyte marker. Despite S100b
and GFAP being OEC-specific antigens, in rodents first appear in
the peripheral olfactory nerves of the embryo but also appear in
the ONL prior to birth (31, 45, 46). Strikingly, the expression of
these markers is initially limited to the outer ONL and then
gradually appears later in the inner ONL (31, 51, 52). In addition,
there is a remarkable difference in GFAP and S100b expression
during the developmental period of major innervation. In
adulthood, the expression pattern is generally uniform
throughout the ONL, with relatively intense immunoreactivty
to S100b and GFAP in both inner and outer layers of the ONL.
FIGURE 1 | A diagram representing location of olfactory ensheathing cells (OECs) and antigen expression within the primary olfactory system. Listed to the right are
several molecules expressed by OECs in the LP and ONL. OECs wrap fascicles of ORN axons along their tortuous route through the LP in the PNS. Olfactory nerves
and concomitant OECs pass through the cribriform plate of the skull and enter the OB in the CNS to form the ONL. ORN axon terminals into glomerular layer to form
asymmetrical synaptic contacts with glomeruli cells. LP, lamina propria; ORNs, olfactory receptor neurons; GBCs, globose basal cells; HBCs, horizontal basal cells;
SCs, sustentacular cells.
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The inconsistency in S100b and GFAP expression is likely
dependent on animal age (embryo, newborn, or adult), species,
OEC neuroplasticity and major innervation of the bulb (31, 36,
46, 48).

p75, NCAM and O4 are mainly markers for OECs
throughout the olfactory system during development, and their
expression oscillates markedly in adulthood (30, 46, 53). For
example, the expression of p75 is entirely absent in innermost
ONL. Likewise, O4 was previously demonstrated to be
coexpressed with p75. However, subsequent research revealed
that OECs do not express O4. This immunopositive signal is
likely to arise from the confusion of axonal membrane fragments
that adhere to OECs or are engulfed by OECs (53, 54). In
addition to NCAM, other adhesion molecules including
laminin, L1, fibronectin and collagen IV (55, 56), and
extracellular matrix molecules such as metalloproteinase-2
(MMP-2) (57) and amyloid precursor protein (APP) (58), are
expressed by OECs at all developmental stages. These molecules
potentially regulate axon adhesion migration, guidance and
interactions with other cells and act as growth-promoting
substrates for ORNs. However, in adults, the levels of these
molecules sharply reduced or even negligible (35, 57). These
dynamic expression changes are predominantly attributed to the
development of the olfactory nerve system and OEC plasticity,
leading to the variability in antigenic expression. Nevertheless,
the controversy regarding the localization of the described above
antigens has not been conclusively resolved.

Due to OEC heterogeneity and anatomic locations, the
expression patterns of certain antigens are usually variable.
Neuropeptide Y (NPY) is expressed in OECs during the
development of the ONL, but its obviously declines, and
cannot be detected in OECs in either the inner ONL or the
peripheral olfactory system in adulthood (31, 48, 59). Despite the
apparent difference in NPY expression between the central and
peripheral olfactory systems, different NPY expression patterns
also exist in the inner and outer layers of the ONL, with NPY
mainly displaying high expression in the inner layer of the ONL
and negative or weak expression in the outer layer of the ONL
(48, 59, 60). At present, the differential NPY expression pattern
remains unknown. However, the variability in antigenic
expression is attributed to the heterogeneity of OECs,
differential regulation of expression during development and
adulthood, and the use of different species.

Apart from the main antigens described, there are some
specific antigens that exhibit different expression patterns in
the olfactory system, such as integrins, VEGF, and FGFR1 which
are expressed in OECs in the LP but not in the ONL of the OB
(30, 31, 61, 62). In contrast, the expression of PDGF-b, CNTF,
Trks, and ER is prominent in OECs throughout in ONL of OB,
rather than in OECs in the LP (30, 31, 63, 64). In addition, a
number of differences in antigen expression still exist in OECs
both in vivo and in vitro, as well as in the olfactory mucosa and
bulb of neonatal and adult animals. Although no experimental
data are available to support the antigenic difference between
these two temporally and spatially different sources of OECs, a
currently prevalent notion that is widely held is that the antigenic
Frontiers in Immunology | www.frontiersin.org 4
heterogeneity in OECs mainly results from the existence of OEC
subpopulations, contamination with astrocyte-like cells, different
development phases, various culture conditions, and the number
of OEC passages (31, 46, 65). Francesehini et al. (66) reported
that distinct culture conditions allowed for OECs to adopt
divergent morphologies and vary the expression of certain
antigens. For instance, E-NACM expression in OECs was
relatively weak in serum-free medium, while progressively
increasing high expression in OECs appeared after switching to
medium containing-serum (31, 67). Regardless, p75 and GFAP
remained relatively constant. These data fully implicate the
intrinsic morphological and functional plasticity of OECs.

