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Transmission electron microscopy (TEM) has a multitude of uses in biomedical imaging due to its ability
to discern ultrastructure morphology at the nanometer scale. Through its ability to directly visualize virus
particles, TEM has for several decades been an invaluable tool in the virologist’s toolbox. As applied to
HIV-1 research, TEM is critical to evaluate activities of inhibitors that block the maturation and morpho-
genesis steps of the virus lifecycle. However, both the preparation and analysis of TEM micrographs
requires time consuming manual labor. Through the dedicated use of computer vision frameworks and
machine learning techniques, we have developed a convolutional neural network backbone of a two-
stage Region Based Convolutional Neural Network (RCNN) capable of identifying, segmenting and classi-
fying HIV-1 virions at different stages of maturation and morphogenesis. Our results outperformed com-
mon RCNN backbones, achieving 80.0% mean Average Precision on a diverse set of micrographs
comprising different experimental samples and magnifications. We expect that this tool will be of inter-
est to a broad range of researchers.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Electron microscopy and virus research

Transmission electron microscopy (TEM) has long been used as
a diagnostic tool in virology. Investigations of fluid samples from
patients’ skin lesions in the 1940s enabled the variola virus, which
is the poxvirus that causes smallpox, to be discerned from the
much larger varicella-zoster virus, which is a herpesvirus that
causes chickenpox [1]. The introduction of negative stain materials,
such as uranyl acetate and phosphotungstic acid, in the late 1950s,
significantly improved ultrastructure resolution and thus was a
springboard development for the use of TEM in modern day virol-
ogy [2].

TEM has been invaluable to the discovery and diagnosis of
many viral diseases that still plague the world today. For example,
TEM data was instrumental in the initial classification of the AIDS
virus, since named HIV-1 for human immunodeficiency virus 1, as
a retrovirus [3]. TEM-based techniques are today used to diagnose
pathologies associated with infection by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), which is the cause of the
worldwide COVID-19 pandemic (reviewed in [4]).

HIV-1 is taxonomically a lentivirus, which is one of six genera
that comprise the Orthoretrovirinae subfamily of Retroviridae. As
such, the viral structural proteins and replication enzymes are
expressed in infected cells as Gag and Gag-Pol polyproteins that
become cleaved by the viral protease (PR) enzyme during the pro-
cess of virus maturation (reviewed in [5]). Typical mature HIV-1
particles, which are approximately 90 to 120 nm in diameter, har-
bor an internal core that is composed of a conical shell of capsid
protein that houses the viral ribonucleoprotein complex (RNP)
composed of two copies of the viral RNA genome, the structural
protein nucleocapsid (NC), and reverse transcriptase and integrase
(IN) enzymes [6] (Fig. 1). The RNP is the most electron-dense com-
ponent of HIV-1 particles [7]. In immature particles, which are
non-infectious, the electron density presents as a toroidal structure
in proximity to the viral membrane [7] (Fig. 1).

TEM has been invaluable to studies of HIV-1 inhibitors that
interfere with proper virion maturation. Compounds that inhibit
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Fig. 1. HIV-1 virion morphologies pertinent to this study. A Schematic representation showing the configuration of an immature virion and samples from TEM micrographs.
The color scheme cartoons the following components from exteror to interior: blue, envelope glycoproteins; green, lipid bilayer; yellow, matrix protein; black, capsid protein;
red, RNA. B Schematic representation showing the configuration of a mature virion and samples from TEM micrographs. C Schematic representation showing the
configuration of an eccentric virion and samples from TEM micrographs.
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HIV-1 PR activity block polyprotein processing and hence arrest
HIV-1 replication at the maturation step (reviewed in [8]). A sec-
ond class of HIV-1 maturation inhibitor, which is typified by bevir-
imat, binds to the protein substrate to inhibit the final cleavage of
Gag processing between capsid and spacer peptide 1 (reviewed in
[9]). Removal of the IN domain from the C-terminus of Gag-Pol can
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also increase the frequency of immature particles in HIV-1 virion
preparations [10,11]. IN missense mutations can moreover elicit
eccentric HIV-1 particle formation, where the electron-dense RNP
appears outside the viral core, often in association with the viral
membrane [10–13] (Fig. 1). The allosteric IN inhibitor (ALLINI)
class of preclinical HIV-1 compounds elicits eccentric particle for-
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mation (reviewed in [9]). In this way, the inhibitors hyper-
multermerize IN to preclude its binding to RNA in the virus particle
[14,13].
1.2. Machine learning applied to transmission electron microscopy

Over the last five years, the application of Machine Learning
(ML) in biomedical image processing has increased significantly
[15]. For instance, image classification has enabled diagnostic pre-
diction of Alzheimer’s disease in patients from brain MRIs [16] and
SARS-CoV-2 detection from chest X-ray scans [17]. For microscopy
image analysis, where individual detection and classification of
substructures of images are necessary, two main frameworks have
been applied: object segmentation and object detection. While the
first aims to classify the pixels in an image predicting the probabil-
ity that they belong to a certain class, object detection uses a per-
region approach for classifying object instances. These techniques
have been applied for the detection of cancer cell nuclei [18], the
segmentation of neural membranes [19], segmentation of feline
calcivirus [20] and virus classifications [21]. So-called Convolu-
tional Neural Networks (CNNs) have proven useful for the seman-
tic segmentation of small extracellular vesicles (sEVs) from TEM
micrographs [22,23]. These approaches include U-Net [24], a CNN
based on the combination of downsampling and upsampling layers
with connections between the convolutional layers.

Although so-called deep learning models like Sparse Autoen-
coders (SAE) and Recurrent Neural Networks (RNNs) have been
applied to medical imaging [25,26], the most popular approach
continues to be CNNs. The latter class of models have proven their
usefulness in classification, detection and segmentation tasks
across a broad range of fields and applications, producing results
up to par with medical experts [27,28].

