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Abstract

Objective

The study investigates the effect on cooperation in multiplayer games, when the population

from which all individuals are drawn is structured—i.e. when a given individual is only com-

peting with a small subset of the entire population.

Method

To optimize the focus on multiplayer effects, a class of games were chosen for which the

payoff depends nonlinearly on the number of cooperators—this ensures that the game can-

not be represented as a sum of pair-wise interactions, and increases the likelihood of

observing behaviour different from that seen in two-player games. The chosen class of

games are named “threshold games”, and are defined by a threshold,M > 0, which

describes the minimal number of cooperators in a given match required for all the partici-

pants to receive a benefit. The model was studied primarily through numerical simulations

of large populations of individuals, each with interaction neighbourhoods described by vari-

ous classes of networks.

Results

When comparing the level of cooperation in a structured population to the mean-field

model, we find that most types of structure lead to a decrease in cooperation. This is both

interesting and novel, simply due to the generality and breadth of relevance of the model—it

is likely that any model with similar payoff structure exhibits related behaviour. More impor-

tantly, we find that the details of the behaviour depends to a large extent on the size of the

immediate neighbourhoods of the individuals, as dictated by the network structure. In effect,

the players behave as if they are part of a much smaller, fully mixed, population, which we

suggest an expression for.
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Introduction
For the greater part of a century, the special brand of mathematics called game theory has been
used to understand behaviour of social animals—including humans. Much research today still
focus on mechanisms that can push short sighted self-rewarding behaviour towards behaviours
less costly to conspecifics and hence more Pareto effecient for the population [1, 2]. While
much, but far from all, cooperation and coordination among non-human species seem to coin-
cide with kin relations [3], human interactions seem more culturally loaded with elements of
punishment, reputation and normative behavioural protocols. By providing mathematical clar-
ity combined with recognizable narratives, game theory has played a central role in describing
the nature and emergence of cooperative behaviour [4] within groups and populations. In the
majority of these studies, the population being studied is assumed to have no structure, mean-
ing that all individuals may interact directly with all others, at random, and the interactions
themselves are assumed to be pairwise, rather than true multi-participant dynamics. These are
all useful simplifications, as already pointed out in [5–11]. However, with the increase in inter-
net-based interactions (such as social media, self-organized collaborative communities, sharing
economy etc.) graph theory seems to re-emerge under the headline of social networks, now
with the additional advantage of a new empirical contribution of large amounts of data. Com-
paring the system behaviour in the fully connected graph (i.e. mean field model or panmixia)
with more realistic spatial interaction models, including those with population structure, can
reveal the effect of the aforementioned simplifying assumptions on the level of cooperation, see
e.g. [12, 13].

In this paper we study perhaps the simplest version of a true multi-player dynamic: the
threshold game (this claim is elaborated on below). Inspired by [14], we focus on N-player
games, in whichM out of N participants have to decide to cooperate for anyone to receive a
reward. Thus, N is the number of people interacting in a given match, andM is the threshold,
describing the minimal number of cooperators necessary for pay-off to take place. Addition-
ally, we follow [15] by placing the population on a network, in which the N-sized groups are
picked based on the connections between individuals. This is inspired by the fact that in every-
day life in both animal and human systems, an individual may participate in several different
groups, with either a high or low degree of overlapping members. In either case, it is quite pos-
sible that the experiences gained in one setting are applied when deciding upon a strategy in
another. Note that we have not implemented any kind of load-sharing, meaning that coopera-
tion has the same cost irrespective of the number of cooperators. It is worth noting that we still
recover the qualitative results shown in, e.g, [16], where cost sharing is included.

Highlights

• Observed behaviour depends on the size of each player’s immediate interaction
neighbourhood.

• When the number of players is much larger than the number of required cooperators,
average payoff decreases.

• Most network structures lead to a decrease in cooperation compared to the fully mixed
case.
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For those who are thus inclined, one can visualize each N-player match as a party in which a
certain number of guests have to volunteer for food preparation for it to be done in time. If too
few people volunteer, the food is never ready and no one gets anything, hence the threshold. If
too many people volunteer, chaos ensues, reducing efficiency, hence the lack of load sharing
(i.e. the cost of cooperation does not go down with increasing cooperators). The precise and
more rigorous description of the model is given in the next section.

