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Introduction: Preterm babies are a vulnerable population that experience significant

short and long-term morbidity. Rehospitalisations constitute an important, potentially

modifiable adverse event in this population. Improving the ability of clinicians to

identify those patients at the greatest risk of rehospitalisation has the potential

to improve outcomes and reduce costs. Machine-learning algorithms can provide

potentially advantageous methods of prediction compared to conventional approaches

like logistic regression.

Objective: To compare two machine-learning methods (least absolute shrinkage

and selection operator (LASSO) and random forest) to expert-opinion driven logistic

regression modelling for predicting unplanned rehospitalisation within 30 days in a large

French cohort of preterm babies.

Design, Setting and Participants: This study used data derived exclusively from

the population-based prospective cohort study of French preterm babies, EPIPAGE

2. Only those babies discharged home alive and whose parents completed the

1-year survey were eligible for inclusion in our study. All predictive models used

a binary outcome, denoting a baby’s status for an unplanned rehospitalisation

within 30 days of discharge. Predictors included those quantifying clinical, treatment,

maternal and socio-demographic factors. The predictive abilities of models constructed

using LASSO and random forest algorithms were compared with a traditional

logistic regression model. The logistic regression model comprised 10 predictors,

selected by expert clinicians, while the LASSO and random forest included 75

predictors. Performance measures were derived using 10-fold cross-validation.

Performance was quantified using area under the receiver operator characteristic

curve, sensitivity, specificity, Tjur’s coefficient of determination and calibration measures.
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Results: The rate of 30-day unplanned rehospitalisation in the eligible population used

to construct the models was 9.1% (95% CI 8.2–10.1) (350/3,841). The random forest

model demonstrated both an improved AUROC (0.65; 95% CI 0.59–0.7; p = 0.03) and

specificity vs. logistic regression (AUROC 0.57; 95%CI 0.51–0.62, p= 0.04). The LASSO

performed similarly (AUROC 0.59; 95% CI 0.53–0.65; p = 0.68) to logistic regression.

Conclusions: Compared to an expert-specified logistic regression model, random

forest offered improved prediction of 30-day unplanned rehospitalisation in preterm

babies. However, all models offered relatively low levels of predictive ability, regardless

of modelling method.

Keywords: neonatology, rehospitalisation, prediction, machine-learning, epidemiology

INTRODUCTION

Preterm babies experience significant short and long-term
morbidity (1, 2) and rehospitalisations constitute an important,
potentially modifiable adverse event. Predictive models for
rehospitalisation can potentially improve outcomes and reduce
care costs (3–5). Models with high predictive power can facilitate
the targeting of high-risk groups and inform discharge and
follow-up decisions (6, 7). There is a large body of literature
relating to the prediction of rehospitalisation across many
different patient groups. Logistic regression has traditionally
been used to predict binary outcomes such as rehospitalisation
(8, 9). But, deriving models that are highly predictive,
validated and use predictors that are both clinically useful and
available is challenging (8, 10). To improve prediction, rather
than just including additional sets of predictors, researchers
are increasingly turning to machine-learning algorithms as
alternative methods for constructing models (8, 11, 12). Such
algorithms are particularly suited to predicting outcomes in
high-dimension data. Traditional modelling processes often
carry greater concerns for parameter bias and interpretability
as well as model parsimony. On the other hand, machine-
learning procedures tend to have limited concern for bias
in parameter estimates, and are generally more capable of
translating increases in model complexity into greater predictive
ability (13, 14). Contrasting a traditional clinician-specified
model with a machine-learning approach could provide useful
insights into the potential value of adopting machine-learning
methods in clinical settings (15, 16).