In the present manuscript, we present an end-to-end Deep
Learning based method for the automated detection and classifica-
tion of HIV-1 virion morphologies from input TEM micrographs.
Our pipeline is composed of two main components, an object
detection pipeline based on a Faster RCNN [29] architecture, and
a stratification layer that can employ different classification back-
bones. The classification backbones supported include ResNets and
a novel CNN, named TEMNet; the latter, designed and trained from
scratch for the detection of HIV-1 virions from TEM micrographs.
ResNets are pretrained using the ImageNet database, in our pipe-
line we support ResNet101, ResNet101v2 and InceptionResNetv2.
Although ResNets are pretrained with photon-based photographs,
here we show that ResNet101, ResNet101v2 and Inception-
ResNet-v2 accurately derive morphology distributions across
mutant and clinical isolate samples after fine-tuning. In addition,
our novel-classifier (TEMNet) proves to be a competitive classifica-
tion backbone, trading off some accuracy (2% less accurate) for an
18% increase in speed and a 94% decrease in memory usage. Alto-
gether, we find that our method is efficient and robust for in situ
HIV-1 virion detection across different morphotypes, predicting
statistical distributions agreeing with results from end-user visual
Table 1
Oligonucleotides used to introduce indicated changes into pNL43/XmaI DNA.

D116N AE6540
AE6541

N184L AE7199
AE7200

delIN AE4903
AE4904

PR D25A AE7644
AE7645
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inspection, while being up to three orders of magnitude faster. The
application of our method to TEM micrographs achieved a mean
Average Precision (mAP) of up to 80:0%.

Our implementation is based on the Tensorflow[30] Keras
framework. The source-code has been made available through
https://github.com/Perilla-lab/TEMNet.
2. Methods

2.1. Virus samples and TEM

All viruses analyzed in this study were generated from proviral
DNA molecular clones. HIV-1 strain NL4-3 (HIV� 1NL4�3) was gen-
erated from pNL4-3 [31] or pNL43/XmaI [32] while HIV-1 YU-2 and
HIV-1 JR-CSF were generated from respective plasmids pYU-2 [33]
and pYK-JRCSF [34]. Mutations in pol corresponding to IN changes
D116N, N184L, and delIN, as well as PR active site mutation D25A,
were introduced into pNL43/XmaI by site-directed mutagenesis
using the primers listed in Table 1. The presence of desired muta-
tions and absence of unwanted secondary changes were verified by
Sanger sequencing. Previously described wild type (WT)
HIV� 1NL4�3 produced in the presence of dimethyl sulfoxide or
the ALLINI BI-D, as well as IN mutant L241A, E96A, and N18I viral
micrographs [7,13,35], were additionally used for RCNN training in
this study.

Viruses were generated from plasmid DNAs by transfecting
HEK293T cells, which were grown in Dulbecco’s modified Eagle’s
medium supplemented to contain 10% fetal bovine serum, 100
IU=ml penicillin, and 100 lg=ml streptomycin at 37�C in the pres-
ence of 5% CO2. Briefly, cells grown in two 15-cm dishes (107 cells
per dish) were transfected with 30 lg plasmid DNA using PolyJet
DNA transfection reagent as recommended by the manufacturer
(SignaGen Laboratories). Two days after transfection, cell super-
natants were filtered through 0.22 lm filters and pelleted by ultra-
centrifugation using a Beckman SW32-Ti rotor at 26,000 rpm for
2 h at 4�C. Virus pellets were fixed with 1 mL fixative (2.5% glu-
taraldehyde, 1.25% paraformaldehyde, 0.03% picric acid, 0.1 M
sodium cacodylate, pH 7.4) overnight at 4�C. The following steps
were conducted at the Harvard Medical School Electron Micro-
scopy core facility. Samples were washed with 0.1 M sodium
cacodylate, pH 7.4, and postfixed with 1% osmium tetroxide and
1.5% potassium ferrocyanide for 1 h, washed twice with water,
once with maleate buffer (MB), and incubated in 1% uranyl acetate
in MB for 1 h. Samples washed twice with water were dehydrated
in ethanol by subsequent 10 min incubations with 50%, 70%, 90%,
and then twice with 100%. The samples were then placed in
propyleneoxide for 1 h and infiltrated overnight in a 1:1 mixture
of propyleneoxide and TAAB Epon (Marivac Canada Inc.).
The following day, the samples were embedded in TAAB Epon
and polymerized at 60�C for 48 h. Ultrathin sections (about
60 nm) were cut on a Reichert Ultracut-S microtome, transferred
to copper grids stained with lead citrate, and examined in a JEOL
1200EX transmission electron microscope with images recorded
5’-CCTTCTAAATGTGTACAA TTTAGCTGCCATATTCC-3’
5’-GTAAAAACAGTACATACA AACAATGGCAGCAATTTC-3’

5’-GGCAGTATTCATCCACCTTT TTAAAAGAAAAGGGGGGATT-3’
5’-CCTTTTCTTTTAAAAAGG TGGATGAATACTGCC-3’

5’-CAGGAAAGTACTATTTTG AGATGGAATAGATAAGGC-3’
5’-GCCTTATCTATTCCATCT CAAAATAGTACTTTCCTG-3’

5’-GGAAGCTCTATTAGCTACAG GAGCAGATGATAC-3’
5’-CTGTATCATCTGCTCCTG TAGCTAATAGAGCTTC-3’
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on an AMT 2 k CCD camera. Images were captured at 30,000�,
25,000� or 20,000� magnification. Micrographs were stored on a
8-bit single-channel TIFF lossless format. In contrast to photon-
based microscopy, where each pixel in the TIFF files encodes the
wavelength of the photon, the TIFF files used in the present study
contained electron intensities.
2.2. Data preparation

In order to build a robust neural network capable of identifying
HIV-1 virions across different experimental conditions, we built
training and validation datasets from micrograph samples using
IN and PR mutant viruses to mimic eccentric and immature parti-
cle morphologies, respectively. In total, 59 micrographs imaged at
30,000� magnification were assigned morphology labels. This
dataset can be found freely at 10.5281/zenodo.5149062.

