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The mitosis-related gene OIP5 is a potential biomarker in pan-
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Background: OIP5S is found at the centromere and plays an important role in recruiting centromere
protein-A (CENP-A) through interacting with Holliday junction recognition protein during cell mitosis.
OIP5 is considered to be a cancer-testis specific gene, but its function in tumor development remains
unclear. Increased expression of OIPS has been reported in testis as well as in different cancers; however, the
underlying mechanisms remain obscure.

Methods: Data were collected from the Genotype-Tissue Expression project, the Cancer Cell Line
Encyclopedia, and The Cancer Genome Atlas (TCGA) to analyze the effect of OIPS in many common
cancers. Analyses of the differential expression of OIPS and its relationships with prognosis, the tumor
microenvironment, immune infiltration, immune regulation, neoantigen production, and genomic stability
in various cancers were performed using R software.

Results: Expression of OIPS was significantly increased in 34 common tumor types compared with
matched healthy samples; however, no significant increases were observed in pheochromocytoma and
paraganglioma or kidney chromophobe. Elevated OIPS expression predicted dismal overall survival in 14
tumors. The function of OIPS in tumor-infiltrating immune cells (TIIC) was analyzed, and OIP5 might
inhibit TTIC infiltration in the tumor microenvironment; a positive correlation was found in thymoma, while
a negative correlation was observed in lung squamous cell carcinoma and lung adenocarcinoma. High OIPS
expression was related to immune regulation and neoantigen production, particularly in terms of the levels
of immune regulatory molecules and the number of neoantigens produced in lung adenocarcinoma, uterine
corpus endometrial carcinoma, breast cancer, stomach adenocarcinoma, low-grade glioma, and prostate
adenocarcinoma. It was also associated with increased cell genome instability in lung adenocarcinoma. Gene
set enrichment analysis revealed potential critical effects of OIPS on the cell cycle, base excision repair,
homologous recombination, DNA replication, the p53 signaling pathway, and mismatch repair pathways.
Conclusions: High expression of OIPS is found in many common tumors and predicts a dismal prognostic
outcome. The gene is an important recruitment factor for CENP-A and may promote tumor progression
by affecting the tumor immune microenvironment and genomic stability. Therefore, OIPS can serve as a

potential candidate factor to predict cancer prognosis and guide the use of therapeutics.
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Introduction

Malignant tumors are major causes of mortality globally,
and research to uncover the related molecular mechanisms
has been conducted worldwide (1). Cancers have a genetic
component with a common complex molecular process;
therefore, exploration of the homogeneity of a particular
gene across various tumors is crucial to discovering new
clinical therapeutic targets and prognostic evaluation
signs (2). Recently, immune checkpoint blockade therapies
have been developed, and through the use of public
databases such as The Cancer Genome Atlas (TCGA),
scientists have continued to improve and search for new
immunotherapeutic targets by analyzing pan-oncogene
levels and assessing their relationship with prognostic
outcomes and related signaling pathways (3,4). Therefore,
it is necessary to analyze pan-cancer gene expression levels,
evaluate their relationship with prognostic outcomes, and
understand their molecular mechanism to identify novel
therapeutics.

OIPS is located on human chromosome 15 and encodes
a 25-kDa protein with one coiled-coil domain. It was
identified through a yeast two-hybrid test and was found
to interact with Opa (Neisseria gonorrhoeae opacity-
associated) proteins (5). OIPS is found at the centromere
and plays an important role in recruiting centromere
protein-A (CENP-A) through interacting with the
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Holliday junction recognition protein (6). CENP-A, which
contributes to chromosome fragility in human cancer, is
overexpressed and localized abnormally in many kinds of
cancers (7). Increased expression of OIPS also has been
reported in testis as well as a diverse range of cancers, such
as glioblastoma, bladder cancer (BLCA), oral cancer, and
lung cancer, and it has been associated with different tumor
biological events (8-11). As a result, OIPS is considered to
be a cancer-testis specific gene, but its function in tumor
development remains unclear (12). Therefore, a pan-cancer
analysis is required to investigate its potential function as a
novel target for tumor treatment.

