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Abstract: The maintenance of poultry gut health is complex depending on the intricate 
balance among diet, the commensal microbiota, and the mucosa, including the gut epi­
thelium and the superimposing mucus layer. Changes in microflora composition and 
abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating 
impacts on altering the landscape of gut microbiota, which further leads to antibiotic 
resistance or spread the pathogenic populations. By eliciting the landscape of gut micro­
biota, strategies should be made to break down the regulatory signals of pathogenic 
bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counter­
balance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host 
endogenous enzymes but can be fermented by symbiotic microbiota to produce short-
chain fatty acids (SCFAs). This is one of the primary modes through which the gut micro­
biota interacts and communicate with the host. The majority of SCFAs are produced in 
the large intestine (particularly in the caecum), where they are taken up by the enterocytes 
or transported through portal vein circulation into the bloodstream. Recent shreds of 
evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs 
either by activating G-protein-coupled receptors or affecting epigenetic modifications in 
the genome through inducing histone acetylase activities and inhibiting histone deacetylases. 
Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, 
mucosal integrity, immune homeostasis, and immune maturation. In this review 
article, we will focus on DFs, which directly interact with gut microbes and lead to the 
production of SCFAs. Further, we will discuss the current molecular mechanisms of 
how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory 
immune responses against pathogens and host physiology and gut health.

Keywords: Dietary Fibers; G-protein-coupled Receptors; Gut Microbiota;  
Histone Deacetylases; Short-chain Fatty Acids

INTRODUCTION

The development of the gastrointestinal tract (GIT) starts at an early embryonic stage 
where certain factors including dam, diet, and environment affect its formation. During 
embryonic development, several species of microflora from the hen’s reproductive tract 
and eggshell moved to the embryo, and soon after birth, they start multiplying rapidly 
while certain other bacterial species and microorganisms from eggshells, environment, 
and feed also join existing microbiota and start colonization in certain parts of GIT [1]. 
Among the bacterial species, many acts as beneficial for the host and play important role 
in several physiological processes such as nutrient absorption, metabolism, tissue devel­
opment, immune homeostasis, and maintaining overall health [2]. Microflora regulates 
these processes by the production of different metabolites such as short-chain fatty acids 
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(SCFAs) which are mainly produced by colonic anaerobic 
bacterial fermentation of dietary fibers (DFs) [3]. The SCFAs 
are chemically composed of hydrocarbon chains and car­
boxylic acid moiety [4]. In poultry, the most frequently studied 
SCFAs are the acetate, propionate, and butyrate with two, 
three, and four carbon molecules in their chemical structure 
while their effect on several systems has been accentuated 
both at cellular and molecular levels [5]. 
  In the past two decades, there has been immense research 
on optimizing poultry gut health by modulating intestinal 
microbiota through dietary interventions, and in this regard, 
DFs seemed important [6]. There is a difference between 
single and compound stomach animal species for the digestion 
of fibers. Unlike compound stomach animals, the microbial 
fermentation of DFs in single stomach animals like chicken 
mainly takes place in the hindgut though each part of GIT 
harbors its own specific microbiota. The DFs greatly affect 
the poultry's gut physiology by modulating its microbiota 
and eliminating solid waste products [7]. Previously local­
ization of different microbiome in GIT has been described 
in chicken [8] however the interaction between DFs and gut 
microbiota has received little attention [9]. Similarly, there is 
also a need to focus on interaction between DFs, mucus, and 
epithelial cells which play a central role in development of 
physicochemical and immunological barriers to restrain the 
microbiota and to halt invading pathogens, antigens, micro­
bial populations, and toxins [10].
  In this review, we have focused on clear and recent narra­
tions of the microbially-derived SCFAs on host tissues as 
well as their cellular and molecular mechanisms. For this, 
we have mainly focused on different sources of DFs, their 
interrelationship with microbiota, and their influence on 
mucus. For better understanding, we have summarized the 
intestinal epithelial cell (IEC) polarity, generation mechanisms, 
and transportation of microbially-derived SCFAs, and their 
role in modulating pathophysiological changes in the gut, 
histone deacetylases (HDACs) inhibition, and pro-and anti-
inflammatory consequences on immune cells.