The raw TEM micrographs were then pre-processed. First, the
TEM micrographs were cropped, removing the image labeling
information added by the microscope and standardizing the micro-
graph size to 4,000 � 2,620 pixels. Additionally, since object detec-
tion tasks perform segmentation and classification of image-based
objects by passing regions of interest through a convolutional net-
work, bounding box coordinates ðxi; yi;wi;hiÞwere assigned to each
of the labeled virions in each micrograph.

A reasonably sized dataset is vital for training a deep neural net-
work, which especially applies with CNNs, where the number of
learnable parameters can reach millions and can quickly overfit if
the number of training samples is too small. A known paradigm
to solve this issue is via transfer learning, where a network is first
pre-trained on a massive dataset like ImageNet [36] and then
trained on the smaller target dataset. However, it has been shown
that for object detection tasks [37], results on par with ImageNet
pre-trained networks can be achieved when training from a ran-
dom initialization (from scratch) with a dataset as low as 10k sam-
ples [38], given sufficient training time.

Two approaches were implemented to effectively increase the
size of our data: First, each micrograph was cropped into overlap-
ping regions of 1,024 � 1,024 pixels. To generate the virion classes
and box coordinates inside each cropped region, HIV-1 particles
were counted as ground truth only if at least 75% of the area
spanned by their respective bounding box was inside the cropped
Fig. 2. Network architecture of the deep-learning classifier developed in the present wo
segment the particles (RPN) and classify the segmented regions (CNN). A Schematic of a
(instance segmentation). Faster RCNN uses a Region Proposal Network (RPN) to generate
same backbone CNN. B Our backbone CNN, TEMNet, is composed of several ConvBlocks
used a Feature Pyramid Network (FPN) to generate multi-scale feature maps on which to
via two fully-connected layers and soft max output. Each output channel denotes one c
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region. The features of the detected particles accordingly remained
consistent across the datasets and misclassification noise, where a
small section of a virion is mistakenly classified, was downplayed.
This method generated between 1 to 48 regions where particles
were present and increased the number of images in the dataset
to 2,730. The second approach consisted of applying offline aug-
mentations to the cropped images as follows: each input image
was transformed applying horizontal flipping, vertical flipping,
180� rotations and gaussian noise with a mean of 0 and a standard
deviation of 1. This increased the dataset by a factor of four, gener-
ating new images and labels that were consistent with the features
and morphologies of the HIV-1 virions in the micrographs, while
the modifications of the images reduced overfitting on the training
process. Together, the strategy described above, which is repre-
sented in Fig. A.9, increased our dataset to 13,650 images. The lat-
ter dataset was divided for network optimization, yielding 10,725
images for training and 2,925 images for validation.
2.3. Region-based Convolutional Neural Networks (RCNN)

Developing an algorithm to identify and classify HIV-1 virions
from TEM micrographs is in essence an object detection problem,
where the goal is to classify individual object instances in an image
and localize each one using a bounding box. For this task we
employed the Region-based Convolutional Neural Network [39]
(RCNN) architecture.

RCNNs are based on applying a Convolutional Neural Network
(CNN) to evaluate classification on a number of candidate Regions
of Interest (RoI) delimited by bounding boxes. In this sense, RCNNs
are two-stage object detection architectures since a network
proposing the candidate RoIs is first necessary before the backbone
CNN can be applied for classification. To efficiently generate RoIs,
Ren, et.al [29] proposed the Faster RCNN architecture where, as
shown in Fig. 2A), a Region Proposal Network (RPN) shares the con-
volutional backbone used for classification and outputs a set of
rectangular RoIs along with an objectness score indicating the prob-
ability of an object inside the RoI belonging to a class vs the back-
ground. The RPN works by generating anchors, i.e., sliding windows
of different sizes and scale ratios over the last Convolutional Fea-
ture Map output of the backbone CNN. Each anchor is mapped to
an intermediate low dimension feature map and then connected
rk. The methodology is built upon a two component classifier system that is able to
two-stage Faster RCNN architecture for multiple object detection and classification
Regions of Interest (RoI) for classification. Both RPN and classifier heads share the

(Convolution, GroupNormalization and ReLU activation) and MaxPooling layers. We
generate predictions. Network activations were funneled to three output channels,
lassification of viral particle.
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to two fully connected layers, for regression of bounding box coor-
dinates and computation of a class score that determines whether
or not there is an object in the region. The RoIs proposed by the
RPN are then passed through a RoI pooling layer [40] or RoIAlign
layer [41] where their features are extracted via average or max
pooling and then passed to the classifier heads. In this way, the
final fully connected and softmax layers assign a per-class proba-
bility to each of the proposed RoIs.