In this study, we analyzed OIPS expression levels within a
diverse range of cancers and their association with prognosis
using data from the Genotype-Tissue Expression (GTEx)
project, TCGA, and the Cancer Cell Line Encyclopedia
(CCLE). Further, to understand the impact of OIP5 on the
immune microenvironment and malignant progression of
tumors, we examined the relationships of OIPS expression
with immunomodulation, tumor-infiltrating immune cells
(TIICs), microsatellite instability (MSI), tumor mutational
burden (TMB), mRNA expression-based stemness score
(RNAss), and DNA methylation-based stemness score
(DNAss) in various cancers. To investigate the role of
OIPS in cancer in more detail, we also carried out gene set
enrichment analysis (GSEA). We present the following
article in accordance with the REMARK reporting
checklist (available at https://atm.amegroups.com/article/
view/10.21037/atm-22-6640/rc).

Methods
Data acquisition

Data on OIP5 expression levels in diverse cancers
and matched healthy samples were acquired from the
GTEx (https://commonfund.nih.gov/GTEx/), CCLE
(https://portals.broadinstitute.org), and TCGA (http://
cancergenome.nih.gov/) databases (13). The Tumor
IMmune Estimation Resource dataset (TIMER, http://

timer.cistrome.org/) was used for comprehensive assessment
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of the abundance of TIICs (14). Gene somatic mutation
data were also downloaded for analysis. The study was
conducted in accordance with the Declaration of Helsinki (as
revised in 2013).

Gene expression levels

The expression levels of OIP5 in 31 healthy samples and 21
diverse tumor samples were compared using the Kruskal-
Wallis test. After that, using TCGA data, OIPS expression
in tumor tissues was compared with that in corresponding
healthy tissues. Due to the insufficient number of healthy
noncancerous samples available from the TCGA database,

healthy control sample data were also collected from the
GTEx database.

Survival prognosis analysis

Clinical phenotypic and survival information of TCGA
cases was extracted. Univariate regression was used to assess
the relationships of OIPS with the following four prognostic
indicators in different tumors: overall survival (OS), disease-
specific survival (DSS), disease-free survival (DFS), and
progression-free survival (PFS). Cases were classified into
the high- or low-expression group based on the median
OIP5 level. The Kaplan-Meier method and log-rank test
were used for the survival analysis of each cancer.

Analysis of the effect of OIPS on TIICs and the tumor

microenvironment

The effect of OIPS on TIIC infiltration levels in diverse
cancers was assessed using Spearman’s rank correlation
coefficient. The TIICs of focus mainly included CD4" T
cells, CD8" T cells, B cells, dendritic cells, macrophages,
and neutrophils. The Estimation of STromal and
Immune cells in MAlignant Tumors using Expression
data (ESTIMATE) algorithm was used to determine the
immune, stromal, and ESTIMATE scores of different
samples, and the relationships between OIP5S expression
levels with these scores were also assessed (15).

Analysis of the correlations of OIPS expression with
immunomodulation, immune neoantigens, and gene
mutations

The correlations of OIP5 expression level with 150
common immune-related molecules, including the major
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histocompatibility complex, chemokines, chemokine
receptors, immune stimulator proteins, and immune
inhibitors, were analyzed using Spearman's rank
correlation coefficient. Similarly, the relationship between
OIP5 expression level and the number of neoantigens
was evaluated for each tumor type. The gene mutation
information of 514 cases with lung adenocarcinoma (LUAD)
was retrieved from the TCGA database; the samples were
classified and compared based on OIPS expression, and the
role of OIP5 in cell genome stability was evaluated.

Analysis of the correlations of OIPS expression with
DNAss, RNAss, TMB, and MSI

The correlations of OIPS expression level with the DNAss,
RNAss, TMB, and MSI were examined in different tumors

by calculating the Pearson’s correlation coefficient.