Given the striking similarities between the characteristics of
OECs and Schwan cells, OECs should share multiple antigenic
and morphological properties with Schwann cells; for example,
spindle-shaped OECs are immunoreactive for myelin basic
protein (MBP) in their extending processes (68, 69). In
particular, embryonic OECs are myelinating cells when
cocultured with dorsal root ganglion (DRG) neurons in vitro
(68, 70). In a subsequent study, the same medium did not cause
upregulation of MBP by OECs in neuron-free cultures (71).
These data imply that MBP expression in OECs relies upon the
culture system and the different developmental stages of the cells.
Nevertheless, the expression of MBP by OECs remains
controversial because several studies have found that OECs
show only weak expression of the peripheral myelin protein
during the early postnatal period (72). The results reveal that
OECs require different milieu molecular cues to initiate the
intracellular machinery to synthesize MBP to form a myelin
sheath within their microenvironment. In addition to MBP,
galactocerebroside (GalC), a specific cell-surface antigenic
marker for oligodendrocytes and myelin OECs, was found to
be expressed by OECs (67, 69, 73, 74). This indicates that OECs
also share oligodendrocyte features. Likewise, OECs derived
from the neonatal rat OB show weak but unambiguous
expression of GalC in explant cultures (53, 67, 74). Despite
the disparities in cumulating evidence either supporting
or refuting the ability of OECs to myelinate axons with
peripheral or central myelin, the GalC expression pattern in
vitro is generally acknowledged.

2′,3′-Cyclic nucleotide 3′-phosphohydrolase (CNPase), an
enzyme ubiquitously localized to noncompact myelin areas, is
a critical antigen in OECs (47). CNPase is one of the earliest
proteins to be synthesized during development, and it is thought
to be mainly involved in myelination (75). Apart from at sites
containing myelin, there are smaller amounts of CNPase
elsewhere in the body, which are commonly associated with
the mitochondria. CNPase immunoreactivity in the thick myelin
enclosing larger axons is relatively stable and varies more in the
sheaths surrounding thinly myelinated axons (75–77). Once
axonal damage occurs, the CNPase distribution becomes more
diffuse and returns to normal as the axons are repaired. More
interestingly, CNPase was found to exhibit inter-species
variation. Namely, CNPase is stably expressed in dog OECs
but not in rats. Altogether, in light of the antigen expression
patterns of OECs, whether this reflects some special properties of
May 2022 | Volume 13 | Article 881162
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OECs as a result of their intimate spatial contact with axons and
whether OEC biofunction is impacted by the surrounding
environments within peripheral and central transitional
regions remains to be elucidated.

Although OECs express a high number of detectable antigens
and the markers mentioned above, the expression patterns of
certain antigens are variable as individual subpopulations of
OECs exhibit distinct anatomical localization and behaviour.
Recent compelling studies have also revealed that most kinds of
antigens or markers of OECs are changeable both in vivo and in
vitro. This mainly depends on the context, such as the
developmental stage (embryonic and postnatal stages, early
and late development stages, and adult stage), animal species
and culture conditions (36). For instance, Franceschini et al. (78)
found that GFAP-positive OECs coexpressed polysialic acid
(PSA) during developmental stages but that PSA expression
rapidly decreased in adults. Similarly, it was stated that
Calponin, an actin-binding protein, is specific marker for
OECs from the embryonic OB that distinguishes OECs from
SCs in vitro and in vivo. Unfortunately, other studies have shown
that calponin is not robustly expressed in adult OECs (79). This
discrepancy may be due to the difference in developmental stage.
In addition, the expression of several specific markers on OECs
fluctuates due to neuropathological and pathophysiological
changes in the olfactory system. Previous studies have shown
that OECs express brain lipid binding protein (BLBP), a radial
glia protein, throughout adulthood, and this potential indicator
of the plastic phenotype of OECs displays high expression
following olfactory nerve system injury (36, 80). Likewise, due
to the continuous neurogenesis in the olfactory system
throughout lifespan, the guidance of pioneer neuronal axons
and establishment of the olfactory nerve tracts are orchestrated
by OECs, thus displaying variability in molecular expression and
morphology depending on the context. Indeed, there are still
several markers for OECs that are exhibited instable expression
pattern. Here, these markers are not described since there is still
considerable controversy. Overall, distinct OEC antigen
expression profiles are reflective of plasticity in morphology,
function and behaviour. Of course, it is not yet clear whether
OECs from one species share in vivo and in vitro antigentic
properties with other counterparts, or exhibit an obvious
heterogeneity. In light of current data, this is closely associated
with the intrinsically different properties of OECs.
IMMUNE PROPERTIES OF OECS

The olfactory system is exposed to the external environment
through the nasal cavity and is, therefore, vulnerable to bacteria-
or fungus-inflammation. However, most instances of CNS
infection do not occur through the olfactory system. Several
lines of evidence suggest that OECs exert crucial roles in
protecting the dynamic nature of the primary olfactory
nervous system against invasion by pathogenic organisms (29,
53, 80–82). This is mainly attributed to the unique biological
properties of OECs as follows: innate immune function and
immunoregulatory molecule secretion (26, 27, 29, 80).
Frontiers in Immunology | www.frontiersin.org 5
Additionally, OEC phagocytic activity has been shown to
maintain microenvironmental homeostasis to support neuronal
survival and outgrowth (27, 82, 83). These interesting findings
have important implications for improving the efficacy of OEC-
based treatments for SCI.