Model
The game has been chosen as the simplest truly multiplayer game. The criterion for being a
true multiplayer game is that it should not be possible to describe the payoff from a match as a
sum of two-player interactions; i.e. the payoff from a match should behave nonlinearly as a
function of cooperators [9, 10]. We have chosen to focus on this property because we expect
that a linear payoff-dependence in an N-player game would be equivalent to a 2-player game in
which fitness was calculated as an average over all interactions. As the explicit target of this
investigation is N-player dynamics, we believe nonlinearity to be crucial. Possibly the simplest,
interesting functional form meeting this nonlinearity requirement is a step function (Fig 1). It
is worthwhile to note here that [17] has shown convincingly that all multiplayer games with
payoff structures depending nonlinearly on the number of cooperators have attractors qualita-
tively similar to what is studied here; i.e. the step function is a suitable starting point for a more
general investigation. This also indicates that that this model has the potential to exhibit behav-
iour different from what has already been extensively described for pair-wise models [18]. We
think that this finding by [17] supports our intuition regarding nonlinearity very well.

Fig 1. The reward for participating in a game with #C cooperators.

doi:10.1371/journal.pone.0147207.g001
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Thus, the game studied here is a threshold game in which payoff only takes place when the
number of cooperators reaches a certain threshold,M. One could envision the dinner party
described above, or group hunting carnivores where the prey is only brought down when a cer-
tain number of individuals participate, and where the cost, in the form of energy spent on run-
ning, depends on prey rather than participants. On another level one could imagine a
collection of interacting cells or bacteria producing growth factors or drug resistance com-
pounds, and only if a sufficient number of cellular units contribute would the common good be
manifested [19, 20].

We consider a finite population of L individuals, each with the choice of either cooperating
(C) or defecting (D). The i’th individual is represented by her probability, xi, of cooperating. xi
is called the “strategy” of the i’th individual. The individuals participate in N-player games, in
which each participant of a given match is rewarded r if at leastM players cooperated, and
none otherwise. In this way it is a simplification of the game described in [21]. Irrespective of
the number of cooperators, the cost of cooperating for a given individual is c. The game is a
generalization of other games in which multiple players must coordinate their behaviour. For
N = 2,M = 1, this game is reminiscent of the classic snowdrift or hawk-dove game [22]. For
M = 1, it is the volunteers dilemma [23].

The simulation proceeds in a number of rounds. At the beginning of each round, all individ-
uals decide on playing either C or D, according to their respective strategies. During the course
of a round, Gmatches are played, in each of which N individuals are picked from the popula-
tion, and their shared payoff according to the rules of the game is calculated before returning
them to the pool. The manner in which the players are matched is described below. At the end
of a round, each individual calculates the average payoff per match of all C-players and all D-
players that the individual has encountered during the round, fC, fD. We assume that the player
has full knowledge of the fortunes of these players, irrespective of how many of the Gmatches
they actually shared. The strategies of the individuals are then updated as follows:

xi ! xið1� xiÞðfC � fDÞdt; ð1Þ

where dt is a discretization time step, equal to 0.01, while fC, fD are generally of order 1. The
update takes place after each round of Gmatches, such that these are in effect simultaneous. If
a player does not meet both cooperators and defectors during a round, then fC (or fD) has the
same value as in the previous round.

All simulations are run for 105 iterations, such that the amount of simulated time is 105

dt = 1000. At the beginning of the simulation, the xi are drawn from a uniform distribution on
[0, 1].

Simulations were run in Matlab, and extensive summaries of the results have been made
available as a mySQL database on Dryad.

Mean Field Treatment
The model described thus far has been studied with a mean field approach in [14]. There it was

found that there are up to 4 solutions of dhxi
dt

¼ 0 in the mean field model: hxi = 1, 0 and the

roots of

gðxÞ ¼ r
N � 1

M � 1

� �
xh iM�1 ð1� xh iÞN�M � c : ð2Þ

Note that hxi in this paper will refer to the population average of strategies, evaluated instan-
taneously. The lower root of Eq (2) and 1 are repellers—any deviation however small will lead
the system away from the solution, while 0 and the upper root are attractors, or evolutionary

Threshold Games on Multiplayer Graphs

PLOS ONE | DOI:10.1371/journal.pone.0147207 February 4, 2016 4 / 17



stable states, as they are also called. These circumstances turn out to be important to our find-
ings, which will be discussed below.