GSEA

"To identify significantly different pathways in the high and
low OIPS expression groups, GSEA was performed. The
Kyoto Encyclopedia of Genes and Genomes (https://www.
kegg.jp.) database was used for analysis. The criteria for
significance were set at normalized enrichment score (NES)

>1.5, false discovery rate (FDR) <0.25, and P value <0.05.

Statistical analysis

The R software (version 4.0.2; https://www.R-project.org)
was used for data analysis, and plots were obtained using
various R packages, including limma (16), clusterprofiler (17),
survival (18), and ggplot2 (19). P value <0.05 was considered
to be statistically significant.

Results
OIPS5 showed up-regulation in various malignancies

Levels of OIPS expression were analyzed in cancer and
healthy samples from the GTEx, TCGA, and CCLE
databases. In the GTEx dataset analysis, OIP5 expression
was found in 31 healthy samples, with high expression in
the testis and bone marrow and low expression in the heart
and pancreas (Figure 14). Based on CCLE data, OIPS
expression was highest in hematopoietic and lymphoid
tissue and lowest in the kidney (Figure 1B). OIPS expression
levels were analyzed in samples and matched non-
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carcinoma samples derived from the TCGA (Figure 1C) in
combination with normal tissue data from the GTEx project
(Figure 1D). Compared to normal tissues, all solid
tumors showed increased expression of OIP5 except
for pheochromocytoma and paraganglioma and kidney
chromophobe (KICH).

Prognostic significance of OIPS in pan-cancer

To evaluate the prognostic role of OIPS in different
cancers, we next conducted univariate Cox regression.
Results showed that OIP5S expression predicted poor OS
in adrenocortical carcinoma (ACC), LUAD, the pan-
kidney cohort [KICH, kidney renal clear cell carcinoma
(KIRC), and kidney renal papillary cell carcinoma (KIRP)],
glioblastoma multiforme low-grade glioma (LGG), and
many other cancers (Figure 2A4). Similar results were
observed for DSS (Figure 2B), DFS (Figure 2C), and PFS
(Figure 2D).

Further, Kaplan-Meier curves were plotted to analyze
OS, DSS, DFES, and PFES in patients with cancer based on
OIP5 expression. Increased expression of O[PS was found
to predict dismal OS in ACC, BLCA, KICH, KIRC, KIRP,
LGG, liver hepatocellular carcinoma (LIHC), LUAD,
mesothelioma (MESO), pancreatic adenocarcinoma
(PAAD), prostate adenocarcinoma (PRAD), thymoma
(THYM), and uveal melanoma (UVM). Interestingly, in
contrast, OIP5 expression was associated with longer OS
in THYM (Figure 3). To eliminate the effect of death from
non-cancer causes on the statistical results, DSS was used as
the end event. The results confirmed that increased OIPS
expression had similar prognostic significance for DSS
as it did for OS in all tumors, except THYM (Figure 4).
Increased expression of OIPS predicted dismal prognostic
outcomes in ACC, breast cancer (BRCA), KIRP, LTHC,
PAAD, and PRAD, as revealed by DFS analysis (Figure
5). Results also showed that OIPS expression was similarly
correlated with PFS (Figure 6). See Table S1 for a full list of
abbreviations used.

Effects of OIPS on tumor immune infiltration and the
tumor immune microenvironment

The effect of OIPS expression on TIIC recruitment was
investigated through analysis of the relationship of OIPS
gene expression levels with the numbers of CD4" T cells,
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CD8" T cells, B cells, dendritic cells, neutrophils, and
macrophages in different tumors. OIP5S expression was
negatively related to TIIC levels in LUAD, lung squamous
cell carcinoma (LUSC), esophageal carcinoma, and stomach
and esophageal carcinoma. However, a positive relationship
was found between TIIC levels and increased expression
of OIPS in THYM, thyroid carcinoma, KIRC, and LGG
(Figure 74).