The least absolute shrinkage and selection operator (LASSO)
(17) and random forest (18) represent two established machine-
learning approaches. The LASSO is a type of regression analysis
that performs regularisation, shrinking some coefficients to
zero to improve the accuracy of predictions while reducing
complexity. Compared to traditional logistic regression, LASSO
can provide variable selection and improve prediction by trading
increases in coefficient bias for reductions in variance (19–21).
Random forest is a classification algorithm that uses multiple
decision trees and bagging to merge predictions across the
multiple trees. The advantages of random forest include the
efficient consideration of larger predictor sets, a reduced risk of
overfitting (22) and an ability to manage non-linear relationships

between predictors and predicted probabilities more effectively
(23, 24). In the literature, machine-learning methods offer mixed
results in terms of rehospitalisation prediction (9, 15, 23–27),
and their performance when applied to rehospitalisation among
preterm babies appears to be as yet untested.

The primary objective of this study was to compare machine-
learning methods (LASSO and random forest) to a logistic
regression model specified by clinical experts for predicting
unplanned rehospitalisation within 30 days in a population of
preterm babies.

METHODS

Study Design and Population
This study used data from EPIPAGE 2, a French national
prospective cohort study of all babies born at 22–34 weeks
gestation in all maternity units in 25 French regions between
March 28, 2011 and December 31, 2011. The one region that
did not participate accounted for approximately 2% of all births
in France. Babies with a gestational age of 22–26, 27–31, and
32–24 weeks had recruitment periods of 8 months, 6 months
and 5 weeks, respectively (28). Only babies discharged home
alive, whose parents completed the 1-year follow-up survey
were included in our study. Babies that died during birth
hospitalisation or between being discharged and 1-year follow-
up were excluded. A flowchart of study sample selection is shown
in Figure 1.

The EPIPAGE 2 study included data gathered at birth and
via follow-up surveys at 1, 2 and 5.5 years corrected age.
Our study used the data collected at birth and the 1-year
follow-up exclusively. Birth data were collected using medical
records and questionnaires for clinicians in both maternity
and neonatal units during the neonatal period. The collection
of neonatal data related to a baby’s condition at birth, as
well as morbidity and treatment status. Data on a mother’s
socio-economic status, health and their baby’s care prior to
discharge were collected via interviews and questionnaires in
the neonatal unit. The 1-year follow-up questionnaire was
sent to parents and gathered information regarding growth,
sequela, post-neonatal care, hospitalisations, maternal health
and socio-demographics.
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FIGURE 1 | Flowchart of the study population derived from the EPIPAGE

2 cohort.

Outcome
Our primary outcome was a binary variable recording whether
a baby experienced an unplanned rehospitalisation within 30
days of discharge (URH30). Unplanned rehospitalisation status
(URH) was defined according to the rehospitalisation cause
recorded in the 1-year follow-up survey. The survey asked
parents to provide the date and cause of their baby’s three
longest rehospitalisations. Selectable causes were bronchiolitis or
asthmatic bronchitis, gastroenteritis, diarrhoea or dehydration,
poor weight gain, convulsions, injury, malaise, surgery or other
(for vaccination or observation for example). We classified
rehospitalisations related to vaccinations or surgery as planned,
and all other causes as unplanned. Babies experiencing a
single rehospitalisation due to both an unplanned and planned
cause were classified as having a URH. The number of days
between discharge and first URH was calculated to confirm
whether a URH occurred within 30 days (URH30). Where a
baby experienced multiple URH30s, only the earliest was taken
forward into modelling.

Predictor Variables
All predictor variables were selected from an initial set of
75 EPIPAGE 2 variables (Supplementary Table 1). The first
model included 10 predictors and was constructed using logistic
regression. Predictor selection for this model was guided
by the literature, likely availability in a clinical setting and
domain-specific input from expert clinicians. Constructing a
parsimonious model with the potential for clinical use was a
key priority. This model was a variant of a model we had
previously published (29), with continuous predictors replacing
their categorical versions. The 10 predictors included in this
model were: sex (binary), gestational age in days (continuous),
small for gestational age (SGA) status (binary; weight below
the 10th percentile for gestational age), receipt of nitric oxide

(binary), receipt of surfactant (binary), bronchopulmonary
dysplasia (BPD) (30) [categorical; none, mild (≥28 days oxygen
and breathing room air to week 36), moderate (≥28 days oxygen
and mechanical ventilation or continuous airway pressure/FiO2