Defining the parameter α = c/r, i.e. the ratio between cost and reward of cooperation, it was
furthermore shown in [14] that Eq (2) only has real roots when

a � N � 1

M � 1

� �
M � 1

N � 1

� �M�1 N �M
N � 1

� �N�M

: ð3Þ

Because of this, we will henceforth use α as the principal means of describing r, c-variation.

Population structure
We implement population structure by requiring that an individual is only matched with peo-
ple with whom they are connected (befriended). For all networks, G = L, and, in all but the first
network type, each group of N is picked as the i’th individual and its N − 1 neighbours, for 1�
i� L. This matching rule is similar to what was used in [15]. We consider five different types
of population structures, or networks:

Fully mixed: This is the standard case, in which the N players for each match are picked ran-
domly from the entire population. In network terms, we may think of this as the “fully con-
nected” case. As such, it is the only network type which diverges in its matching rule, in that
an individual will not necessarily be matched with all her connections in a given round. The
situation is depicted in Fig 2a.

Random, regular network: In the random, regular network, the population is placed on an
undirected, regular graph, each vertex representing an individual. The degree of each vertex
is N − 1. An example is given in Fig 2b.

Ringlike, regular network, short range connections: In this network, we imagine the individ-
uals placed on a circle. If N − 1 is even, each individual is connected to the N − 1 individuals
closest on the circle. If N − 1 is odd, the individual is connected to the N − 2 closest neigh-
bours, and the last connection is made to the first non-connected individual in either clock-
or counter clockwise direction. It is attempted to alternate between the two directions. It is,
unfortunately, not possible to create this network for all combinations of N and L if N is
even, which may be noticed by careful examinations of the following figures. An example of
the layout is given in Fig 2c.

Ringlike, regular, added long range connections: Very similar to the previous type, but with
added connections to the opposite side of the ring. If N is even, one long-range connection
is made, if odd, two are, to avoid the above-mentioned problems concerning even N. It is
worth noting that these networks are closely related to the small-world networks studied in
[24]. An example is seen in Fig 2d.

Social Network: As an attempt at a realistic case, we follow the algorithm of [25] to synthesize
networks with high clustering and varying degree. As described in the appendix, the two
attachment probabilities can be adjusted to obtain networks with a wide range of structures.
An example plot is shown in Fig 3.

Unless otherwise stated, the size of the populations are L = 300. We have made this choice
after verifying that hxi as a function of α for L = 600 is indistinguishable from the case L = 200,
meaning that any L above 200 is most likely sufficient for the ranges of N,M studied here. All
reported values of hxi are the result of averaging over at least 5 different initial conditions.

Threshold Games on Multiplayer Graphs

PLOS ONE | DOI:10.1371/journal.pone.0147207 February 4, 2016 5 / 17



Results and discussion

Requirements on N
Somewhat surprisingly, we find that population behaviour does not become representative of
general multiplayer games until N is at least 4, and not 3 as would have been naively expected.
An example of this behaviour is given as part of the discussion of hxi vs α, and is, we suspect,
due to the fact that for N = 3 the only permitted network structure is a collection of rings,
which are very different from all other networks here studied. Because of this, we have decided
to focus on N> 3 in the remainder of the paper.

Fig 2. Depictions of the different network types studied. In each case the connections of a single individual are highlighted. L = 20, N = 6. a) Fully mixed
network with no stable connections. b) Random network. c) Ring-like network with no long-range connections. d) Ring-like network with long-range
connections. For oddN, two long connections are made, to preserve symmetry.