TYPES OF DIETARY FIBERS AND THEIR 
IMPACT ON GASTROINTESTINAL 
TRACT

Dietary fibers are homogenous or heterogenous carbohy­
drate polymers with three or more monomeric units. They 
are resilient to digestion by host endogenous enzymes and 
belong to the following three categories: i) present naturally 
in the foods and available to the farm animals (i.e. cereals, 
legumes, etc.), ii) acquired from raw food materials via chemi­
cal, enzymatic, and physical means and iii) synthetic ones 
such as polydextrose. The DFs can also be defined based on 
their chemical composition and nutritional functions such 

that chemically they are the sum of lignin and non-starch 
polysaccharides while nutritionally they are the carbohy­
drates indigestible by host endogenous enzymes [11]. DFs 
are also categorized depending upon their primary food 
sources, water-solubility, chemical structure, and degree of 
fermentation. They are subdivided into resistant starch (RS), 
resistant oligosaccharides, polysaccharides, soluble and in­
soluble forms [12]. All types of fiber, however, do not exist in 
the same category of food such as RS only exists in cereals 
and legumes, while arabinoxylans and β-glucans are found 
only in cereals [13]. In the upper part of the GIT, RS with­
stands enzymatic digestion in pigs, so their digestion takes 
place in the hindgut where they yield butyrate-producing 
Bifidobacterium adolescentis, Parabacteroides distasonis, Fae-
calibacterium prausnitzii, and total SCFAs [14]. 
  The most useful sources of DFs that modulate the poultry 
gut microbiota and contribute to poultry health are given in 
Table 1. Inulin supplementation had been shown to improve 
host gut inflammatory responses and gut health through 
promoting Lactobacilli and Bifidobacteria colonization and 
increasing SCFAs production largely butyrate, acetate, and 
propionate in broilers which exert antibacterial properties to 
combat Salmonella infection in chicks [15]. In addition, the 
intake of dietary fructooligosaccharide enhances the produc­
tion of SCFAs and reduces the colonization of Salmonella 
spp., Clostridia perfringens, and Escherichia coli in broiler 
chickens [16]. Similarly, supplementation of cellulose affects 
the composition of microbiota at a level of phylum Bacte-
roidetes and genus Alistipes in the cecum of Saanen goats 
[17], whereas this genus may improve the performance of 
broilers by producing succinate as an end product [18]. Ara­
binoxylan utilization by ducks had increased the stimulation 
of Megamonas and Bifidobacterium spp., which further re­
sulted in increased concentration of SCFAs (butyrate, acetate, 
and propionate) and branch-chain fatty acids (isobutyric acids) 
[19]. The fermentation of DFs in poultry depends on their 
physico-chemical properties and the matrix. Most of the DFs 
such as pectin does not cause fecal bulking effect and are 
gradually fermented by the gut microbes to produce SCFAs 
however, several insoluble forms such as cellulose, hemicel­
lulose, and lignin cause fecal bulking effects and are either 
partly digested by the gut microbes in intestine or excreted 
as such. Similarly, some of the soluble non-starch polysac­
charides polymers with high molecular weight (i.e. β-glucans, 
guar gum, psyllium, and pectin) are viscid and form a gel-like 
structure in the intestinal tract and influence the postprandial 
metabolism of lipids and delay glucose absorption in humans 
and pigs [12]. 
  It is suggested that young birds should be fed on low levels 
of DFs (less than 1.5%) diets because high levels decrease 
nutrient digestibility in early life period and increase transit 
speed of digesta [20]. During growing phase, however, inclu­
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sion levels of 2% to 3% DFs are recommended which improve 
the gizzard size and feed efficiency in poultry species [21]. 

For example, the quails fed on a 1.5% wheat bran-based diet 
showed increased relative length of intestinal segments, villi 

Table 1. Sources, chemical composition, and mechanisms and action of dietary fibers

Dietary fiber
Chemical composition

Fermentation bacteria Mechanisms and action Sources
Main chain Branch chain

Cellulose β–(1-4)-D-glucose - Alistipes spp. and Bacteriodetes 
bacteria 

The supplementation of cellulose changed the compo-
sition of microbiota at a level of phylum Bacteroidetes 
particularly the Alistipes genus in the cecum of broilers. 
This genus may improve the performance of broilers by 
producing succinate as an end product [18].