>21% at week 36) or severe (≥28 days oxygen and mechanical
ventilation or continuous airway pressure/FiO2 >30% at week
36)], early onset neonatal infection (binary; either no infection
or likely infection with antibiotics started at <72 h after birth
for ≥5 days or infection confirmed via positive blood or
cerebrospinal fluid culture prior to 72 h of life), post-menstrual
age at discharge (PMA) in days (continuous), discharge weight
in grams (continuous) and breastfeeding status at discharge
(categorical; baby in receipt of either no breast milk, mixed
feeding or exclusive breastfeeding at discharge).

The remaining two machine-learning models (using LASSO
and random forest algorithms) included the full set of 75
predictors. Through this stage ofmodelling we sought to establish
whethermachine-learning algorithms, utilising a large number of
predictors, could improve prediction.

Statistical Analysis
The characteristics of babies were compared according to URH30
status using the Kruskal–Wallis test for continuous variables and
the chi-squared test or Fisher’s exact test for categorical variables.
A p-value of ≤0.05 was considered statistically significant. All
analyses were conducted using R version 4.0.1 (31).

Predictive Model Building and Validation
All models were initially constructed using complete-cases
(babies with no missing values for the outcome or 75 predictors).
The first model included 10 predictors, while the second and
third included 75 predictors. Optimal hyperparameter values
for the LASSO and random forest models were identified
via repeated 5-fold cross-validation. The optimal classification
threshold for defining events and non-events was established by
identifying the value that optimised the true positive and false
positive rates (32–35).

The performance of all models was validated through 10-
fold cross-validation (36, 37). This randomly divided the data
into 10 equally sized subsets. Each time, nine of the subsets
were used to train an independent regression model. The derived
coefficients were then used to predict on the remaining test
subset. This was repeated 10 times so each subset was used
as the test once. Model discrimination was assessed using the
area under the receiver operating characteristic curve (AUROC),
sensitivity, specificity and Tjur’s coefficient of determination (38).
To establish differences in predictive performance, measures for
both the LASSO and random forest models were compared
to those for the logistic regression model. DeLong’s test (39)
was used to identify differences in AUROC and McNemar’s test
used to compare model sensitivity and specificity. Bootstrapping
with 2,000 replications was used to calculate 95% confidence
intervals. The Hosmer–Lemeshow goodness-of-fit test and
associated calibration curve were used to assess model calibration
(40). Additional analyses included scatter plots and partial
dependence plots.
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TABLE 1 | Distribution of ten primary characteristics of 3,841 eligible babies in the EPIPAGE 2 cohort by 30-day unplanned rehospitalisation (URH30) status.

Variables Total URH30 URH30 (%) (95% CI) p

Sex

Female 1,818 152 8.4 (7.1–9.7)

Male 2,001 198 9.9 (8.6–11.2) 0.11

Missing 22 – – –

Gestation age (weeks)

32–34 997 40 4.0 (2.8–5.2)

27–31 2,349 238 10.1 (8.9–11.3)

22–26 473 72 15.2 (12.0–18.4) <0.001

Missing 22 – – –

Small for gestational age

Yes 1,325 134 10.1 (8.5–11.7)

No 2,494 216 8.7 (7.6–9.8) 0.16

Missing 22 – – –

Nitric Oxide

Yes 163 24 15 (10–20)

No 3,594 324 9.0 (8.1–9.9) 0.02

Missing 84 – – –

Surfactant

Yes 1,888 225 11.9 (10.4–13.4)

No 1,885 119 6.3 (5.2–7.4) <0.001

Missing 68 – – –

Early onset neonatal infection

Yes 609 61 10 (7.6–12.4)

No 3,086 275 8.9 (7.9–9.9) 0.43

Missing 146 – – –

Bronchopulmonary dysplasia

None 2,915 224 7.7 (6.7–8.7)

Mild 431 65 15.1 (11.7–18.5)