Since the RCNN is a two-stage method that predicts both the

bounding box localization ðx̂i; ŷi; ŵi; ĥiÞ as well as the classification
probabilities p̂i of object instances in an image with ground truth
classes ui and bounding box localization ðxi; yi;wi;hiÞ, the error
function to minimize network training is a multi-task loss consist-
ing of two parts [40]:

Lðfp̂i;uig; ft̂i; tigÞ ¼ 1
Nclass

X
i

Lclassðp̂i;uiÞ þ k
1

NRoI

X
i

½u

P 1�Lloc ð̂ti; tiÞ ð1Þ

where the normalizing parameters are the number of classes Nclass

and the number of regions of interest proposed NRoI. The first loss

Lclassðp̂i;uiÞ ¼ �log
ep̂i;ui

XC
v
ep̂i;v

0
BBBB@

1
CCCCA ð2Þ

is the cross entropy log loss that the RoI proposal i belongs to the
class u with a probability p̂i;u. While the second loss is calculated
Fig. 3. Learning error analysis of our particle classifier. A Training and validation error fo
implementation. B Training and validation error for the TEMNet backbone versus train
weights avoiding overfitting. C Ground Truth labeled micrograph. All micrographs use
classification of 200 HIV-1 particles required approximately 30 min to complete. D Autom
network generated predictions on 130 micrographs in 5 min on one GPU. Scale bars in pa
in panels C and D identify viral classifications: mature (yellow), immature (blue), eccen
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only when the predicted region is not classified as background
(u ¼ 0), as indicated by the Iverson bracket function ½u P 1�, and
it’s given by a smooth L1 loss

Lloc ð̂ti; tiÞ ¼
X

c2fx;y;w;hg
smoothL1 ð̂ti;c � ti;cÞ ð3Þ

with the coordinate offsets tc defined as

t̂x ¼ ðx̂� xaÞ=wa; t̂y ¼ ðŷ� yaÞ=ha;

t̂w ¼ logðŵ=waÞ; t̂h ¼ logðĥ=haÞ;
tx ¼ ðx� xaÞ=wa; ty ¼ ðy� yaÞ=ha;

tw ¼ logðw=waÞ; th ¼ logðh=haÞ;

ð4Þ

for the coordinates x̂; x and xa denoting the predicted bounding box,
ground truth box and anchor box coordinates, respectively. The
hyperparameter k is a weight that controls the balance between
the two tasks error. As in [40], we use k ¼ 1 for the training
procedure.

For our purposes, the Faster RCNN architecture is incorporated
for object detection tasks which allows experimentation by letting
the user implement different backbone CNNs to be used for both
RoI proposal and final object classification as shown in Fig. 2A. In
the present paper, we implemented the Residual Convolutional
Neural Network ResNet101 [42] architecture as well as its variation
ResNet101v2[43] and the residual inception network Inception-
ResNet-v2[44] along with our own compact convolutional back-
bone architecture named TEMNet.
r the ResNet101 backbone versus training epoch, one full cycle of our Faster RCNN
ing epoch. Early stopping and learning rate reduction were used to select the best
d for training our network were evaluated by eye and manually labeled. Instance
ated predictions obtained using the TEMNet backbone for the micrograph in C. The

nels C and D are shown in the lower left portions of the images. Bounding box colors
tric (green).
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2.4. TEMNet

As shown in Fig. 2B, TEMNet is a sequential architecture com-
posed of four convolutional blocks and max pooling layers. Each
convolutional block consists of a 2D convolution followed by a nor-
malization and a ReLu activation. Because convolutional blocks use
padding to conserve the tensor size of the previous feature map,
the feature map size is reduced by a factor of only 1=2, applying
a max pooling layer of kernel size 2 after each convolutional block.
Convolutional blocks 1, 2, 3 and 4 use kernel sizes of
13� 13;9� 9;7� 7 and 5� 5, respectively; sequentially decreas-
ing in order to adapt to the reduced feature map size after max
pooling on each one of the networks stages. As a way to mitigate
overfitting, we added a Gaussian noise layer with standard devia-
tion of 0:1 after the first max pooling layer, to act as a regulariza-
tion layer for training while being inert for inference.

Normalization is essential for convergence of a deep network
during training. However, batch normalization requires a suffi-
ciently large batch size [45] which is not beneficial in object detec-
tion tasks where a small batch size is necessary to keep a high
image resolution. In this case, batch normalization can lead to inac-
curate batch statistics.

On the one hand, pretraining and transfer learning are crucial
techniques to facilitate the convergence of the network loss. In
the case of ResNet backbones, weights trained on ImageNet [36],
a massive-scale image classification database, are readily available
online. These pretrained weights were used as a starting point for
training on our dataset where batch normalization layers were fro-
zen, effectively transforming them to linear layers and the batch
statistics learned on the massive-scale dataset were transferred
Fig. 4. Feature map activations corresponding to each convolutional block of the TEMNe
P4). The first convolutional block identifies borders and electron density in virion lumi
techniques such as watershedding. Additional layers become more abstract and escape
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to the new network. Results with and without pretraining for
ResNet101 are shown in Fig. A.10.

On the other hand, normalization on a network trained from
scratch cannot benefit from transfer learning. Instead, for TEMNet
we implemented group normalization [46], which normalizes
along the channel axis instead of the batch axis.

In order to generate multi-scale feature maps on which to gen-
erate predictions, we used a Feature Pyramid Network [47] (FPN)
for both our TEMNet and ResNet backbones. The ResNet imple-
mentation was done according to the original FPN paper [47] and
zero padding was added to make the layers of Inception-ResNet-
v2 compatible; while for TEMNet, in a similar manner the output
of each of the max pooling layers fC1;C2; C3;C4g was used to gen-
erate the pyramid feature maps fP2; P3; P4g. For this procedure,
every layer was passed through a 1� 1 convolution to standardize
the number of filters (256), this convolution is known as a lateral
connection. The top-down pathway was then built, starting with
the coarsest resulting feature map P4 (generated from C4). The lat-
ter was upsampled with a 2� 2 kernel and added to the underlying
C3 feature map to generate P3, afterwards P3 itself was upsampled
and added to C2 to generate the feature map P2. Finally, a 3� 3
convolution was applied on each feature map fP2; P3; P4g. These
feature maps work as pyramid ‘‘levels” to which RoIs were mapped
according to their size. Specifically, following [47] a RoI with height
h and width w will be assigned to the pyramid level Pk