All plants, particularly cot-
ton, some bacteria, and 
algae 

Chitin β–(1-4)-N-acetyl-D-glu-
cose

- Oscillospira Ingestion of chitin (1.02 g/d) by hens throughout 21 
weeks of age, enhanced the SCFA production and 
decreased the triglyceride content in serum and choles-
terol content in serum and egg yolks [97].

Shells of crustaceans, in-
sects, arthropods, yeast, 
and fungi  

Chitosan β-(1-4)-N-acetyl-D-glu-
cosamine and β-(1-4)-D-
glucosamine

- Bifidobacterium spp. and Lactobacil-
lus spp.

Chitosan oligosaccharides ingestion in mice increased 
SCFAs production that resulted in decreased S. aureus, 
E.coli, non-typhoidal Salmonella, Listeria spp., Vibrio spp., 
B. Cereus, and Campylobacter spp. [98].

The exoskeleton of 
crustaceans and cell 
walls of fungi but mostly 
produced by the deacetyl-
ation of chitin

Lignin Polyphenols: p-coumaryl, 
coniferyl, sinapyl, syringyl, 
and guaiacyl alcohols  

- Bifidobacteria Application of lignin in in vitro model has resulted in 
phenolic metabolites production along with stable 
Bifidobacteria. Furthermore, lignin improved the 
performance by reducing the colonization of E. coli, and 
Enterobacteriaceae in piglets [99].

Seeds (flax, pumpkin, 
sunflower, poppy, sesa-
me), whole grains (rye, 
oats, barley), bran (wheat, 
oat, rye), beans, fruit 
(particularly berries), and 
vegetables

β- glucan β-(1-3)-D-glucose and 
β-(1-4)-D-glucose

- Lactobacilli, Bifidobacteria, 
Roseburia hominis, Clostridiaceae 
(Clostridium orbiscindens and 
Clostridium spp.), and Ruminococ-
cus spp. 

The intake of barley β-glucan in the human diet had re-
sulted in a marked increase of Clostridiaceae, Roseburia 
hominis, and Ruminococcus spp. and SCFAs including 
butyric, acetic, propionic, and 2-methyl-propanoic acids 
[100].

Seaweed, brewer's yeast, 
oats, lentinan (shiitake), 
barley, and maitake (grifo-
la) 

Hemicellulose 
Xyloglucan β-(1-4)-D-glucose Alfa-xylose attached at 

position 6- of β-D-glu-
cose 

Clostridia, lactobacilli, and Bifidobac-
terium (endo-β-glucanase)

The bacterial strains such as Clostridia, lactobacilli, and 
Bifidobacterium degraded the xyloglucan and generate 
acetate and propionate. The in vivo and in vitro appli-
cation of xyloglucan restored the mucosal leakage by 
reducing the numbers of E. coli [101].

All vascular plants (i.e. 
gymnosperms, clum-
bosses, ferns, horsetails, 
and angiosperms) and 
seeds from tamarind and 
nasturtium. 

Arabinoxylan β-(1-4)-D-xylose 5-0-trans-feru-
loyl-α-(L-arabinose), 
L-Arabinose, 
5-0-p-coumaroyl-α-Lar-
abinose at position 2- 
or 3- of D-xylose 

Megamonas and Bifidobacterium 
spp.

Arabinoxylan utilization by ducks had increased the 
stimulation of Megamonas and Bifidobacterium spp., 
which further resulted in increased concentration of 
branch-chain fatty acids (isobutyric acids) and SCFAs 
(butyrate, acetate, and propionate) [19].

ryegrass

Galactomannan β-(1,4)-D-mannose α-D-galactose at posi-
tion 6- of β-D-mannose

Lactobacillus and Bifidobacterium 
spp.

The fermentation end products of prebiotic (B-galacto-
mannan) are the acetates, butyrate, and propionates in 
humans. B-galactomannan ingestion enhanced mucus 
production which halted the access of S. Enteritidis to 
the epithelium in chickens [102].