Moderate 106 18 17 (10–24)

Severe 222 30 13.5 (9.0–18.0) <0.001

Missing 167 – – –

Post–menstrual age at discharge (weeks)

<36 639 25 3.9 (2.4–5.4)

36–<37 960 83 8.6 (6.8–10.4)

37–<38 763 70 9.2 (7.2–11.3)

≥38 1,442 172 11.9 (10.2–13.6) <0.001

Missing 37 – – –

Discharge weight (grams)

≤2,200 706 46 6.5 (4.7–8.3)

2,201–2,600 1,484 134 9.0 (7.5–10.5)

2,601–3,000 977 90 9.2 (7.4–11.0)

>3,000 579 76 13.1 (10.4–15.9) 0.001

Missing 95 – – –

Breastfeeding status

None 1,719 189 11.0 (9.5–12.5)

Mixed 839 70 8.3 (6.4–10.2)

Exclusive 1,004 72 7.2 (5.6–8.8) 0.002

Missing 279 – – –

p-Values derived from the chi-squared test.
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Missing Data
The influence of missing data upon predictive ability was
established by rebuilding all models using multiply imputed data
(41). Ten imputations and 50 iterations were used for imputation.
Further details can be found in our earlier publication using the
same dataset (29).

RESULTS

Of the 5,567 live-born babies eligible for inclusion in the
EPIPAGE 2 study; 3,841 were both discharged alive and
responded to the 1-year follow-up survey (Figure 1). The rate
of 30-day unplanned rehospitalisation in our eligible babies was
9.1% (95% CI 8.2–10.1) (350/3,841). Cross-tabulation of baseline
characteristics is shown in Table 1. In the eligible babies, 859
(22.4%) were complete-cases, among whom the rate of URH30
was 9.9% (95% CI 8.0–12.1%) (85/859).

Predictive Model Performance
The 75-predictor random forest offered a superior AUROC
(0.65; 95% CI 0.59–0.71; p = 0.03) to the ten-predictor logistic
regression (0.57; 95% CI 0.51–0.62). The LASSO model had
a similar AUROC (0.59; 95% CI 0.53–0.65; p = 0.68) to the
logistic regression. All models demonstrated similar sensitivity,
but specificity in the random forest (0.59; 95% CI 0.55–0.62; p =
0.04) was above that of the logistic regression (0.54; 95% CI 0.51–
0.58). The logistic regression and LASSO model demonstrated
a significant Hosmer-Lemeshow test statistic. All discrimination
and calibration measures for the three models are shown in
Table 2, as well as the receiver operating characteristic curves in
Figure 2 and calibration curves in Figure 3. Model outputs from
the logistic regression are shown in Supplementary Table 2 and a
list of the 32 predictors retained by the LASSOmodel is shown in
Supplementary Table 3. Results of additional analyses are shown
in Supplementary Figures 1–4.

Models constructed using multiply imputed data offered
similar predictive performance compared to models constructed
on complete-cases.

DISCUSSION

In this study we compared different approaches for the prediction
of 30-day unplanned rehospitalisation in preterm babies. We
found that the random forest algorithm, constructed on a large
and diverse set of predictors, provided improved predictive
ability vs. a logistic regression model containing a smaller set

of predictors selected by clinical experts. The LASSO algorithm
however did not offer improvements over logistic regression.
This study produced interesting findings concerning the added
value of machine-learning methods such as random forest;
contrary to some of the wider literature on clinical prediction
models (9, 15, 25).

We propose three reasons that might account for the
improved predictions offered by the random forest. Firstly,
owing to methods such as “bagging,” random forests are able
to retain a greater number of predictors without overfitting
(18, 42). Secondly—in reference to our partial dependence
plots, which present the marginal effect of a chosen predictor
upon the predicted outcome (43)—contrasting the form of
the partial dependence plots indicates that the random forest
captured non-linear, non-monotonic relationships not seen in
the plots for the logistic regression. Assuming such relationships
played an important role in determining actual rehospitalisation

FIGURE 2 | Receiver operating characteristic curves (ROC) for 10-fold

cross-validated predictions and corresponding area under the curve (AUROC)

for the logistic regression, LASSO and random forest models predicting

unplanned rehospitalisation within 30 days. Developed on 859 eligible,

complete-case babies in the EPIPAGE 2 cohort and validated using

10-fold cross-validation.