doi:10.1371/journal.pone.0147207.g002
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Regular networks
As was shown in [14], in the mean field model, there is an abrupt transition between a coopera-
tive regime in which two collective states are possible, a mixed and a fully defecting, and a
regime in which only the fully defecting state is possible. This transition takes place as the cost-
to-reward fraction, α, changes. As will be detailed below, we reproduce this qualitative behav-
iour for regular networks, with some adjustments depending on the details of the network. To
simplify things, we will often focus exclusively on the critical α value, αcrit, at which the transi-
tion takes place. To keep things simple, we define αcrit in a numerical model as the α-value for
which hxi � N/M crosses 0.1, and in the mean field model as the point where the mixed state

Fig 3. An example of a “social” network, as described in [25], for L = 300, f1 = f2 = 0. See the appendix for further details on the generation and f1, f2. All
connections between individuals are drawn. Proximity in space reflects connectedness. Plot created using Gephi [26].

doi:10.1371/journal.pone.0147207.g003
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disappears (i.e. where the discriminant of Eq (2) becomes negative). The choice of 0.1 as the
point of transition stems from the observed shapes of hxi vs. α, see later figures for examples.

N-dependence
We have studied N-dependence in two cases;M static, andM/N constant. In the static case, we
focus onM = 2 unless otherwise stated. In Fig 4 is shown αcrit for both setups, and we see an N-
dependence in both cases. In the case of the staticM, this is somewhat surprising, since it
means that even though more individuals are available to solve the same problem, the chances
of a sufficient amount of cooperators decrease. We can understand this low-M behaviour by
taking into consideration that hxi will tend to decrease as a function of N, as also predicted by
the mean field model (it is beneficial for the individual to do less when more people are there
to share the burden), combined with the fact that the number of cooperators in any given
match is stochastic:

Let nC be the number of cooperators in a given game. For a proportion hxi of C-players of
the entire population, evenly distributed across the graph, the distribution of nC is given by a
Bernstein polynomial of degree N:

PðnC ¼ kÞ ¼ N
k

� �
xh ikð1� xh iÞN�k ) PðnC < MÞ ¼

XM�1

k¼0

N
k

� �
xh ikð1� xh iÞN�k

: ð4Þ

We can now substitute hxi with the predicted value of hxi for the mean field model (upper root

Fig 4. αcrit, both predicted from themean field theory as well as measured from themodel
implemented on regular, random networks.We see that for both staticM as well as relative, there is anN-
dependence. However, in the static case, whenM < < N the dependence is not predicted by the mean field
theory.

doi:10.1371/journal.pone.0147207.g004
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of Eq (2)). Fig 5 shows the result of this, and we see that the exercise predicts the probability of
nC<M in a given game to increase for increasing N. Taking into consideration that the lower
root of Eq (2) is repelling, and that full defection (hxi = 0) is a completely stable state (there will
be no fluctuations in nC), we find that the N-dependence seen in Fig 4 can be understood as
arising from the fluctuations in nC in the mixed state. This conclusion is further supported by
the fact that when this fluctuation analysis is repeated for constantM/N, a similar breakdown
is not predicted for large N. Indeed, it is predicted that P(nC <M) decreases. This matches our
observations from the simulations.

This effect resembles what was reported in [27], in that it reports decreasing likelihood of
the population as a whole to meet the threshold, for increasing N. In more general terms, it is
reminiscent of the bystander effect [28]: the chance of the necessary number of cooperators
appearing decreases for an increasing number of participants. A similar effect was reported in
[29].

Topology Dependence
In Fig 6 is shown the behaviour of hxi for different network topologies, as described in Fig 2.
We find that while the qualitative behaviour of hxi is the same, the details depend on the topol-
ogy of the network. We find that αcrit decreases when the network is wired such that the con-
nections become as local as possible. This result is closely related to that reported by [30], who
found that adding spatial structure to a population reduces cooperation in two-person snow

Fig 5. The probability of having insufficient cooperators as a function of N, forM = 2, assuming that hxi is equal to the upper root of Eq (2), as
predicted by the mean field theory.Note that the different extents of the lines (i.e. thatN = 9 covers a smaller part of the α-axis thanN = 3) stem from the
limitations of the mean field model.

doi:10.1371/journal.pone.0147207.g005
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drift games. However, it is worth noting that what is demonstrated here is a considerably more
general result, in that we here go beyond dyadic interactions, and grid-based populations.