Guar gum, locust bean 
gum, fenugreek, and alfal-
fa

Oligosaccharides 
Inulin One terminal α-(1,2)-D-

glucose and β-(2,1)-D-
fructose

- Lactobacillus and Bifidobacterium 
spp.

Inulin supplementation had been known to improve host 
gut inflammatory responses and gut health through 
promoting Lactobacilli and Bifidobacteria colonization 
and increasing SCFAs production largely butyrate, ace-
tate, and propionate in broilers which exert antibacterial 
properties to combat Salmonella infection in chicks [15].

Rye, wheat, barley, onion, 
leek, garlic, and banana

Resistant starch α-(1,4)-D-glucose α-(1,4)-D-glucose and 
α-(1,6)-D-glucose

Lactobacillus spp. The provision of resistant starch resulted in increased 
number of butyrate-producing Bifidobacterium adoles-
centis, Parabacteroides distasonis, Faecalibacterium 
prausnitzii, and total SCFAs in the lumen, small intestine, 
cecum, and colon of pigs [14].

Oatmeal, brown rice, corn, 
lentils, bananas, potatoes, 
yams, pasta, pearl barley, 
and navy beans

Galactooligosaccharides One terminal β-(1,3)-D-
glucose and β-(1,4)-D-ga-
lactose

- Bifidobacterium and Lactobacillus 
spp. 

In vitro studies demonstrated that Galactooligosaccha-
rides supplementation increased acetate, lactate, and 
butyrate. Lactate and acetate formation is dependable 
on lactobacillus and Bifidobacterium fermentation. Its 
relative abundance within the intestinal tract has been 
observed to reduce the relative attack and adherence of 
Salmonella in chickens [103].

Milk, beans, root vegeta-
bles, etc. 

Fructooligosaccharide Derived from inulin hydrol-
ysis: one terminal α-(1,2)-
D-glucose and β-(2,1)-D-
fructose, 

- Bifidobacterium and Lactobacillus 
spp.

The intake of dietary Fructooligosaccharide enhanced 
the production of SCFAs and reduced the colonization 
of Salmonella spp., Clostridia perfringens, and E. coli in 
broiler chickens [104].

Onion, chicory, garlic, 
asparagus, banana, 
artichoke, etc. 

Gums 
Gum Guaran (Guar) β-(1,4)-D-mannose α-(1,6)-D-galactose Bacteroidetes In vitro application of gum, guar increased the pro-

duction of SCFAs in the feces of mice which indicated 
reduced growth of Desulfovibrio [105].

Bean of guar plant, soy, 
wheat, corn, yeast, dairy, 
egg, gluten, and sugar

Gum Arabic β-(1,3)-D-galactose β-D-glucuronic 
acid, β-D-galactose, 
α-L-rhamnose, 
L-arabinose . Branches 
attached at position 6- 
of β-(1,3)-D-galactose

Bifidobacterium and Lactobacillus 
spp. 

Gum Arabic fermentation in the large intestine of 
human resulted in increased Bifidobacterium spp. In a 
latest study, the in vitro application of gum Arabic has 
been observed to increase the production of SCFAs and 
antimicrobial activity against clostridium [106].

Acacia Senegal (Acacia)
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to crypt depth, villi height, and villi thickness [22]. Whereas 
lignin supplementation in geese decreased villi length but on 
the contrary, the supplementation of pectin, alfalfa, and rice 
hulls had a positive effect on villi height [23,24]. Efforts are 
on to increase fiber inclusion rate in poultry feed by fortifi­
cation with the extracted non-digestible carbohydrates. A 
large variety of fortified oligosaccharides and carbohydrate 
polymers are commercially available in the form of prebiotics 
which increases the population of beneficial bacteria in the 
gut [25]. In addition to their natural presence in different 
foods, DFs-rich ingredients or isolated DFs molecules can 
be added to the diet by technological means to provide ben­
efits for extra health.