k ¼ 4þ log2ð
ffiffiffiffiffiffiffi
wh

p
=2620Þ

j k
ð5Þ

where 2,620 is the number of pixels constituting the smaller side of
a micrograph and 4 is the single scale level for a RoI. Predictions on
t backbone (C1, C2, C3, C4) and each level of the Feature Pyramid Network (P2, P3,
na and isolates it from the background, the second block learns image processing
comprehensive description.
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each of the pyramid levels were then funneled to two fully con-
nected layers with 64 neurons for TEMNet and 1,024 for ResNet
and Inception-ResNet, then finally to a softmax layer where
per-class probability was assigned on 3 + 1 channels: three for
our virion classifications (eccentric, mature, immature) and one
for background.

For the training procedure, ResNets were initialized from Ima-
geNet pretrained weights and then fine-tuned on a dataset of
1,806 isolated HIV-1 virion samples. TEMNet was trained from
scratch on the same dataset. Afterwards, the CNN backbones were
initialized on their fine-tuned weights and trained individually on
the RPN network for RoI proposal generation for 50 epochs on the
cropped micrograph dataset consisting of 13,650 images. Finally,
the RPN trained weights were used as initialization for training
the CNN backbones on the full RCNN architecture for 50 epochs
using the cropped micrograph dataset.

The input image was resized to 512� 512 pixels allowing a
batch size of 8 images on a single NVIDIA V100 GPU. Stochastic
Gradient Descent (SGD) was used to train the model with a starting
learning rate of 0.01 which decreased by a factor of 10 every time a
learning plateau was encountered on the validation loss. Weight
decay was set to 0.0001, learning momentum to 0.9 to avoid the
training getting stuck on a local minimum and gradient clipping
norm to 5.0 to avoid exploding gradients. We used 50 RoIs per
image for training and 20 for validation. Training Faster RCNN with
TEMNet took less than 9 h on our cropped dataset. Training error
with ResNet and TEMNet backbones are shown in Fig. 3. From this
training the weight checkpoint, which achieves the lowest valida-
tion error, was chosen to avoid overfitting (Early stopping). The
feature map activations learned by the convolutional blocks and
FPN levels of TEMNet are presented in Fig. 4.
Fig. 5. Micrograph segmentation via a sliding window: A A windowed region was
translated across the image and predictions were generated on the segmented
regions. B The predictions were gathered on the full scale micrograph and C Non-
max suppression (NMS) was applied to determine classifications with highest
confidence from overlapping Regions of Interest (RoIs), to glean final predictions.
Numbers above each bounding box correspond to prediction ‘‘confidence” or
certainty, which may ultimately be used to filter predictions (see Fig. 7). Scale bars
are shown in the lower left portions of panels B and C.
3. Results

3.1. Prediction generation approach

As a result of training the network on a dataset composed of
micrograph croppings, our Faster RCNN network can generate pre-
dictions on 1;024� 1;024 pixel croppings of TEM micrographs. In
order to generate end-to-end predictions on raw TEM images we
devised a method to segment a micrograph via a sliding window.
As illustrated in Fig. 5, we scanned an input micrograph by trans-
lating a sliding window across the image and generating overlap-
ping segmented regions. The segmented regions were compiled
into batches and used as input for the RCNN network, which gen-
erated RoI (rectangular bounding box) coordinates and classifica-
tion probability predictions for each virion instance detected in
the segmented regions (see Fig. A.11. for details). Then, the pre-
dicted RoIs were shifted by the position of the sliding window
and gathered on the input full scale micrograph. Since the sliding
window generated overlapping segmented regions, the network
predicts multiple times on the virion instances localized in over-
lapping regions, generating overlapping RoIs with different classi-
fication probabilities that describe the same virion. To glean final
predictions, non-max suppression was applied to the predicted
RoIs to eliminate the RoIs whose area overlapped more than a
30% threshold by retaining the RoI with the highest confidence
score (i.e., prediction probability) and discarding the overlapping
regions with lower confidence. In the case of confidence score ties,
final RoIs were chosen by a larger area criterion due to a larger RoI
being generally better at comprehending a viral instance in the full
scale micrograph and providing better feature extraction through
the Feature Pyramid Network. Finally, the resulting RoIs and class
probability scores were displayed and a per class count was per-
formed on the processed predictions. The default sliding window
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size for 30,000� magnification micrographs was 1;024� 1;024
pixels (569� 569 nm) consistent with the cropping size and mag-
nification used for building the training dataset.

The sliding window approach provided advantages to the pre-
diction pipeline. For instance, translation variance of the predicted
class for a given viral instance was handled by considering predic-
tions from different segmented regions and keeping the predicted
RoI with the highest confidence score. Furthermore, this approach
allowed for prediction generation on multi-magnification micro-
graph sets. Image size was linear with magnification, therefore a
window size to magnification ratio r ¼ Wt=Mt ½px� can be calculated
based on the cropping size Wt and magnificationMt used for train-
ing the network. This ratio was used internally by the network to
calculate the appropriate sliding window size Wnew for an input
micrograph with a given magnification Mnew
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Wnew ¼ rMnew½px�; ð6Þ
the latter preserves the physical dimensions (in nm) of the seg-
mented regions by the RCNN process, allowing consistent predic-
tions across multiple magnifications. Samples of predicted
micrographs at 30,000� and 20,000� magnification are presented
in Fig. 6. Additional predictions on 25,000� magnification micro-
graphs are presented in supplemental Fig. A.12.