OEC Phagocytic Activity
It is now generally acknowledged that degenerative/dead
neurons and apoptotic neuronal debris caused by CNS injury
usually create an extrinsic adverse environment, which is
envisioned to hamper neural survival and neurite sprouting
and regeneration. Therefore, the expeditious removal of
apoptotic cells is crucial for preventing neural cell lysis and
consequent production of deleterious pro-inflammatory and
antigenic autoimmune components. The olfactory system is a
specialized physical structure in which olfactory receptor
neurons (ORNs) can be continuously renewed throughout the
lifespan (29, 84). In the context of olfactory nerve turnover,
extensive apoptotic olfactory neural debris is continuously
generated during normal development and adulthood (29, 85).
Strikingly, no excess neural cell-derived debris is constantly
packed in the olfactory system, while microglia/macrophages
remain largely absent from the olfactory nerve and are excluded
from direct contact with axon fascicles. Conversely, OECs are
still the major professional phagocytes that remove dead cells
and axonal debris arising from neuronal apoptosis (29, 81). Even
after damage to the olfactory nerves, OECs are the primary
phagocytic populations responsible for the removal of cellular
debris, and thus very few macrophages are recruited to clear
neural debris (80, 81). In addition to eliminating neural debris,
OECs readily phagocytose bacteria and are of paramount
importance in protecting the olfactory nerve from being
infected by microbes (82, 83), since some of their normal
physiological and immune functions involve combating or
controlling more severe infections. In vitro studies have
reported that OECs possess a number of key phagocytosis-
related receptors such as Toll-like receptor 4 (TLR4),
phosphatidylserine receptors and mannose receptors (26, 29,
80, 86–88), which bind to and are activated by LPS or various
pathogen-associated molecular patterns (PAMPs) or recognize
phosphatidylserine on an apoptotic target, leading to the
engulfment of various microbes, apoptotic and necrotic cell
debris and dead cells by OECs (29, 80, 86). In addition to
performing phagocytosis via recognition of “eat me” signals,
OECs also utilize such bridging molecule (milk fat globule-EGF
factor 8, MFGE-8)-mediated phagocytosis for damaged “self”
and invading “non-self” clearance (80, 89). Apart from the
abovementioned cytokines, some anti-inflammatory cytokines,
such as IL-10 and transforming growth factor beta (TGF-b), also
promote OEC phagocytic activity via the signaling through the
other relevant receptors (80, 89, 90). Moreover, OECs were
reported to adopt “microglia-like” cells with higher levels of
CD11 expression, by which OECs could efficiently internalize
and degrade various detrimental targets. Although the molecular
mechanisms involved in OEC-mediated phagocytosis remain
mostly unknown, an increasing number of studies have
demonstrated that OEC phagocytic activity can effectively
May 2022 | Volume 13 | Article 881162
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contribute to neural cell survival and neurite outgrowth in vivo
and in vitro (26, 27, 89–91). Intriguingly, our recent in vitro study
of phagocytosis by OECs demonstrated that OEC phagocytic
activity could be strengthened by curcumin, a component of
turmeric (27), which at low concentrations could augment the
OEC-mediated clearance of axonal debris by approximately 10-
fold by involving mitogen-activated protein (MAP) kinases (27).
In comparison, no impact of curcumin on Schwann cell
phagocytic activity was found, highlighting the importance of
OEC phagocytic activity in pro-regenerative processes. In
summary, phagocytosis by OECs not only plays an active role
in creating a favorable environment for neuronal turnover in the
olfactory system, but also aids the overall processes of neural
regeneration and recovery by transplantation after SCI.

Release of Cytokines
OECs have been shown to share some characteristics with
inflammatory cells in addition to sharing features with
astrocytes and Schwann cells, allowing OECs to prevent
microbes from invading the CNS along the olfactory pathway.
By using several advanced techniques including transcriptome
Frontiers in Immunology | www.frontiersin.org 6
and proteome analysis, bioinformatics, high-throughput
microscopy, RT-PCR, and image analyses, a much more
profound understanding of the specific molecular profiles that
form the basis of the synergistic pro-regenerative abilities of
OECs can now be promulgated, additional chemokines
responsible for the modulation of the immune response and
pro-regenerative processes have been progressively uncovered.
The expression of cytokines and pro-regenerative molecules in
OECs has been reported in a series of studies (Table 1).
Microarray analyses have shown that OECs express chemokine
(CXC motif) ligand 1 (CXCL1), monocyte chemotactic protein 1
(MCP-1), chemokine (CX3C motif) ligand 1 (CX3CL1), and
chemokine (CXC motif) ligand 12 (CXCL12) (27, 105–107).
Numerous cytokines produced by OECs are likely to interact
with immune cells, exerting regulatory functions (106). For
example, microglial expression of chemokine (CXC motif)
receptor 4 (CXCR4) could have an autocrine impact on OEC-
secreted cytokines (106). The primary olfactory nervous system
has a great innate capacity to regenerate and repair itself after
most injuries, and OECs remove large amounts of degenerative
or necrotic cell debris, which requires bridging molecules to aid
TABLE 1 | Main cytokines, chemokines and other factors expressed in olfactory ensheathing cells.