We propose that this topology dependence comes about through the way in which each
individual experiences the rest of the population—that in fact clustering leads to the individuals
behaving as if the population had an effective population size, Leff < L, making the topology-
effect a finite-size effect induced by clustering. Please note that, despite the name, Leff is not
directly relatable to the similar term in population genetics, as also pointed out in the conclu-
sion. The first observation to make in regard to the effective population size is Fig 7a, where we
see hxi vs. α for both a network with only short-range connections but large L, and a fully
mixed small-L network. We see here both that indeed small populations are prone to smaller
αcrit, but also that for a given αcrit and N, an L can be found such that the fully mixed model

Fig 6. (Color online) Population average of x for various systems with threshold dynamics, forM = 2, dt = 0.01, L = 300.Note that in a-c, the value
plotted is Nhxi

M , such that a value of 1 means that on average, exactlyM players are cooperating in each match. Example behaviour of mean field, full mixing
and random networks, N = 7. a)Example behaviour of rings without long connections. The outlier is N = 3. b) Example behaviour of rings with few long
connections. c) Comparisons of critical α-values for different models, as a function of N. “Fully Mixed” and “Random Topology” overlap for part of the range.

doi:10.1371/journal.pone.0147207.g006
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matches. This matching works as our definition of Leff. It is in this connection worth noticing
that by defining the Leff based on comparisons to networks with the sameM and N, any varia-
tion in Leff must be due to effects other than the N-dependence already discussed.

Considering the cause of Leff, we may consider the number of individuals that a given player
can meaningfully be said to interact with. We know that the individual interacts with the
immediate neighbours, of which there are N − 1. However, due to the matching rules as laid
out in the previous section, the player also interacts with each of their neighbours (discounting
herself), of which there are almost (N − 1)2. Of these, γ � (N − 1)2 are duplicates, γ being the
clustering coefficient of the network. In short, we may imagine the number of direct and indi-
rect interactions of an individual to be on the form

~L � A0ðN � 1Þ þ A1ð1� gÞðN � 1Þ2 þ A2ð1� gÞ2ðN � 1Þ3 þ ::: ; ð5Þ

where the Ai are weights used to signify that the interactions with neighbour’s neighbours and
so on are weaker than with direct neighbours. As Eq (5) is too complicated for a direct compar-
ison to Leff, we have instead tried to use the same basic intuition behind Eq (5) to propose a
much simpler expression:

L� ¼ I
1þ g

; I : number of neighbours& neighbours0 neighbours ð6Þ

Here I is a function of both hNi and hγi, and the denominator is there to provide additional
dependence on γ, since the effect appears to be marked. Using Eq (6) we may test our basic
intuition about the system by checking the relationship between Leff and L�. Looking to Fig 7b,
we see that indeed, Leff is well correlated with L� (correlation coeff.: 0.7). We interpret this to
mean that our qualitative explanation of how topology influences cooperation is correct. As to
why small L leads to low cooperation, it seems plausible that it is related to small populations
being more susceptible to fluctuations in hxi, which will be much more pronounced in the
mixed state than in the hxi = 0 state. In other words, that the observed decrease in cooperation
is driven by the differences in hxi-fluctuations within the two evolutionary stable states, like the
case was for the above discussed N-dependence.

Fig 7. a) Comparison of finite size effects to clustering effects. b) Scatter-plot of Leff vs. L* (defined in Eq (6)). We see an approximatively linear relation. In
sum, we see a good evaluation of the finite-size explanation of the topology dependence in hxi vs. α.
doi:10.1371/journal.pone.0147207.g007
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Social Networks
An interesting question is to what extent the findings on regular networks generalize to the
arguably more relevant case of non-regular networks, such as that depicted in Fig 3. To accom-
modate the spread in the number of players in a given match on such a network, we have here
decided to use a relativeM, such thatM = N �Mrel, withMrel being a number between 0 and 1.
This choice was made because most choices ofM> 1 would result in many matches having N
<M, for networks such as the one shown in Fig 3.

In Fig 8 is shown αcrit as a function of hγi and hNi (defined as average number of neighbours
+ 1). We see that a range of αcrit is possible, and also that the primary cause of variation seems
to be the N-dependence discussed above. Note that the peculiar shape of the coloured region is
due to the fact that we are unable to sample the (hNi, γ)-space directly, but are instead explor-
ing the (f1, f2)-space, for which (0, 15) × (0, 35) maps to the depicted region. See the appendix
for an explanation of f1, f2.