We also analyzed the effect of OIPS on the tumor
microenvironment by assessing the relationships of OIPS
gene expression level with the stromal score, immune
score, and ESTIMATE score. OIP5 expression showed
negative relationships with stromal score (Figure 7B),
immune score (Figure 7C), and ESTIMATE score
(Figure 7D) in LUAD, stomach and esophageal carcinoma,
stomach adenocarcinoma (STAD), and LUSC. These
results suggested that OIPS might inhibit TIIC infiltration
in the tumor microenvironment.

Correlation analysis of OIPS expression levels with
immune regulation, neoantigens, and gene mutation

Based on the effect of OIPS expression on the
immune microenvironment, we further examined the
association between OIPS expression and 150 common
immunomodulatory molecules in 40 different tumors.
Surprisingly, OIPS showed a negative correlation with
the levels of most immunomodulators in LUAD, LUSC,
and STAD but showed a positive correlation with
immunomodulator levels in thyroid carcinoma, the pan-
kidney cohort, breast cancer, ovarian cancer, and other
tumors (Figure 8A). This result suggested that OIPS possibly
affects TIIC levels by regulating the specific immune
response.

Additionally, we also analyzed the association between
the number of neoantigens and OIP5 expression in each
cancer. OIPS expression showed a positive correlation
with neoantigen number in LUAD, uterine corpus
endometrial carcinoma, breast cancer, STAD, low-grade
glioma, and prostate adenocarcinoma (Figure §B). These
findings suggested that OIPS possibly enhances neoantigen
generation in cancer cells, which was further confirmed by
gene mutation analysis. In LUAD, more gene mutations
were observed in the OIPS high-expression group than in
the low-expression group. In particular, 7P53, which is
a well-known tumor suppressor gene, had a remarkably
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Figure 1 Expression analysis of OIPS in pan-cancer. (A) Analysis of OIPS expression levels in 31 different normal tissue types with data
from the GTEx project. (B) Analysis of OIPS expression levels in cell lines of 21 different tumors with data from the CCLE dataset. (C)
Analysis of OIPS expression levels in 26 types of matched tumor and normal tissues with data from the TCGA database. (D) Analysis of
OIPS expression levels in 34 types of matched tumor tissues from the TCGA database and normal tissues from the GTEx project database. *,
P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. TCGA, The Cancer Genome Atlas; GTEx, the Genotype-Tissue Expression.
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Figure 2 Forest plot of associations between OIPS expression and overall, disease-specific, disease-free, and progression-free survival.
Association of OIPS with (A) OS, (B) DSS, (C) DFS, and (D) PES. OS, overall survival; DSS, disease-specific survival; DES, disease-free

survival; PFS, progression-free survival.
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Figure 3 Kaplan-Meier analysis of overall survival according to OIPS expression level in different tumors. (A) ACC, (B) BLCA, (C) KICH, (D)
KIRC, (E) KIRP, (F) LGG, (G) LIHC, (H) LUAD, (I) MESO, (J) PAAD, (K) PRAD, (L) THYM, and (M) UVM.

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2023;11(2):117 | https://dx.doi.org/10.21037/atm-22-6640