Cytokines/chemokines/other factors Method of detection References

CXCL1 Microarray, Immunostaining Vincent et al. (43, 48)
MCP-1 Microarray, PCR Su et al. (29)
CX3CL1 Immunostaining Ruitenberg et al. (92)
CXCL12 Microarray, PCR Hao et al. (27)
MFGE-8 RT-PCR, Immunostaining Li YJ, et al. (89)
IL-10 ELISA, RT-PCR Guo et al. (90)
IL-4 ELISA, RT-PCR Guo et al. (90)
TGFb ELISA, RT-PCR Guo et al. (90)
IL-1b Microarray, PCR, Immunostaining Su et al. (29)
IL-6 Microarray, PCR, Immunostaining Su et al. (29)
SPARC In situ hybridization, Immunostaining Au E, et al. (93)
Cebpb Microarray, PCR Su et al. (29)
TNFa Microarray, Immunostaining Su et al. (29)
MMP2 microarray, Immunostaining Tisay and Key (94)
SERPIN1 Microarray, Immunostaining Roet et al. (95)
PAR1 Microarray, proteomics Au E, et al. (93)
THBD Microarray, proteomics Simón et al. (96)
SCARB2 Microarray, RT-PCR, Immunostaining Roet et al. (95)
RND1 Cellomic assay, Immunostaining Roet et al. (95)
VAV1 Cellomic assay, Immunostaining Roet et al. (95)
ESM1 Microarray, RT-PCR Roudnicky et al. (97)
CYR61 Microarray, RT-PCR, Immunostaining Brigstock (98)
ANGPT2 RT-PCR, Immunostaining Roudnicky et al. (97)
S100A9 Microarray, Immunostaining Roet et al. (95)
BDNF ELISA, Immunostaining, ELISA Woodhall et al. (99)
NGF ELISA, Immunostaining, ELISA Woodhall et al. (99)
CNTF RT-PCR, Immunostaining, Wewetzer et al. (100)
NT-3 RT-PCR, Immunostaining Lipson et al. (101)
NT-4/5 RT-PCR, Immunostaining, ELISA Lipson et al. (101)
GDNF RT-PCR, Immunostaining, ELISA Woodhall et al. (99)
Neuturin RT-PCR, Immunostaining Lipson et al. (101)
CDH2 Immunostaining Akins et al. (102)
NCAM1 Immunostaining Tisay and Key (94)
Laminin Immunostaining Doucette (56)
Fibronectin Immunostaining Doucette (56)
Tenascin Immunostaining Deckner et al. (103)
L1 Immunostaining Witheford M, et al. (104)
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attachment (80). OECs can express milk fat globule-EGF factor 8
(MFGE-8), a bridging molecule, to work with integrin receptors,
leading to phagocytosis of apoptotic debris (80, 89, 108).
Meanwhile, OECs release anti-inflammatory cytokines such as
IL-10 and TGF-b, and promote phagocytosis via integrin
receptors (29, 89, 90). Consistently, our more recent in vitro
study showed that OECs were capable of phagocytosing
apoptotic and necrotic neural debris under inflammatory insult
conditions, which promoted neuronal survival and neurite
outgrowth (26, 27, 90). This enhancement is mainly associated
with some cytokines released from OECs. These factors include
IL-10, IL-4 and TGF-b in addition to neurotrophic factors
(brain-derived neurotrophic factor, BDNF; nerve growth
factor, NGF; and glia-derived neurotrophic factor, GDNF)
(90). Importantly, OECs can be induced to express OX-42, a
macrophage marker, indicating that OECs can be attracted to
endocytose bacteria (80, 83, 109). Strikingly, a recent study by Su
and colleagues revealed that OECs exist in two different states,
resting and activated, and that OECs can be activated by LPS and
act as phagocytes in the clearance of apoptotic ORNs (29). In
their study, they found that exposure of OECs to LPS resulted in
increases in the expression of MCP-1, CCAAT/enhancer binding
protein (Cebpb), CXCL-1, inducible nitric oxide synthase
(iNOS), TNF-a, IL-1b, and IL-6, and enhanced the phagocytic
capacity of OECs (29). Although the abovementioned cytokines
and chemokines include some pro-inflammatory factors, OEC
phagocytosis of necrotic bodies leads to only relatively low levels
of IL-6 and TNF-a (80, 110, 111). The increases in the
production of pro-inflammatory cytokines do not cause a
significant pro-inflammatory response (80). Likewise, it has
been documented that OECs actually degrade live E. coli, and
respond to Staphylococcus aureus infection both in vivo and in
vitro with an inflammatory response that involves the secretion
of IL-6, TNF-a, NF-kB, and iNOS (87, 112–114). These distinct
results are mainly attributed to the heterogeneity of OECs.
Generally, the NFkB signaling pathway is a key facilitator of
responses to injury and inflammation (115). OECs, or molecules
produced by OECs can inhibit NFkB activation, thus exerting a
neuroprotective impact after a variety of CNS injuries and
stresses. Indeed, OECs secrete several factors such as TNF-a
and IL-1b to likely recruit macrophages and modulate
inflammation and neurodegeneration (30, 31, 80). However,
little clearance of apoptotic neural debris by microglia/
macrophages and severe inflammation have been found in the
normal or injured olfactory system, implicating a failure to
recruit of microglia/macrophages to the olfactory nerve system.