INTERRELATIONSHIP OF MICROBIOTA, 
DIETARY FIBERS, AND DIGESTION 

Feed ingredients differentially affect the bacterial communities 
and the production of metabolites depending on their particle 
size, type, and chemical properties. The DFs act as a carrier 
of feed anti-oxidants (AOXs). Though not reported in chickens 
yet, the main physiological function of DFs is to convey AOXs 
across the GIT. Upon reaching the colon, AOXs secrete a fiber 
matrix to produce an AOX environment and reveal metabo­
lites [26]. The type of fiber reaching the posterior gut is the 
key in defining the type of bacteria and the metabolites 
(SCFAs) being produced. Such that supplementation of 
pigs diet with RS increased SCFAs production by 34% com­
pared with the digestible starch diet [27]. Though corn-
soybean meal-based diet increases the concentration of 
Lactobacillus spp. and SCFAs production in duodenum, jeju­
num, and ileum in broilers of all age groups yet high DFs  
diets based on corn-soybean meal-dried distillers grains 
and wheat bran produce even higher SCFAs compared with 
low DFs diets (i.e. corn-soybean meal) [28]. So increased 
production of SCFAs by dietary manipulation with DFs re­
flects that fiber maintains integrity and diversity of the GIT 
microbiota which further increases the fermentation of 
complex fibers and release of energy for the host. Chickens, 
ducks, and geese do not produce enzymes as hosts to break 
down DFs such as fructooligosaccharides, xylooligosaccha­
rides, and mannan [29]. In these species, DFs are believed to 
reach the ceca in undigested form and then undergo mi­
crobial fermentation. Culture-based studies showed that 
different bacterial genera i.e. Clostridium, Bacteroides, and 
Bacillus synthesize mannanases that can unfold β-1,4 man­
nopyranoside bonds in mannan products [29]. Metagenomics 
analysis of ceca in chickens showed over 200 non-starch 
polysaccharides degrading enzymes, oligosaccharide- and 
polysaccharide-degrading enzymes, and several pathways 
related to SCFAs production which highlight the functional 
properties of the cecal microbiota [30]. At present exoge­

nous enzymes including phytases and carbohydrases such 
as amylases, xylanases, and β-glucanases are used in broilers 
to degrade complex carbohydrates into their respective sugars 
or amino acid components [31]. Bacteria can then ferment 
them into metabolites (i.e. SCFAs), CO2, H2, branched-chain 
fatty acids, ammonia, and other carboxylic acids [32]. How­
ever, to reduce the use of exogenous enzymes, future studies 
need to focus on identifying specific intestinal bacteria that 
promote different enzymatic reactions to support the fer­
mentation of DFs in poultry species. 

INTERACTION OF DIETARY FIBERS 
WITH GUT MUCUS 

The entire surface of the chicken GIT is protected by a layer 
of mucus. Mucus is a glycoprotein and being a part of innate 
host, immune response is produced by goblet cells. It protects 
the IECs from bacterial, mechanical, and chemical injuries 
[33]. It halts the direct interaction of luminal antigens with 
the epithelium. The DFs have a significant effect on mucus 
secretion, cell proliferation, and changing luminal environ­
ment thus they are involved directly or indirectly with 
intestinal health [34]. To maintain the mucus layer, however, 
the genetic makeup of the host and interaction of intestinal 
microbiota with DFs are important. The goblet cell numbers 
are used as an indicator of mucus production in monogastric 
animals [35]. In golden hamsters feeding different sources of 
DFs i.e. oat bran and rye bran were found to improve goblet 
cell numbers in the gut, while pectin was also found to in­
tensify the mucus layer via a high-water holding capacity 
mechanism (dehydration combat mechanism) [36]. Therefore, 
they are known as a stimulator of goblet cells proliferation. 
The role of DFs in increasing the mucin2 gene expression, 
fecal mucin output, and goblet cell numbers has also been 
reported recently [37]. A lower level of DFs predisposes redun­
dancy of mucus layer and can lead to infectious susceptibility 
and the reclamation of chronic inflammatory diseases [38]. 
A higher level of DFs however, can cause loss of endogenous 
amino acids. For example, DFs have been found to increase the 
number of mucin-producing goblet cells. Mucus contains 
a high concentration of mucin (a threonine-rich glycopro­
tein) that becomes scarce during high mucus production 
[39]. 
  The IECs are enclosed by a mucus layer, thus keeping the 
bacteria away from mucosa deterioration [40]. Intestinal micro­
biota ferments DFs and produces SCFAs and both stimulate 
mucus production and regulation. The Bacteroides thetaio-
taomicron spp. which produces acetate and propionate, also 
stimulate goblet cell differentiation and expression of mucin-
related genes. Moreover, Faecalibacterium prausnitzii spp. uses 
acetate and can produce butyrate, thus stabilizing the proper 
physiology of the gut epithelium by averting the overproduc­
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tion of mucus.