3.2. Prediction performance on raw images

To evaluate the performance of our network, we measured the
mean Average Precision (mAP) as is traditional for object detection
models[48]. mAP computes the average precision over all classes
for a recall value from 0 to 1. Precision, recall and F1 scores were
calculated as

Precision ¼ True Positives
Total predicted instances ;

Recall ¼ True Positives
Total ground truth instances ;

F1 ¼ 2 Precision�Recall
PrecisionþRecall

where a True Positive prediction is established if its bounding box
overlaps with a ground truth box by more than 50% Intersection
Fig. 6. Virion classification on multi-magnification micrograph sets. Predictions across
(30,000�). B A magnification lower than is discernible by a trained expert (20;000�).
micrograph according to its magnification. Scale bars are shown beneath the micrograp

Table 2
Object detection metrics for different Region based Convolutional Neural Network (RCNN)
predictions matching ground truth with an Intersection over Union (IoU) score over 0.5
experimental conditions. Our model, TEMNet with a Batch Normalization (BN) in the Conv
TEMNet with a Group Normalization (GN) layer outperformed ResNet101, ResNet101v2 a

RCNN backbone mAPIoU=0.5%

ResNet101 + FPN 78.2
ResNet101v2 + FPN 77.9

InceptionResNetv2 + FPN 78.6
TEMNet (BN) 77.8
TEMNet (GN) 80.0
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over Union (IoU) [48] and the F1 score is the harmonic mean
between precision and recall. Precision and recall pairs of values
were calculated for increasing subsets of detections such that preci-
sion vs recall curves could be built from pair plotting. The precision
vs recall curve was interpolated so dips in precision were replaced
by the maximum precision for a given recall value. The mAP was
then calculated as the area under the precision (p) vs recall (r) curve

mAP ¼
Z 1

0
pinterpolatedðrÞdr; ð7Þ

since mAP takes into account precision, recall and the IoU overlap-
ping of predicted RoIs to ground truth, it is regarded as the de facto
’gold standard’ to evaluate accuracy on Object Detection tasks
across many datasets [49–51]. mAP scores for each of our Convolu-
tional Neural Network backbones were measured on a validation
dataset composed of 13 full scale TEM micrographs pertaining to
different experimental conditions. As presented in Table 2, our
model, TEMNet with a Batch Normalization (BN) layer in the Convo-
lutional blocks achieved a 77.8% mAP, competitive with Incep-
tionResNetv2 (78.6% mAP), ResNet101 (78.2% mAP) and
ResNet101v2 (77.9% mAP), while TEMNet with a Group Normaliza-
tion (GN) layer outperformed these by over 1 point, achieving a
different raw TEM micrographs with A The same magnification used for training
Our RCNN network calculates the appropriate sliding window size to segment a
hs.

backbone architectures. The results represent the mean Average Precision (mAP) for
tested on our validation dataset, the latter consisting of micrographs from different
olution blocks, achieved a mAP competitive with ResNet101 and ResNet101v2 while
nd Inception-ResNet-v2 by over 1 mAP point.

Precision % Recall % F1 score %

76.7 84.0 80.0
75.8 85.9 80.5
64.7 86.2 73.7
60.8 84.9 70.9
71.3 87.9 78.8



Fig. 7. In situ classifications of virions from different HIV-1 IN (D116N, N184L, delIN) and PR mutant (D25A) viruses. A Ground truth distribution from manually ascribed
micrograph sets. B Resulting distributions from TEMNet’s predictions on the same micrographs. Predictions with a confidence score c above 0.5 were counted while those
under this confidence threshold were rejected. Numbers over each distribution indicate the number of virus particles counted and the number of independent micrographs
analyzed (*). Error bars represent standard deviation from experimental replicates.

J.S. Rey, W. Li, A.J. Bryer et al. Computational and Structural Biotechnology Journal 19 (2021) 5688–5700
80.0% mAP. Regarding the other metrics, ResNets achieved higher
precision and F1 scores (for ResNet101 and ResNet101v2) while
TEMNet achieved the highest recall score. Interestingly, the Incep-
tionResNetv2 architecture, which was the most complex, achieved
the highest mAP among the ResNet backbones with also the highest
recall. However, Inception-ResNet-v2 lacked the precision of other
ResNet modules, perhaps due to the fact that zero padding was nec-
essary to make the shapes of the inception blocks compatible with
the upscaling and adding layers present in the FPN.

In addition to being accurate, the network prediction pipeline
derived in the present work significantly improved workflow
times. While 30 min on average was required to manually ascribe
200 HIV-1 particle classifications on a single micrograph, our net-
work offered a significant speedup, processing 130 micrographs in
five minutes on one GPU, generating bounding box coordinates and
classification probabilities as well as count histograms for each of
the micrographs processed.
Fig. 8. In situ classifications of virions from WT HIV� 1NL4�3, IN deletion mutant delIN
manually ascribed micrograph sets. B Resulting distributions from TEMNet’s prediction
counted while those under this confidence threshold were rejected. Other indicators are
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Furthermore, in order to evaluate the statistical distribution of
classifications predicted by our Faster RCNN + FPN implementa-
tion, we measured the percentage of each particle morphology
class across different experimental conditions. These morphology
distributions were compared between the in situ ground truth clas-
sification counts from manually tabulated micrographs compared
to the predicted distributions from the virion detection counts per-
formed by our AI. Side by side histograms are shown in Fig. 7 for
predictions using the TEMNet backbone filtering predictions
whose confidence score was above a 0.5 threshold. Ground truth
labeled micrograph samples as well as their detection and classifi-
cation predictions for each experiment are also presented in sup-
plemental Fig. A.13. Additionally, we compared the morphology
distributions for an independent set of NL4-3 viruses and primary
isolate samples that were not used as part of the training or valida-
tion micrographs. Side by side histograms are shown in Fig. 8 for
the TEMNet backbone with a confidence threshold of 0.5;
, and primary HIV-1 isolates YU2, and JR-CSF. A Ground truth distribution from
s on the same micrographs. Predictions with a confidence score c above 0.5 were
the same as Fig. 7.