Microarray and proteomic studies have also identified a large
number of molecules that are relatively highly expressed in
short-term cultured OB-OECs or LP-OECs (30). In light of the
microarray data, the roles of matrix metallopeptidase-2 (MMP2),
serine protease inhibitor E1 (SERPINE1), protease-activated
receptor-1 (PAR1) and thrombomodulin (THBD) are being
investigated (30, 96). Several studies have revealed that these
factors derived from OB-OECs directly or indirectly participate
in the regulation of neurite outgrowth, promoting axonal
regeneration (30, 93). Of note, proteomics studies have showed
that secreted protein acidic and rich in cysteine (SPARC)
Frontiers in Immunology | www.frontiersin.org 7
expression in LP-OECs plays an important role in axonal
extension and regeneration (93). Moreover, using a cellomic
approach, scavenger receptor class B member-2 (SCARB2) was
identified as protein that promotes regenerating axonal
sprouting in injured sensory neurons. This protein is mainly
involved in choles tero l t rans fer and transport of
glucocerebrosidase (GBA) to the lysosome which are crucial
for rapid axonal membrane biosynthesis during regeneration
after nerve injury (95, 116). Apart from SCARB2, Rho-family
GTPase-1 (RND1) and VAV1 were also screened out to regulate
cytoskeletal remodeling (30, 65, 117, 118) and the formation of
cellular protrusions in a cellomic assay. Of particular interest are
endothelial cell-specific molecule-1 (ESM1), cysteine-rich
protein-61(CYR61) and angiopoietin-2 (ANGPT2), which are
secreted by OECs and promote angiogenesis by directly
stimulating endothelial cells (97, 98, 118, 119).

Three other immunomodulatory cytokines secreted by OECs,
S100A9, CX3CL1 and TGFb2, can have direct or indirect effects
that promote neurite outgrowth and protect neurons (30, 61, 95,
120). S100A9 supports neurite extension by modulating a variety
of inflammatory processes in the complex cel lular
microenvironment after CNS injury (30, 121, 122). It was
indicated to protect against microglial and macrophage
neurotoxicity. Similar to S100A9, CX3CL1, also known as the
cytokines fractalkine, is abundantly expressed in OECs, and has a
significant impact on neurite growth (92, 95, 123). In addition to
the abovementioned cytokines, a wide variety of neurotrophic
factors and extracellular matrix (ECM) molecule involved in
neural repair were revealed to be expressed by OECs through
classic immunochemistry, ELISA, and qPCR, biochemical and
proteomics analyses. These identified molecules include
neurotrophic factors such as NGF, BDNF, NT-3 NT4/5,
Neurturin, CNTF, and GDNF (35, 99–101, 124–126) and
several growth-promoting cell adhesion and extracellular
matrix molecules, including cadherin (CDH2), NCAM1,
Laminin, Fibronectin, Tenascin and L1 (20, 57, 94, 99, 102,
103, 127). These results suggest that transplantation of OECs is
emerging as a favorable and promising strategy for treating PNS
and CNS injuries. The regeneration-promoting properties of
OECs can be at least partly attributed to these bioactive
molecules produced by OECs (61, 101). Nevertheless, it is
necessary to further investigate the role of specific molecules in
the regeneration-promoting effects of OECs in the complex
physiological context of SCI.