MECHANISMS TO CONTROL 
INTESTINAL EPITHELIAL CELL 
POLARITY, ROLE OF DIETARY FIBERS, 
AND GUT HEALTH 

Introduction of intestinal epithelial cell polarity in 
intestine 
The mammalian GIT consists of distinct layers of cells. It re­
quires precise interaction between each layer or cell type to 
perform different functions i.e. absorption of dietary nutri­
ents and water, discharge of waste products via peristaltic 
contractile movements, and maintaining a physical barrier 
against pathogens. The two most remarkable cell popula­
tions of the intestine are the muscle cells and epithelial cells. 
The intestinal epithelium is distributed into two parts; flask-
shaped submucosal invaginations- crypts, and finger-like 
luminal protrusions- villi [41]. The IECs start their growth 
from Wnt responsive Lgr5+ stem cells (multipotent stem cells), 
differentiate, and get mature at the base of crypts [42]. While 
the absorptive Alpi+, Lgr5– enterocytes move up toward the 
villus until they reach the villus tip where they go through 
apoptosis and shed themselves into the lumen to balance 
defensive barrier under different physiological conditions 
[43] (Figure 1). This process of turnover lasts for two to five 
days followed by a bone morphogenetic protein (BMP) sig­
naling pathway [44].
  IECs are organized as a monolayer of columnar-shaped, 
polarized epithelial cells (Figure 1A). The surface of IECs is 
divided into two domains; apical domain—facing to the 
lumen of the gut, and basolateral domain—facing to the 
intestinal tissue. The basolateral cell-surface domain is fur­
ther divided into a basal (face basement membrane) and a 
lateral domain (face neighboring cells) (Figure 1B). The 
basal surface domain is a home for integrin-based cell-matrix 
adhesions, through which the cells are interconnected with 
the basement membrane. While the lateral surface domain 
is a house for intercellular adhesions such as E-cadherin-
based adherens junctions and claudin-based tight junctions 
(TJs) [45] (Figure 1B). The intestinal tight junction-complex-
associated proteins consist of surface membrane proteins 
(i.e. claudin, occludin, junctional adhesion molecules, the 
coxsackievirus and adenovirus receptors proteins), and in­
tracellular proteins (i.e. zona occludens [ZO-1, ZO-2, and 
ZO-3], cingulin, 7H6, symplekin, and ZA-1) [46]. It has 
been documented that the TJs and polarized intracellular 
trafficking machinery are the central players in the IECs’ 
polarity and establish communications between gut lumen 
and bodily tissues to maintain immune tolerance with com­
mensal bacteria and control gastrointestinal pathogens 
[47]. The adherens junction consists of the E-cadherin-

catenin system and nectin-afadin system. The partner of 
nectin that is known as “afadin” directly or indirectly binds 
with a number of proteins, including zona occludens pro­
teins. Several studies demonstrated that the modulation of 
selectively induced Bifidobacterium spp. enhanced barrier 
function and the function of tight junction-associated pro­
teins [48]. The TJs have further joined with the actin filament-
based projections of apical plasma membrane known as 
microvilli (Figure 1B). 