TABLE 2 | Predictive performance measures for the logistic regression, LASSO and random forest models predicting unplanned rehospitalisation within 30 days,

constructed on complete-case babies in the EPIPAGE 2 cohort and validated using 10-fold cross-validation.

Model AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Tjur’s coefficient Hosmer-Lemeshow test

LASSO 0.589 (0.527–0.649) 0.588 (0.482–0.694) 0.553 (0.517–0.587) 0.02 0.02

Random forest 0.648 (0.589–0.710)* 0.624 (0.518–0.729) 0.587 (0.552–0.619)* 0.06 0.15

Logistic regression 0.565 (0.507–0.620) 0.588 (0.482–0.694) 0.544 (0.509–0.580) 0.01 0.05

Confidence intervals derived from bootstrap with 2,000 replications.*p ≤ 0.05 in DeLong’s test or McNemar’s test comparing performance measures to logistic regression.
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FIGURE 3 | Calibration curve for the logistic regression, LASSO and random

forest models comparing the observed probability of unplanned

rehospitalisation within 30 days with predicted probability across risk quantiles.

Developed on 859 eligible, complete-case babies in the EPIPAGE 2 cohort

and validated using 10-fold cross-validation.

risk in our sample, then the more effective quantification
by the random forest could explain its improved predictive
performance. Thirdly, though difficult to confirm conclusively
with scatter plots alone, the plots we present suggest that our
outcome may be linearly inseparable (where cases and non-cases
cannot be split by a straight-line decision boundary). In such
situations non-linear algorithms such as random forest can make
superior predictions (44–46).

The low predictive ability of all our models fits well within the
wider literature on rehospitalisation prediction (8). Even with the
random forest providing statistically important improvements in
prediction, the limited predictive ability across all the models
calls into question the clinical value of such improvements.
Model AUROC’s ranged from 0.59 to 0.65, indicating that for
each model there was an approximately 0.6 probability that a
randomly selected rehospitalised baby would be ranked above
a non-rehospitalised baby. Specificity in the random forest was
superior to logistic regression due to it correctly classifying a
greater proportion of true non-cases. Hyperparameter tuning for
LASSO identified a relatively small optimal penalty value. Despite
this small penalty, a majority of predictors were eliminated
from the model (43/75), suggesting they had small coefficients
prior to penalisation and were more likely to be uninformative
noise variables.

The significant Hosmer-Lemeshow test for the logistic
regression and LASSO models indicate that, across quantiles
of predicted risk, actual URH30 event counts were not similar
to predicted counts. The same test for the random forest
provided insufficient evidence to reject the null hypothesis
of similar predicted and observed counts. Calibration curves
indicate that the models are poorly calibrated. They show
that the logistic regression and LASSO models consistently
produced predicted probabilities below the actual within quantile

URH30 probabilities. Whereas, the random forest provided
both inflated and deflated predicted probabilities relative to
observed probabilities.

Sensitivity analysis confirmed that missing data did not
change the predictive ability of any of the models. There
was no difference in predictive ability between any of the
models that used complete-case data when compared to
the same models using imputed data. The random forest
maintained a similar predictive advantage over logistic regression
whether modelling was conducted with complete-case or
imputed data. As this sensitivity analysis did not reveal
an important role for missing data, we chose to present
results from the complete-case modelling only. Additional
sensitivity analysis revealed that the logistic regression model
constructed using a larger set of complete-cases (derived by
assessing missingness across the 10 included predictors alone,
rather than the maximal set of 75 predictors) did not offer
improved predictions.