Table 3
Root Mean Square Error (RMSE) calculated between the predicted and ground truth distributions for each mutant virus. All predicted distributions were in accordance with the
ground truth showing an error lower than 10% for all experiments independent of the convolutional backbone used. Among the convolutional backbones, ResNet101v2 provided
the least error across all mutant viruses, followed by ResNet101, Inception-ResNet-v2 and TEMNet. Increasing the confidence threshold for which generated predictions were
counted as True Positives for the distributions in general reduced the average RMSE across mutants for the TEMNet, ResNet101 and Inception-ResNet-v2 backbones and increased
it for the ResNet101v2 backbone, helping in the first two cases to reduce the error for the WT and delIN mutants, which proved to be the most challenging micrographs to predict
while PR D25A distributions were perfectly predicted (no error) due to the homogeneity of immature virions across these samples.

RMSE (counts)

Backbone Confidence WT D116N N184L dellN PR D25A

TEMNet >0.5 7.75 2.70 4.73 9.69 0.00
>0.9 6.14 3.54 5.99 7.11 0.00

ResNet101 >0.5 1.42 1.09 3.73 5.11 0.00
>0.9 0.48 2.43 4.21 4.15 0.00

ResNet101v2 >0.5 3.51 1.60 1.73 2.71 0.00
>0.9 4.70 2.30 1.20 2.94 0.00

Inception-ResNet-v2 >0.5 10.28 2.49 7.54 3.32 0.00
>0.9 5.38 0.75 5.59 1.24 0.00

Table 4
Root Mean Square Error (RMSE) calculated between the predicted and ground truth distributions for WT HIV� 1NL4�3 and its IN deletion mutant delIN as well as primary HIV-1
isolates YU2 and JR-CSF. Predicted distributions were in accordance with the ground truth distributions showing an error lower than 10% for all experiments independent of the
convolutional backbone used. Among the convolutional backbones, ResNet101v2 provided the least error under these conditions for the HIV� 1NL4�3 samples, followed by
ResNet101, TEMNet and Inception-ResNet-v2. At the same time, Inception-ResNet-v2 performed best with the primary virus samples closely followed by TEMNet. By increasing
the confidence score threshold, TEMNet performed best for HIV� 1JR�CSF and HIV� 1YU2 samples, while ResNet101v2 performed best with HIV� 1NL4�3 samples.

RMSE (counts)

Backbone Confidence NL4-3 NL4-3 delIN YU2 JR-CSF

TEMNet >0.5 1.33 5.37 1.09 4.99
>0.9 3.18 5.96 2.72 2.14

ResNet101 >0.5 2.51 4.94 3.12 1.45
>0.9 2.77 4.42 4.04 3.40

ResNet101v2 >0.5 1.73 2.70 3.77 2.86
>0.9 1.92 2.20 4.11 2.62

Inception-ResNet-v2 >0.5 3.24 7.43 0.32 5.25
>0.9 1.21 5.53 3.39 2.17

Table 5
Pearson’s v2 test p-values calculated between the predicted and ground truth distributions for each experimental condition. Within the probability threshold of p ¼ 5% there was
no statistical difference between the distributions calculated from the predictions and the distributions calculated from ground truth counts with the exception of the WT virus
with the TEMNet and Inception-ResNet-v2 backbones, as well as for N184L at the lower confidence threshold using Inception-ResNet-v2. In accordance with the RMSE values
(Table 3) for each backbone, ResNet101v2 provided the highest p-value followed by ResNet101, Inception-ResNet-v2 and TEMNet. p-values greater than 0.05 indicate no
significant statistical difference.

v2 test p-value

Backbone Confidence WT D116N N184L dellN PR D25A

TEMNet >0.5 0.02 0.34 0.07 0.08 1.00
>0.9 0.04 0.21 0.06 0.12 1.00

ResNet101 >0.5 0.70 0.91 0.15 0.43 1.00
>0.9 0.92 0.56 0.17 0.56 1.00

ResNet101v2 >0.5 0.27 0.80 0.67 0.77 1.00
>0.9 0.08 0.63 0.84 0.73 1.00

Inception-ResNet-v2 >0.5 6:33e�4 0.64 0.01 0.66 1.00
>0.9 6:50e�3 0.89 0.08 0.90 1.00
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histograms for other backbones with increasing confidence scores
are presented in supplemental Fig. A.14.

As summarized in Tables 3 and 4, ascribed morphology distri-
butions were in accordance with the associated ground truth mea-
sures with a root mean squared error (RMSE) lower than 10% for
each virus type independent of the CNN backbone used in the Fas-
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ter RCNN architecture. Among the analyzed viruses, WT NL4-3 and
delIN were the most challenging to classify, which corresponded to
micrographs that presented the lowest contrast between particle
instances and background along with the most image noise out
of the validation samples (see Fig. A.13). By contrast, PR D25A
mutant viral samples, which consisted of only immature virions,



Table 6
Pearson’s v2 test p-values calculated between the predicted and ground truth distributions for WT NL4-3 and primary isolate YU2 and JR-CSF HIV-1 viruses. TEMNet is the only
backbone that predicts a distribution with no statistical significance for both primary isolates within a probability threshold of p ¼ 5% when increasing the confidence threshold
to 0.9. The highest average p-values are encountered for ResNet101v2, TEMNet, ResNet101 and Inception-ResNet-v2 in descending order. p-values greater than 0.05 indicate no
significant statistical difference.