Role of apical plasma membrane microvilli and their 
protein components in intestinal epithelial cell polarity 
The apical plasma membrane microvilli and their protein 
components such as villin, ezrin, myosin-Vb, myosin-VI, 
and myosin-Ia play important role in IEC’s polarity. Villin is 
an actin-modifying protein situated in the basic subapical 
terminal web and the apical plasma membrane microvilli 
(Figure 1C) [49]. Villin expression in IECs represents in­
duced inflammation and related lesions under inflammatory 
bowel disease, which highlights the dynamics of IEC’s polar­
ity in gut wound healing, immunopathology, and intestinal 
epithelial homeostasis. In humans, the depletion of myosin-
Vb protein in microvillus due to disease and MYO5B 
mutations results in inactivation of ezrin protein at apical 
surface and cause microvillus atrophy in the IECs [50]. The 
loss of another component of microvilli i.e. myosin-Ia results 
in tumor development, loss of IECs polarity, and carcino­
genesis in mice [51]. The function of myosin-VI and 
myosin-Ia controls the base-directed movement and micro­
villus tip of plasma membrane respectively [52]. Both of 
these myosins regulate the circulation of brush-border en­
zymes such as intestinal alkaline phosphatase (IAP) and 
intramicrovillus (microvillus tip and microvillus base). The 
tips of the apical microvilli produce vesicles that are extrud­
ed into the gut lumen [53]. The microvillus-derived vesicles 
are rich in IAP (Figure 1C). The overexpression of this en­
zyme under the exposure of IECs to E. coli gives rise to an 
increased abundance of microvilli-derived vesicles [54]. 

Role of dietary fibers in controlling intestinal epithelial 
cell polarity 
The DFs such as wheat bran has been used in controlling 
colonic mucosal proliferation and in preventing proliferative 
diseases of colon [55]. Thought, specific therapeutic strategies 
such as DFs, probiotics, and prebiotics supplementation have 
been used to manage some of the diseases including obesity, 
type-1 diabetes, and colorectal cancer in mice, and different 
pathogens causing diseases such as salmonella enteritidis, 
necrotic enteritis, and clostridium perfringens in broilers [56]. 
Up to date in poultry, it is not clear yet whether the DFs, 
probiotics, prebiotics, and the microbial-derived metabolites 
(i.e. SCFAs) affect polarized intracellular trafficking machinery 
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involving proteins such as villin, ezrin, myosin-Vb, myosin-
VI, myosin Ia, and IAP and either their (proteins) expression 
increase the stimulation of microvilli-derived vesicles, estab­
lishing intestinal epithelial homeostasis, wound healing, and 
tumor suppression or not. There is a need to get insight into 
the IEC polarity to understand the mechanisms involved in 
the maintenance of epithelial homeostasis, immune system 
by commensal bacteria, and balanced communications among 
gut lumen, body tissues, and gastrointestinal pathogens. 
Owing to fast differentiation and turnover the IECs have be­
come a focus of the current research. However various factors 
such as diets, diseases, hormones, and genetics affect IECs 

turnover and differentiation along crypt-villus axis.

INTERPLAY BETWEEN DIETARY FIBERS 
AND MICROBIOME GIVES RISE TO 
METABOLITES (SHORT-CHAIN FATTY 
ACIDS)

Metabolites are small molecules produced by metabolic re­
actions, catalyzed by gut enzymes or bacterial fermentation 
of various foods. Through these small molecules, the gut 
microbiota communicates and makes a tensile network with 
the host [57]. The microbial metabolites affect host immune 

Figure 1. A depiction of epithelial cell polarity. (A) Turnover of cells in 2-5 days from crypt to villus tip and (B) α-catenin in Figure 1. (C) The box 
area from panel B describes the single microvillus within its protein components such as villin, ezrin, myosin Vb, myosin-VI, and myosin-Ia, and 
the microvillus-derived vesicle with alkaline phosphatase enzyme.
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maturation, energy metabolism, immune homeostasis, and 
mucosal integrity. Variation in the gut microbial metabolites 
has been illustrated in many studies during salmonellosis, E. 
coli infection, necrotic enteritis condition, and Campylobacter 
jejuni infection [58]. Beneficial microbiota produces SCFAs 
including acetic acid, propionic acid, and butyric acid which 
have bacteriostatic ability to destroy campylobacteriosis, sal­
monellosis, and E. coli causing bacteria. 
  In this context, the composition and particle size of diet 
not only maintain host health but also modulates the benefi­
cial microbial communities, their richness, and diversity in 
the digestive tract. The origin, type, and quality of diet mod­
ulate the gut microbiota in a time-dependent manner. Long-
term dietary regimes particularly plant-based and animal fat 
or protein-based diets are associated with so-called entero­
types. This dichotomy in the plant-based diet/animal-based 
diet ratio was also observed in broilers and laying hens argu­
ing that these bacterial communities are driven by a long-term 
modification in the diet [59].
  Gut microbiota can ferment undigested carbohydrates in 
most parts of the GIT, but in poultry, this process mainly 
occurs in crop and caecum where bacteria are abundantly 
populated. The crop and ileum are the main lactic acid-
producing repertoires, owing to the presence of a high 
concentration of Lactobacillus spp., as opposed to caeca 
where the quantity of butyric, acetic, and propionic acids 
are higher [60]. Furthermore, Jozefiak et al [6] observed 
that the cereal-type feed ingredients such as wheat, rye, 
and triticale determine the quantity of acetic acid in the 
caecum except for the crop and gizzard. This suggests that 
the application of DFs is a potential way to influence SCFAs 
concentration. The SCFAs enhance beneficial microbial 
populations to regulate endogenous enzymatic activities 
and produce more energy and carbon for IECs [61], thus 
contributing to maintaining mucosal integrity, immunity, 
and health of broilers, geese, and ducks [3]. Therefore it is 
important to highlight the potential role of specific types 
and sources of DFs that can be used in manipulating the 
commensal bacterial populations which specifically induce 
the synthesis of SCFAs. Similar studies in poultry species 
are warranted to investigate possible involvement of DFs in 
early postnatal development and microbially modulated 
DNA methylation.