OECS and Anti-Inflammatory Activity
The olfactory epithelium (OE) and the underlying LP are
continuously exposed to a variety of potentially infectious
environmental agents. However, most microbial invasion does
not occur from the olfactory mucosal surfaces via the olfactory
route to the CNS. It is possible that the key innate immune roles
of resident OECs and their unique biological characteristics are
envisioned to be efficient in preventing microbial pathogens from
invading the CNS via the olfactory nerve. Nevertheless, epithelial
injury may increase susceptibility to invasion. Inflammation is a
primary part of the initial response to CNS injury and is
characterized by blood brain/spinal barrier (BBB/BSB)
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impairment in the acute phase, which is accompanied by the
infiltration of immune cells and accumulation of cytokines near
the injury site (128). Infiltrating immune cells are recruited to the
injured area through glial chemokines and cytokines released by
damaged neural tissue and subsequent upregulation of
chemotactic cellular adhesion molecules and selectins on
endothelial cells (129–131). During the acute insult phase,
which typically lasts for a few hours, the levels of pro-
inflammatory cytokines rapidly increase and peak (132–134),
seemingly leading to an augmentation in damage (135, 136).
However, recent advances in the understanding of CNS injury
show that microglia during the first week post-SCI, microglia
may exert a rather neuroprotective effect by directly modulating
the formation of the astroglial scar and thus sequester blood-
derived inflammatory cells in the lesion core to avoid
inflammation-mediated tissue damage (137, 138). This finding
is consistent with Bellver-Landete’s (139) observation that the
depletion of microglia using PLX3397, a CSF1R/c-Kit inhibitor,
resulted in disrupted glial scar formation, enhanced immune cell
infiltrates, delayed astrocyte repopulation and reduced neuronal
survival and thus disrupted neurological recovery. The study
revealed that microglia-derived cytokines, such as IGF-1, play a
pivotal role in modulating astroglial function in pathological
conditions. Notwithstanding the beneficial effect of microglia on
neural regeneration after SCI, this study suggested that treatment
of targeting these cells should be initiated during the first week
post-SCI, as this time frame was considered to be the best
therapeutic window (139). In the hyper-acute/acute phase
ranging from 2 to 7 days following injury, there appear to be
large stepwise decreases in the levels of typical pro-inflammatory
cytokines (129, 133, 139). In light of these findings, delayed
microglial depletion after spinal cord injury reduces chronic
inflammation and neurodegeneration. Likewise, a larger number
of microglia/macrophages and T cells are also recruited to the
damaged area, and the levels of anti-inflammatory factors
increase (136, 140, 141). It has been suggested that
inflammation is likely to support the later stages of neural
regeneration (142, 143), suggestive of the sub-acute phase of
transformation from exacerbation to repair in SCI (30, 31).
Hence, for regulation of the inflammatory microenvironment,
transplantation of OECs should be focused on the sub-acute
stage of SCI. As mentioned previously, Schwann cells have the
potential to produce some cytokines and their receptors, which
are likely to interact with infiltrating immune cells to modulate
inflammatory responses (144, 145). Usually, the inflammatory
responses following SCI are predominantly modulated by the
dynamic balance of the macrophage/microglia quiescence and
activation (146, 147). Following nerve injury, neural
degeneration initiates the activation of microglia/macrophages,
leading to the secretion of several MMPs and the
proinflammatory cytokines IL-1b, IL-2, IL-6, TNFa, and IFNg
(148–151). Some cytokines not only further activate resident
microglia and recruit much more inflammatory cells
(neutrophils, macrophages, lymphocytes, and natural killer
cells) from the systemic circulation, amplifying the
inflammatory responses, but also destroy the internal
Frontiers in Immunology | www.frontiersin.org 8
microenvironment, resulting in neuronal cell death and
reduced axonal regeneration (148, 152, 153). For instance, the
proinflammatory cytokines IL-1b, IL-6, and TNF can elicit
extensive inflammatory responses, while the chemotactic
factors MCP-1 and MIP-1a can promote astroglia and
microglia activation and accumulation in the injured area (7,
154–156). Astroglia and microglial, are the major resident innate
immune in the CNS and release diverse inflammatory factors
involving in the inflammatory signaling cascade, aggravating
secondary pathological damage to the CNS; however, miroglia
also play a beneficial role in CNS injury in the early stage (138,
139). Nevertheless, implanted OECs in the lesioned spinal cord
tissue are likely to interact with these cells to regulate
inflammation. Secreted anti-inflammatory cytokines, such as
IL-4, IL-10, and TGF-b, are capable of modulating the
inflammatory response, resulting in a decrease in the
production of several pro-inflammatory factors such as IL-
1b, TNF-a and IL-6, by microglia/macrophages (143, 157,
158). Moreover, these cytokines also reduce infiltration of
immunocytes, such as macrophages, neutrophils, and
monocytes, into inflammatory lesions in the spinal cord by
downregulating chemokines in vivo, thereby effectively
attenuating subsequent inflammation (159, 160). Although a
growing number of researchers have achieved a substantial
progress in the understanding of the cellular mechanisms
underlying these findings, much still remains elusive due to
the extremely complex relationship between the nervous and
immune systems with the involvement of OECs. Therefore, it
is also of pivotal importance to elucidate the effects of
cytokines released from OECs in the immunological milieu
after SCI.