Strengths
To the best of our knowledge, this study represents the first
comparison of different modelling methods for predicting early
rehospitalisation in preterm babies. By contrasting a traditional
method that tends to seek interpretable parameter estimates
and a balance between complexity and predictive performance,
with machine-learning methods that generally have greater
capacity to translate complexity into improved predictions,
we have addressed a common conflict in the field of clinical
predictive modelling.

Our use of data from the EPIPAGE 2 population-based
cohort study provided us with a large, representative sample
of preterm babies. It also afforded us with a diverse range
of clinical, maternal and socio-demographic predictors. Our
chosen outcome of 30-day rehospitalisation is a familiar metric
of healthcare quality and utilisation. This metric is familiar to
clinicians (47, 48) and is well established in the literature on
clinical prediction tools (8–10).

Our choice of LASSO and random forest modelling allowed
us to assess two established alternatives to logistic regression
modelling, each utilising distinct and potentially advantageous
methodologies. The LASSO penalises predictor coefficients,
providing a form of automated predictor selection that can
both reduce over-fitting and optimise classification performance.
Random forest on the other hand uses an ensemble of many
decision trees, trained by a process of “bagging”; randomly
sampling subsets of the training data, fitting the models and
then aggregating the predictions. Random forest can also readily
capture non-linear relationships in modelling (49, 50). The
ability to tune both LASSO and random forest hyperparameters
in order to optimise prediction was an additional positive.
Tuning of the penalty hyperparameter in LASSO using cross-
validation likely reduced the chance that our model eliminated
influential predictors.

We included a wide range of performance measures,
quantifying two distinct components of prediction
(discrimination and calibration). Our use of bootstrap confidence
intervals and statistical tests is an additional strength, improving
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our ability to robustly compare performance between models.
Our decision to conduct modelling on both complete-cases and
multiply imputed data allowed us to establish the influence of any
bias introduced through complete-case analyses. This sensitivity
analysis ultimately confirmed that there were no important
differences between models constructed using complete-cases
and imputed data.

Limitations
Given our study’s focus on predictive ability, model outputs
such as effect measures were not a priority concern. However,
we acknowledge that the process of coefficient penalisation
in LASSO does not deliver interpretable effect measures.
Random forest can also be considered a “black-box” method,
potentially reducing interpretability and engagement from
clinicians (51). For example, the final aggregated tree of a random
forest is difficult to interpret given its complexity and often
uninterpretable predictor splitting points.

We considered unplanned rehospitalisations to be more
preventable than planned rehospitalisations. Our classification
of all rehospitalisations for surgery as planned may have meant
we excluded unplanned rehospitalisation requiring surgery;
alternatively, those babies admitted for planned surgery, may
have become infected in hospital and therefore be misclassified
as unplanned rehospitalisations. We acknowledge that despite
verification against medical records, a mother’s recollection of
their baby’s rehospitalisation may have left our classification
of rehospitalisation subject to recall bias. Our choice to
exclude babies that died following discharge (0.5%) may also
have introduced bias if they tended to have more severe
illness, and a greater risk of rehospitalisation within 30 days.
Finally, less than 10% of our sample experienced URH30. To
address the challenge of constructing predictive models for
infrequent events (33, 52, 53) we adopted classification thresholds
ranging from 0.9 to 0.11 that optimised the false positive and
true positive rates in each model, as recommended in the
literature (32–35).

CONCLUSION

For the prediction of early unplanned rehospitalisation in
preterm babies, a random forest containing 75 predictors
provided superior predictive performance compared to an
expert-defined logistic regression. However, it is important
to acknowledge that while random forest offers improved
predictive performance, the extent to which this translates into
a clinically valuable increase is uncertain. The failure of LASSO
to exceed logistic regression also suggests that the combination
of machine-learning algorithms with larger predictor sets is
not always sufficient for higher quality predictions. The low
predictive performance across all our models suggests that
predicting rehospitalisation in preterm babies is complex.
Future work should continue to investigate the value of
machine-learning methods and also look to identify additional
predictors, for example biological markers. Such work might
allow better prediction of early unplanned rehospitalisations in
preterm babies.
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