General Behavior
We see that all studied deviations from the mean field model appears to reduce cooperation, in
particular αcrit, to some extent. This can be understood by considering the attractors in the
mean field model:

As was discussed in Sec., the mean field model has been shown to have, for α< αcrit, two
attractors and two repellers in hxi-space. What this means is that if the system is brought to
cross the repeller dividing the two attractors (the lower root of Eq (2), the dynamics of the
mean field model will dictate a transition from one state to the other. What the mean field
model does not include is that the actual number of cooperators in a given match is stochastic,
except when hxi is 0 or 1. This leads to a certain noisiness in the simulation results, or fluctua-
tions in hxi as perceived by the individual, in the mixed state, but not in the hxi = 0 state.

Hence, since all perturbations to the initial model, studied here, have had the consequence
of exacerbating the effects of the fluctuations, a higher rate of transition from mixed state to
fully-defective state is observed, most critically close to αcrit, where the downwards jump in hxi
necessary to clear the repeller is smallest. A consequence of this mechanism is that we would
expect similar dependence on bothM/N and clustering for any game where two attractive
states had this difference in inherent fluctuations. We note that, as shown in [14], the existence
of the mixed state requires N> 2 for the threshold game. This requirement goes a long way to
explain why the structure-related behaviour described here has not already been extensively
described in the literature, which has primarily been focused on 2-player games.

Fig 8. Measured αcrit for various realizations of the social networks.We see that in particular theN-based variation is strong. The coloured region
coresponds to the (0, 15) × (0, 35)-region in (f1, f2)-space; see the appendix for an explanation of f1, f2.

doi:10.1371/journal.pone.0147207.g008
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Conclusion
In this paper we study the simplest truly multiplayer game, the threshold game, in structured
populations. We find that the average behaviour of the players as a function of the cost-to-
reward fraction, α, is highly dependent on the topology of the network describing the popula-
tion, both in terms of number of neighbours as well as higher level effects such as clustering.
We also find that structure appears to primarily decrease cooperation, by destabilizing the
mixed pseudo-equilibrium in favour of the fully defecting state; at least to the extent that the
resulting system can be compared to the mean field or fully mixed models. The observation
that spatial structure can inhibit the evolution of cooperation was made earlier for the more
restrictive case of dyadic interactions and only for a two-dimensional grid implementation of
space exclusively with nearest neighbour interactions [30]. Here we substantiate the specula-
tion that this evolutionary behaviour is observed in a more general context, i.e. N-player sce-
narios and network structures representing realistic social networks.

We find that, irrespective of the threshold for payoff, larger numbers of players in each
match (N) result in less cooperation. In particular we find that forM/N very small, meaning a
relatively low threshold (M), the stochastic nature of the game destabilizes cooperation further.
Given the good correspondence between the theoretical predictions and numerical observa-
tions in this paper, we suggest that related scenarios (with payoff-functions that can be approx-
imated by a step-function) give rise to similar evolutionary dynamics.

Additionally, we find that the behaviour on highly clustered networks is similar to the
behaviour observed in very small, fully mixed, populations, leading us to suggest a working
notion of an effective population size, Leff, to describe the behaviour for a given population
structure with respect to the transition. It is shown in Fig 7b that Leff to a large extent can be
predicted based solely on the degree and average clustering of each vertex in the network. It
should be mentioned that this effective network population size bears little resemblance to the
family of well known genetic effective population sizes [31–33], except maybe the panmixia
assumption.

It is interesting to note that we do not seem to echo the findings of [34], who, by studying
pair-wise interactions on graphs, found a marked increase in cooperation for heterogeneous
networks. While a direct comparison is not possible in this study (since the rules of the game,
and hence the expected results, depend on the degree of the vertex), Fig 8 does not lead us to
believe that a similar effect is at play here. Presumably this, like most of our other findings, is
due to the bistable nature of the threshold game.