Immunomodulation
The regenerative capacity of the adult mammalian spinal cord after
injury is extremely limited, mainly due to multifaceted adverse
factors in addition to inflammatory cell activation that together
contribute to a non-permissive environment and minimal
functional recovery (1, 16, 160, 161). Neuroinflammation is part
of the primary responses to injury and might be linked to the
characteristics of innate immune cells and immunological molecules
involved in the injury area (19, 162, 163). Four different stages after
SCI can involve the cytokines IL-1a, IL-6, IL-8, IL-11 and TNF-a as
well as the chemokines granulocyte colony-stimulating factor (G-
CSF) and granulocyte-macrophage colony-stimulating factor (GM-
CSF) (7, 21, 150, 151, 164, 165). Additionally, resident microglia are
activated in the vicinity of the injury site, and neutrophils,
macrophages, lymphocytes, and natural killer cells are recruited
from the systemic circulation, causing inflammatory damage
through several destructive species, including free radicals, ROS,
nitric oxide (NO), and excitotoxins (7). Furthermore, numerous
astrocytes are activated to produce chondroitin sulfate
proteoglycans (CSPGs) and form an astroglial scar (7, 21, 150,
151, 164, 166). Overall, these factors constitute an intricate
microenvironment that is detrimental for neural regeneration.
Once OECs are implanted into the injured spinal cord zone,
numerous molecules released from OECs, as acute positive and
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negative regulators participate in modulating the expression and
activity of cytokines and chemokines (167). For instance, the anti-
inflammatory cytokines IL-4, IL-10, TGF-b, and IL-13 produced by
OECs protect against cell degeneration or death by modulating
iNOS and NO production in the context of LPS/IFN-g stimulation
(90, 158, 159, 161). Meanwhile, these anti-inflammatory cytokines
are indicative of inhibition of the release of the pro-inflammatory
cytokines TNF-a, IL-1b, IL-2, and IL-6 (161, 165). As a
consequence, OECs delay the activation of microglia/
macrophages, the time-dependent multiphasic inflammatory
response, and the peak of the immune response, leading to
neuroprotection against further inflammatory damage (26, 29, 35,
63, 112, 167). More significantly, our latest study also found that
exosomes released from OECs could efficiently inhibit
inflammation following SCI via polarization of M1 microglia to
M2 microglia, leading to neural survival and axonal regeneration
(165). In addition, a growing number of studies have revealed that
IL-4 and IL-10 can effectively modulate the infiltration of
monocytes, neutrophils and macrophages (149, 160, 168–170).
Recently, an interesting study revealed that OECs possess strong
innate immune modulatory properties, displaying clearance of
cellular debris mediated by IL-10 and TGF-b (29). Moreover, the
interaction between OECs and reactive astrocytes may diminish the
formation of a CSPG scar due to IL-10-mediated upregulation of
MMP-13, an enzyme necessary to later degrade CSPG (35, 167).
This indicates that IL-10 can skew pro-inflammatory monocytes
into a producive phenotype. Most importantly, most of the anti-
inflammatory factors (IL-4, IL-10, IL-13 and TGF-b) derived from
OECs aside from innate immune cells, participate inmodulating cell
survival, proliferation and migration, and thus promote
regeneration after SCI (29, 35, 170). Others (IL-4, and TGF-b)
have a more direct impact on neuronal survival or neurite
regeneration. This is mainly attributed to the modulatory effects
of these factors on acute and chronic immune cell responses, the
expression of detrimental molecules [iNOS, NO, reactive oxygen
species (ROS) and Caspase], the local secretion of neurotrophin,
and the synthesis of inflammatory factors (7, 35, 143, 167). Thus, the
OEC-mediated regulation in the injured area, possibly through
growth factor and cytokine modulation, plays a crucial role in cell-
based therapy for neural regeneration.
POSSIBLE MECHANISM OF BY WHICH
OEC TRANSPLANTATION PROTECTS
AGAINST INFLAMMATION IN THE
TREATMENT OF SCI

Although the molecular mechanism underlying the pro-
regenerative properties of OECs is currently unknown,
compelling studies have revealed that implantation of OECs
promotes neural repair and functional recovery of the injured
spinal cord (30, 35, 45, 63, 69, 90, 167), and that the therapeutic
potential of OECs is mainly due to their unique immune cell
properties and consequent modulatory abilities. First, OECs
secrete several growth factors, axon-guiding molecules and
basement adhesion components, which create a supportive
Frontiers in Immunology | www.frontiersin.org 9
environment conducive to neural survival, migration and
neurite extension (7, 104, 126, 167). The relevant molecules are
described in the above sections. Second, the critical aspects of
nerve tissue repair include structural remodeling and support,
immunomodulation, neurotrophic factor production and
antigenic stimuli. OECs reduce the levels of inhibitory
molecules in the lesion core, preventing neuronal death and
axonal dieback. Furthermore, OECs limit immune cell activation
and infiltration and mitigate secondary tissue damage (25, 62,
105, 126, 167). Third, the other aspects of OECs conducive to
achieving improvements in the microenvironment include
moderating the detrimental effects of the glial scar, stimulating
angiogenesis and metabolizing toxic macromolecules (30, 31,
167). Regardless of the pro-regenerative potential of OECs in the
treatment of SCI, the hostile and inhibitory environment arising
from acute SCI may result in the progressive death of
transplanted OECs, ultimately resulting in abortive or
unsatisfactory outcomes for neuroregeneration. Accordingly,
identifying an effective strategy to boost the ability of OECs to
proliferate is of pivotal importance. Our latest study found that
curcumin, a natural polyphenol derived from turmeric, could
effectively activate OECs, achieving improved proliferation and
migration. Therefore, use of curcumin-activated OECs can
overcome low cell survival (27, 90). Similarly, Khankan et al.
(167) showed that cyclosporin-A, a potent immunosuppressant,
could enhance graft survival and augment the beneficial effects of
OECs, thus ensuring the efficiency of implanted OECs. Overall,
utilizing OECs as a cell-based therapeutic agent for nerve repair
in the injured spinal cord has focused on the ability of these cells
to support the regeneration of injured neurons. This is mainly
based on the potential of OECs to display innate immune
properties, produce cytokines, and create an specific
environment, identifying these cells as a useful therapeutic
agent for SCI.
PERSPECTIVE ON OEC RESEARCH