v2 test p-value

Backbone Confidence NL4-3 NL4-3 delIN YU2 JR-CSF

TEMNet >0.5 0.18 0.03 0.76 0.02
>0.9 0.08 0.01 0.06 0.28

ResNet101 >0.5 0.29 0.02 0.02 0.26
>0.9 0.21 0.05 2:03e�4 0.02

ResNet101v2 >0.5 0.58 0.46 5:37e�4 1:30e�4

>0.9 0.51 0.54 3:69e�5 2:78e�3

Inception-ResNet-v2 >0.5 0.09 1:90e�5 1:32e�6 0.02
>0.9 0.02 2:57e�3 2:91e�6 0.44
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were classified without error. For the TEMNet, ResNet101 and
Inception-ResNet-v2 backbones, the error for WT and delIN sam-
ples could be reduced by increasing the confidence threshold for
which True Positive instances were counted, reducing the average
RMSE across all samples for these backbones but increasing it for
the ResNet101v2 backbone (Table 3). Similarly, increasing the
confidence threshold reduced the average RMSE for primary isolate
JR-CSF using the TEMNet backbone. In this regard, TEMNet proved
especially important, providing the lowest error when predicting
the morphologies of the primary isolate viral samples. Addition-
ally, the calculated p-value for the Pearson’s v2 test (see Tables 5
and 6) indicates no significant statistical difference between the
ground truth and predicted distributions across the different
mutant viruses, with the exception of the WT virus when using
the TEMNet backbone. In this regard, ResNet101v2 proved to be
the most accurate backbone when comparing the predicted mor-
phology distributions across different experimental conditions, fol-
lowed by ResNet101, Inception-ResNet-v2 and TEMNet. For this
reason, we consider that ResNets outperform TEMNet on predic-
tion accuracy. However, while the former algorithms generally
predicted virion morphology more accurately across samples,
TEMNet importantly offered an accuracy trade off for prediction
speed and compactivity.

Histograms for all backbones across different experimental
samples with varying confidence score threshold are presented in
supplemental Figs. A.15 and A.16.
4. Discussion

We have developed an end-to-end deep learning solution to the
automated detection and classification of HIV-1 virion particle
morphologies from TEM micrographs across different maturation
stages. Our overall methodology is not limited to HIV-1 particles
and can be extended to other enveloped viruses provided that
enough training data are available. In our approach, we have over-
come the limitations of comparatively small datasets to produce
reliable particle classifications and counts.

Our network, named TEMNet, is a new CNN architecture for
object detection and has been trained from scratch as a backbone
for a two-stage Faster RCNN [29] object detection network. In line
with [37,38], we demonstrated that our model converges when
trained from scratch thanks to Group Normalization [46] tech-
niques and building a reasonably sized dataset consisting of
13,650 labeled croppings of TEM micrographs for training and val-
idation. Importantly, the training dataset was built from different
experiments. Outcomes of particle classification were pitted
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head-to-head versus manual ascriptions of the same micrographs,
allowing the model to be robust and generalizable for HIV-1 viri-
ons under diverse experimental setups.

We have demonstrated that networks developed to handle
photon-based images are competent at identifying and classifying
objects from electron-based imaging. Comparing TEMNet with
ImageNet pretrained ResNet [42–44] backbones we found that
while both networks worked with a high accuracy on validation
micrographs from different experiments, TEMNet reported the
highest mAP score at 80:0% surpassing ResNets by over 1 mAP
point (Table 2). All backbones predicted statistically significant
data when comparing the predicted morphology percentages for
in situ micrographs for different IN and PR mutant viruses, with
manually ascribed ground truth distributions. In this regard, how-
ever, ResNet backbones outperformed TEMNet, presenting the
lowest RMSE and the highest p-values for the Pearson v2 test as
summarized in Tables 3 and 5. The WT and delIN mutant viruses,
whose samples had the most noise, preformed the poorest across
techniques, while the PR D25A active site mutant virus performed
best, owing to the uniformity of the immature particle morphology
across samples (Figs. 7, A.15 and A.16).

Faster RCNN combined with our TEMNet backbone also proved
to be a highly efficient method for generating predictions on raw
TEM micrographs, offering a significant speedup to manual classi-
fication. While 30 min on average was required to manually
ascribe each micrograph that contained approximately 200 viral
particles, the model processed and generated predictions of 130
micrographs in five minutes with a single GPU. This translates to
an approximate 780-fold improvement in speed. In addition, our
prediction method could also handle particle predictions for
multi-magnification micrograph sets, demonstrated in Figs. 6 and
A.12. Finally, the TEMNet backbone was accurate, efficient and also
light. The memory footprint of TEMNet’s training weights was only
15 MB compared to ResNet’s 235 MB and Inception-ResNet-v2’s
292 MB, which renders TEMNet appropriate for software imple-
mentations under hardware constraints and therefore useful for
web and mobile deployment.

Summarizing, here we present a robust Convolutional Neural
Network for the automated detection and classification of HIV-1
particle morphologies from TEM micrographs. Our TEMNet back-
bone has the capability to accurately and efficiently detect HIV-1
virions and classify them according to their maturation stage
across varying experimental conditions. Furthermore, the statisti-
cal distributions across experimental conditions agreed with man-
ually ascribed results while being significantly faster. Given that
Gag-interacting maturation inhibitors and ALLINIs, each of which
disrupt particle maturation, are in preclinical development, our
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methodology could prove useful in highly promising antiretroviral
drug development programs. We moreover expect that our tool
could prove useful to a broader range of scientists including virol-
ogist and medical researchers, as long as there is sufficient raw
data on which to first train the machine learning methodology.
The latter could especially apply to histopathological detection of
SARS-CoV-2 infection (see [52] for review), where cell organelles
that are similar in size to virus particles often confound data
interpretation.
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