The results presented in this paper show, perhaps not surprisingly, that within multiplayer
games on structured populations, there is an intricate interplay between the details of the game
and the structure of the population. However, it also bears noting that much of the behaviour
observed can be seen to stem from properties of the mean field model—especially regarding
the relative stability of the mixed and full-defection states. It is important to point out that as
was shown in [14] and [17], the nonlinearity of the payoff function as well as the larger number
of players (N> 2) are both necessary requirements for the existence of the mixed state. As
such, models lacking these features would not be expected to have a similar dependence on
population structure.

Finally, it is worthwhile to remember that while the present model is surely quite simple—it
has no reputation, no kin-selection, no outside forcing—all refined models taking these con-
cepts into account, but retaining population structure and payoff non-linearity, will most likely
exhibit behaviour related to, or at least moulded by, the mechanisms uncovered in this paper.
As such, this simplified model is relevant for all such other more specialized takes on the sub-
ject of cooperation in structured populations, as was also argued in [17].
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An example of a slightly more advanced model is given in the appendix, where players are
allowed to also make suboptimal choices in their update strategies. It is found that the general
results are still valid. Furthermore, it is relevant to note that [15] uses slightly different payoff
structures and update rules, but still present results showing that the cooperative (mixed) state
becomes less stable when structure is introduced.

Network Generation

Regular networks
When generating regular networks, we have chosen the quite straightforward algorithm of
always starting with a ring-like network with an even number of close connections. The con-
nection matrix for this case is trivial to create, based on the diagram in Fig 2c. If an additional
short-range connection had to be added to this, we would go about it in the following system-
atic manner:

1. pick 1 vertex on the circle

2. If it is not of sufficient degree, connect it to the first non-neighbour in clockwise / counter
clockwise direction.

3. Proceed to the next vertex in the clockwise direction.

We would then repeat steps 2 & 3 alternating the clockwise / counter clockwise decision in
step 2. As has already been mentioned, this procedure is not guaranteed to work for all N, even
if L is required to be even. We have chosen not to study those sets of L, N where the above
method did not succeed.

When a random, regular network was needed, we have created a ring-like network, if
needed with a single long-range connection, depending on the desired degree. To then obtain a
random network, it is sufficient to repeatedly pick 2 edges at random: a–b & c–d, and if the two
pairs of vertexes happen to be unconnected, to mix the pairs such that the they become con-
nected as a–c & b–d. This switching was done 2L2 times for each random network.

Social Networks
For social networks, we have followed the algorithm described by [25]. More precisely, we have
started with a single seed vertex, and followed the below procedure L − 1 times:

1. pick on averagemr random vertices as initial contacts

2. pick on averagems neighbours of each initial contact as secondary contacts

3. connect a new vertex to the initial and secondary contacts

In the above,mr,ms are random variables, re-evaluated for each new vertex, by using the
expressions dz + 0.05 + f1 � vb and dn + 0.05 + f2 � qc. Here, z, v, q are random variables uni-
formly distributed between 0 and 1, n is uniformly distributed on the set {0, 1, 2, 3}, and the d�c
is the rounding operator. Please note that these expressions reduce to those mentioned in [25]
for f1 = f2 = 0.

Alternative Update Rule
To investigate whether the results in this paper, principally the structure dependence, depend
crucially on the chosen update rule Eq (1), we have conducted a smaller study in which Eq (1)
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had an additional noise term:

xi ! xið1� xiÞðfC � fDÞdt þ Am ; m � Nð0; 1Þ ð7Þ

This was chosen to mimic other update rules such as the Fermi update rule [35–37], in
which suboptimal decisions are possible. By varying A, it is possible to investigate at what
amount of noise is critical for our findings. In Fig 9 is seen hxi as a function of noise amplitude
(A) for two different network types and 3 different α-values. We see that the structure-induced
difference persists until complete model breakdown (when α ceases to be important, meaning
that the relationship between cost and reward no longer has any influence). We also see that
this breakdown occurs around A� 0.01, which seems very reasonable given that dt = 0.01.
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Fig 9. The effect on hxi as a function of noise amplitude (A in Eq (7)).We see that hxi is different depending on the network structure, until the noise
becomes so strong that the model collapses, as indicated by the disappearance of the α-dependence.
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