OECs are cells that harness a promising neural repair-promoting
potential that can be useful for promoting neural regeneration in
the injured spinal cord. The specific molecular mechanisms
underlying the synergistic pro-regenerative properties of OECs
have been revealed. A growing number of studies have showed
that OECs possess unique abilities to secrete growth factors,
modulate the immune response, stimulate angiogenesis, and
phagocytose cell debris, which actively contribute to spinal
cord regeneration. The unique features of OECs appears to
orchestrate the molecular signaling for many of these processes
related to neural regeneration in a coordinated fashion in other
inner cell types. A profound understanding of the different
molecular and cellular biological characteristics of OECs is
very important for utilizing at the appropriate stage for specific
clinical applications. In addition, the different molecular
pathways in these diverse cells that are present in OECs will
provide specific insights into the factors that could prove crucial
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in determining a favorable outcome for cell transplantation.
Hence, important new molecular insights into the mechanisms
that govern successful neural regeneration will probably be yield
useful results in the near future.
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37. Wewetzer K, Verdú E, Angelov DN, Navarro X. Olfactory Ensheathing Glia
and Schwann Cells: Two of a Kind? Cell Tissue Res (2002) 309:337–45. doi:
10.1007/s00441-002-0607-y

38. Doucette R. Development of the Nerve Fiber Layer in the Olfactory Bulb of
Mouse Embryos. J Comp Neurol (1989) 285:514–27. doi: 10.1002/
cne.902850407

39. Torres–Paz J, Tine EM, Whitlock KE. Dissecting the Neural Divide: A
Continuous Neurectoderm Gives Rise to Both the Olfactory Placode and
Olfactory Bulb. Int J Dev Biol (2021) 65:275–87. doi: 10.1387/ijdb.200097kw

40. Farbman AI. Olfactory Neurogenesis: Genetic or Environmental Controls?
Trends Neurosci (1990) 13:362–65. doi: 10.1016/0166-2236(90)90017-5

41. Doucette R. Glial Influences on Axonal Growth in the Primary Olfactory
System. Glia (1990) 3:433–49. doi: 10.1002/glia.440030602

42. Blanchart A, Martıń–López E, De Carlos JA, López–Mascaraque L.
Peripheral Contributions to Olfactory Bulb Cell Populations (Migrations
Towards the Olfactory Bulb). Glia (2011) 59:278–92. doi: 10.1002/glia.21100

43. Vincent AJ, Taylor JM, Choi–Lundberg DL, West AK, Chuah MI. Genetic
Expression Profile of Olfactory Ensheathing Cells Is Distinct From That of
Schwann Cells and Astrocytes. Glia (2005) 51:132–47. doi: 10.1002/
glia.20195

44. Thompson RJ, Roberts B, Alexander CL, Williams SK, Barnett SC.
Comparison of Neuregulin-1 Expression in Olfactory Ensheathing Cells,
Schwann Cells and Astrocytes. J Neurosci Res (2000) 61:172–85. doi:
10.1002/1097-4547(20000715)61:2<172::AID-JNR8>3.0.CO;2-C

45. Reshamwala R, Shah M, Belt L, Ekberg JAK, St John JA. Reliable Cell
Purification and Determination of Cell Purity: Crucial Aspects of Olfactory
Ensheathing Cell Transplantation for Spinal Cord Repair. Neural Regener
Res (2020) 15:2016–26. doi: 10.4103/1673-5374.282218

46. Higginson JR, Barnett SC. The Culture of Olfactory Ensheathing Cells
(OECs)–A Distinct Glial Cell Type. Exp Neurol (2011) 229:2–9. doi:
10.1016/j.expneurol.2010.08.020

47. Kawaja MD, Boyd JG, Smithson LJ, Jahed A, Doucette R. Technical
Strategies to Isolate Olfactory Ensheathing Cells for Intraspinal
Implantation. J Neurotrauma (2009) 26:155–77. doi: 10.1089/neu.2008.0709

48. Vincent AJ, West AK, ChuahMI. Morphological and Functional Plasticity of
Olfactory Ensheathing Cells. J Neurocytol (2005) 34:65–80. doi: 10.1007/
s11068-005-5048-6

49. Donato R. Functional Roles of S100 Proteins, Calcium–Binding Proteins of
the EF–hand Type. Biochim Biophys Acta (1999) 1450:191–231. doi:
10.1016/S0167-4889(99)00058-0

50. Cerofolini L, Amato J, Borsi V, Pagano B, Randazzo A, Fragai M. Probing the
Interaction of Distamycin A With S100b: The “Unexpected” Ability of
S100b to Bind to DNA-Binding Ligands. J Mol Recognit (2015) 28:376–84.
doi: 10.1002/jmr.2452

51. Vázquez A, Hernández-Oliveras A, Santiago–Garcıá J, Caba M, Gonzalez–
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