Page 8 of 17 Pan et al. OIP5 in pan-cancer

100 OIPS in ACC Exp 100 OIP5 in BRCA Exp 100 — = e . OIRSinKICH Exp 100 OIP5 in KIRC Exp
%
-1 11 == High == High == High == High
e P == Low T == Low
075 075 0.75 - 5= 0.75!
= = Z 2
3 = H 3
8 8 8 8
K K 2 K
g [ - o 2
& o050 5 050 £ & 050 5 050
s s 2 s
s z ] :
5 5 - 5 5
@ @ 1 | @ @
025 o g e e - - 025 -
P=0.0066 I p< 0.00ch 7 1
I H—t—F—1T I
— [ 1y iy Sy S §
& om Hrh 11, 95%Cre1.07 1.15) & oo{ HR=102,95%cI (1,104 | & oo k=12 '85%¢1 (708, T3] & 0004 HR=1.14, oloici.00, 1.19) 1
<
Q T o
Q Hish 34 4 4 0 0 0 & 1iehq179 27 5 4 0 :_z Highd 8 4 ] 0 0 0 ﬂzf High+ 80 28 5 3 0
@
€ Lowq 45 24 15 6 £ 0 c w1910 171 17 4 3 € Lowd 56 44 33 19 2 0 € Low448 237 90 25 4
s <
a o 1000 2000 3000 4000 5000 & H 2000 4000 6000 o0 & 0 1000 2000 3000 4000 0 & 0 1000 2000 3000 4000
© Time, days [ Time, days S Time, days S Time, days
1.00 OIPS in KIRP Exp 100 OIP5 in LGG Exp 1.00 OIP5 in LIHC Exp 100 OIP5 in LUAD Exp
= High e High = High - High
S e = = ey — - - Low \ == Low
075 075 075 075
z z ) z
3 3 H 3
8 8 8 8
g g g 3
5 050 g 050 & 050 5 050
E £ g K]
H s £ N H
3 @ @ [} @
025 025 025 1 02
I
-2 o | I - = o 1 1 o
u»j 0.00 m 0.00! u)ﬁ 0.00° m 0.00!
o [0} [%) a
% 6 1 0 0 0 0 Q Highy 84 1 2 1 0 0 I nien4185 28 3 1 0 < 1igh4 336 18 2 1 0
=
£ 90 38 12 1 1 0 £ Lowq425 108 28 10 3 1 € Low]185 34 11 2 0 T Lowd168 15 2 2 0
S =
& T o am  ao  ww  sko w0 & H 00 200 o0 a0 o0 & T o0 2000 3000 w0 & H 2000 2000 000 3000
© Time, days Time, days S Time, days S Time, days
100 0IP5 in MESO Exp 100 OIP5 in PAAD Exp 100 OIPS in PCPG Exp 100 OIP5 in PRAD Exp
n - High - - High = High
y == Low \ == Low = Low ==, Law
075 075 075 075
= = Zz 2z
3 3 3 I R U Tt [
8 8 8 8
2 3 2 g [ Yk TS
g 2 e [
& o050 g 00 & 050 - 5 050
2 2 g 2
H H H z
3 @ 3 @ 3
T T O
P=0.011 P<0.0001
(N} [ I
-
o -l - .
& oo{ wr=Yos, d5%c1 71, 1.09) tl=l= & om] r=1helosvci (108, 1.2 £ 000{ HR=1.8, 95%Cl (1.28, 2.52) & o] HR=12,95%CI (1.14,h 26)
o [=} o [=}
&8 niznq 20 3 0 [ 0 0 < niehq 51 3 0 0 & nighq 33 3 ] 4 = 1ighq183 60 15 5 ') 4
i o
E Lowq 63 24 T 3 ') 0 £ Lowq126 16 3 0 2 Lowq146 20 0 0 c Lowq312 126 31 6 2 0
g 0 500 1000 1500 2000 w0 & H 1000 2000 000 0 2000 4000 600 & 0 1000 2000 3000 4000 5000
S Time, days S Time, days [S] Time, days S Time, days
100 OIPS in UVM Exp
-+ o - High
L -
075
z
3
8
K
g o5
K]
3
z
5
@
025
peooob _
I
1 1
& o Hr=19F, 95%Ci (1.44, 268) | | =1
s
3 e 14 5 2 0 0 0
£ Lowq 65 43 24 4 2 0
©
< 0 500 1000 1500 2000 2500
© Time, days

Figure 4 Kaplan-Meier analysis of disease-specific survival according to OIPS expression level in different tumors. (A) (A) ACC, (B) BRCA,
(C) KICH, (D) KIRC, (E) KIRP, (F) LGG, (G) LIHC, (H) LUAD, (I) MESO, (J) PAAD, (K)PCPG, (L) PRAD, and (M) UVM.
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Figure 5 Kaplan-Meier analysis of disease-free survival according to OIPS expression level in different tumors. (A) ACC, (B) BRCA, (C)

KIRP, (D) LIHC, (E) PAAD, and (F) PRAD.

increased mutation rate (Figure 8C).

Association of OIPS expression level with DNAss, RNAss,
TMB, and MSI

The DNAss and RNAss of tumor cells have been reported
to be tightly associated with tumor progression, metastasis,
and drug resistance (20). MSI and TMB are indicators of
tumor cell genomic stability (21).

In this study, OIP5 expression showed a positive
relationship with both the DNAss (Figure 94) and
RNAss (Figure 9B) in many tumors, including LUAD,
LUSC, STAD, and testicular germ cell tumors. The
OIP5 expression level also showed a positive correlation
with TMB in many tumors, such as LUAD, STAD, and
KICH, but a negative correlation with THYM, ovarian
cancer, and thyroid carcinoma (Figure 9C). Moreover, the

© Annals of Translational Medicine. All rights reserved.

expression of OIPS was positively correlated with MSI in
STAD, cholangiocarcinoma, and stomach and esophageal
carcinoma but was negatively correlated with MSI in
glioblastoma multiforme low-grade glioma and testicular
germ cell tumors (Figure 9D).

GSEA

The protein-protein interaction network of OIPS was
generated to understand the function and potential
mechanism of OIP5 in cells. Surprisingly, the results showed
that OIPS was linked to CENP-A, CENP-M, CENPN,
CENP-U, MIS18A, MIS18BP1, HJURP, NCAPG,
NUSAPI1, and CDCAS, which are all mitosis-related
proteins (Figure 10A). Furthermore, to evaluate the possible
biological involvement of OIPS using GSEA analysis, data
in The Kyoto Encyclopedia of Genes and Genomes were

Ann Transl Med 2023;11(2):117 | https://dx.doi.org/10.21037/atm-22-6640
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Figure 6 Kaplan-Meier analysis of progression-free survival according to OIPS expression in different tumors. (A) ACC, (B) KICH, (C)
KIRC, (D) KIRP, (E) LGG, (F) LIHC, (G) LUAD, (H) MESO, (I) PAAD, (J) PRAD, and (K) UVM.

classified into high or low OIP5 expression groups based OIP5, a cancer-testis specific gene, plays an important role
on the median OIPS expression. Surprisingly, OIPS5 showed in centromere protein A (CENPA) recruitment to the
enrichment in the cell cycle, base excision repair, homologous centromere during mitosis (23,24). It also affects chromatin
recombination, DNA replication, the p53 signaling pathway, organization and controls the cell cycle. The mitotic
and mismatch repair pathways (Figure 10B). rate of a cancer cell represents a vital manifestation of its

proliferation ability, proliferation ability often predicts
dismal prognostic outcomes. LncRNA OIP5-AS1 (Opa-

Discussion InteractionProtein5 antisense RNA1) can bind to and
In recent years, targeted therapy has brought patients negatively regulate the activity of multiple cellular RNAs
with cancer hope for a cure; however, the lack of effective and microRNAs, including cyclin G associated kinase
targets has hindered the optimization of this anticancer and ELAV like RNA binding protein 1. Overexpression
therapy. Increasing evidence of the crucial effects of cancer- of OIP5-AS1 can inhibit the survival, colony formation,
testis specific genes on tumor development has provided invasion and migration of multiple myeloma cells in vitro,
some new potential targets for cancer therapy (12,22). induce cell cycle arrest in G1 phase, induce apoptosis,
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Figure 7 Correlations between OIPS expression and tumor-infiltrating immune cells and tumor microenvironment indicators. (A) Results of

pan-cancer correlation analysis between OIPS expression and B cells, CD4" T cells, CD8" T cells, neutrophils, macrophages, and dendritic

cells. Representative results of correlation analysis between OIPS expression and the (B) stromal, (C) immune, and (D) ESTIMATE scores. *,
P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. TCGA, The Cancer Genome Atlas; ESTIMATE, Estimation of STromal and Immune cells

in MAlignant Tumors using Expression data.

and inhibit tumor formation iz vive (25). Therefore, in
this study, a pan-cancer analysis of OIPS expression was
performed to evaluate its role in prognosis, immunity, and
metabolism, as well as its therapeutic potential.

First, we analyzed the differential OIPS expression in
tumor cells and healthy samples. In normal tissues, OIPS
was most significantly up-regulated in the bone marrow
and testis, whereas it was down-regulated in the heart and

pancreas. We found that the expression level of OIPS was
correlated with the proliferative activity of the tissue. This
result is consistent with the reported role of OIPS in the
mitotic process and its effect on the cell cycle. Based on
the analysis of the differential expression of OIPS in tumor
and paired healthy samples, OIP5 expression was found to
be increased in all tumors except kidney chromophobe and
pheochromocytoma and paraganglioma. These findings

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2023;11(2):117 | https://dx.doi.org/10.21037/atm-22-6640
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Figure 8 Correlations of OIPS expression level with immune regulation, neoantigens, and gene mutation. (A) Pan-cancer correlations

between OIPS expression and 150 common immunomodulatory molecules. (B) Pan-cancer correlations between OIPS expression and

various neoantigens. (C) Waterfall plot representing gene mutations in 514 patients with LUAD from The Cancer Genome Atlas. TPM,

transcripts per million.

corroborate those of previous studies and the reported
characteristics of OIPS as a cancer-testis specific gene
(8,26,27). Examination of the effect of OIPS expression level
on OS, DSS, DFS, and PFS in various cancers showed that
OIPS5 up-regulation predicted a dismal prognostic outcome
in multiple cancers. These results highlight the potential of

© Annals of Translational Medicine. All rights reserved.

OIPS to become a new prognostic biomarker of pan-cancer.

Of note, in THYM, increased expression of OIPS
predicted a better prognosis and was also associated with
the promotion of immune cell infiltration. The immune
system plays an important role in tumor genesis and
progression, and tumor occurrence is often associated with

Ann Transl Med 2023;11(2):117 | https://dx.doi.org/10.21037/atm-22-6640
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Figure 9 Correlations of OIPS expression levels with DNA methylation-based stemness score, mRNA expression-based stemness

score, tumor mutational burden, and microsatellite instability. Bubble chart of the correlations between OIPS expression and (A) DNA

methylation-based stemness score, (B) mRNA expression-based stemness score, (C) tumor mutational burden, and (D) microsatellite

instability.

immune system dysfunction (28). OIPS might inhibit THC
infiltration in the tumor microenvironment. OIP5-AS1
level was highly expressed in Cancer-associated fibroblasts,
which are the most important stromal cells in the tumor
microenvironment, and exosomes derived from cancer-
associated fibroblasts promote lung cancer progression
through the OIP5-AS1/miR-142-5p/PD-L1 axis (29). Linc-
OIP5 in breast cancer cells regulates angiogenesis of human
umbilical vein endothelial cells through YAP1/Notch/NRP1
signal circuit in tumor microenvironment (30). Various
immune cells, including dendritic cells, macrophages,
neutrophils, B cells, and T cells, can infiltrate the tumor

© Annals of Translational Medicine. All rights reserved.

microenvironment, which affects tumor development.
Our results showed an inconsistent association of OIPS
expression levels with TIIC levels in different tumors,
which may be attributable to the complexity of the
TIIC infiltration process. Surprisingly, TIIC levels were
positively related to OIPS expression in THYM, and
prognosis showed a similar trend, whereas the opposite
trend was observed in LUAD and glioblastoma. Further
research on the association of OIPS with tumor immune
and stromal scores showed that OIPS impacted immune
cell infiltration and had significant effects on stromal cell
infiltration, which can affect the purity and prognosis of

Ann Transl Med 2023;11(2):117 | https://dx.doi.org/10.21037/atm-22-6640
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Figure 10 Gene set enrichment analysis of OIPS in pan-cancer. (A) Protein-protein interaction analysis of OIPS. (B) Kyoto Encyclopedia of

Genes and Genomes analysis of OIPS.

tumors (15,31). Although the influence of OIPS on immune
cell infiltration was inconsistent in different tumors, most
of the correlations were statistically significant. This
result highlights that OIPS predicted a dismal prognostic
outcome, and the mechanism of it worth investigating.

Extensive research on immune checkpoints, and the
advent of immune checkpoint inhibitors (ICIs), has drawn
increasing interest in the roles of immune regulation and
neoantigen formation in tumor genesis and progression (32).
Despite the fact that few diseases can be treated with ICIs at
present, the effects of OIPS on tumor immune modulation
and neoantigen development must be analyzed (33). In
this study, association analysis of OIPS expression with 150
immune regulatory molecules in different cancers revealed
a similar trend to that observed for immune cell infiltration,
which was negatively correlated with OIPS expression in
LUAD, LUSC, and STAD but positively correlated in
thyroid carcinoma, the pan-kidney cohort, and ovarian
cancer. These results show a consistent and stable effect of
OIPS5 on immune regulation in different tumors. Further
examination of the relationships of OIPS expression level
with neoantigen formation and gene mutation frequency in
tumors showed positive correlations, further proving that
OIP5 could potentially serve as an antitumor therapeutic
target.

The level of tumor differentiation is closely related to

© Annals of Translational Medicine. All rights reserved.

cancer stem cell viability, which is reflected by the RINAss
and DNAss, with a higher stemness score indicating a lower
degree of tumor differentiation (20). Research has proven
that TMB and MSI are important indicators for the efficacy
of ICI treatment in patients with cancer (34,35). In this
study, we examined the relationships of OIP5 expression
with these four indexes to explore how OIP5 might affect
tumor differentiation and immunotherapy sensitivity. In
many cancers, the OIPS expression level was related to low
differentiation and high TMB and MSI. Interestingly, OIPS
expression in THYM showed a positive correlation with
tumor differentiation, which explains its positive prognostic
effect. A low differentiation level of tumor cells is always
associated with a poor prognosis; however, higher TMB
and MSI mean that increased neoantigen production by
the tumor can be easily recognized by immune cells, thus
improving the therapeutic efficacy of ICIs (36,37). Previous
studies have shown that the benefits of ICI therapy are
significantly increased for cases with a high TMB compared
to those with a low TMB (38-40). Currently, OIPS is known
to be related to poor survival in diverse cancers; however,
with the increasing application of ICIs in tumor treatment,
it might also become a positive indicator to predict the
therapeutic effect and be related to a positive prognostic
outcome. This study serves additional evidence that OIPS
could serve as a marker for cancer diagnosis and treatment.

Ann Transl Med 2023;11(2):117 | https://dx.doi.org/10.21037/atm-22-6640
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To understand the pathophysiological mechanism
underlying the role of OIPS in pan-cancer, a GSEA was
carried out to obtain the functional network and related
signal pathways of OIPS. Through functional network and
signal pathway analysis, OIP5 was found to be an important
player in cell mitosis and to be enriched in the cell cycle,
base excision repair, homologous recombination, DNA
replication, the p53 signaling pathway, and mismatch
repair pathways. These results suggest that OIPS, as a key
CENP-A recruitment molecule, may ultimately affect
tumor genesis and progression by influencing the precise
distribution of DNA during the mitotic process (41,42).

Conclusions

In summary, our research demonstrates that OIP5, as a
cancer-testis specific gene, exhibits high expression and
predicts a dismal prognostic outcome in many common
cancers. Its expression might influence patient prognosis
by affecting the tumor microenvironment and genomic
stability. Therefore, OIP5 has the potential to serve as
a therapeutic target and prognostic evaluation index for
multiple cancers. The main limitation of our study was
its lack of in vivo and in vitro experiments to prove the
findings of our bioinformatic analyses performed on openly
accessible databases. Therefore, it is necessary to conduct
follow-up validation experiments in the future.
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