MECHANISMS INVOLVED BEHIND THE 
GENERATION AND TRANSPORTATION 
OF SHORT-CHAIN FATTY ACIDS AND 
THEIR ROLE IN MODULATING 
PATHOPHYSIOLOGICAL CHANGES IN 
THE GUT

Generation of short-chain fatty acids 

Microbiota hydrolyze DFs into oligosaccharides and then 
produce monosaccharides in the hindgut under anaerobic 
environment conditions and produce SCFAs. This produc­
tion of SCFAs consists of enzymatic pathways which are 
regulated by several bacterial species (Figure 2). The prime 
pathways for SCFAs generation are the Embden-Meyerhof-
Parnas pathway (glycolytic pathway) and pentose phosphate 
pathway driven by Bifidobacteria which transform mono­
saccharides into phosphoenolpyruvate (PEP) [62]. The PEP 
is then converted into alcohols or organic acids (Figure 2A).
  The enzymatic pathways for the synthesis of SCFAs have 
been previously described. In brief, oxygen-sensitive Wood-
Ljungdahl pathway of SCFAs production was detected by 
radioisotope analysis and in this, propionate production was 
detected via CO2 fixation pathway and butyrate by the con­
densation of acetyl-S coenzyme A [63]. The main bacteria 
engaged in butyrate production were Cytophaga and Flavo-
bacterium belonging to Bacteroidetes phylum (main bacterial 
spp; Coprococcus species, Clostridium leptum, Faecalibacterium 
prausnitzii, and Roseburia species belonging to both Bacte-
roidetes and Firmicutes phyla) [64] (Figure 2A). The Wood-
Ljungdahl pathway is carried out by acetate-producing bacteria 
namely Acetogens (Firmicutes phylum) [65] (Figure 2A). Besides 
this, there are other pathways such as the fructose-6-phosphate 
phosphoketolase pathway present in the Bifidobacterium genus, 
also known as the Bifidobacterium pathway. In this pathway, 
the Bifidobacterium genus uses monosaccharides to produce 
SCFAs, particularly acetate. Propionate is produced by the 
acrylate pathway. Reichardt et al [66] described three path­
ways used by bacteria for the production of propionates such 
as succinate pathway, acrylate pathway, and propanediol 
pathway (Figure 2A). In these pathways, two species of Lach-
nospiraceae such as C. catus and R. inulinivorans have been 
seen to switch butyrate to propionate production from dif­
ferent substrates.

Transportation of short-chain fatty acids 
The epithelial cells of the colon i.e. colonocytes are mostly 
studied for the transportation of SCFAs (Figure 2B). The 
apical membrane gains the SCFAs in two ways i.e. active 
transport of dissociated SCFA anions, and passive diffusion 
of undissociated SCFAs. Three mechanisms support the 
transportation of SCFA anions via the apical membrane of 
colonocytes. In the first mechanism, the transporter intro­
duces SCFA anions to HCO3

− to form SCFA-HCO3
− exchange 

in the vesicle and then secret it into the gut lumen. So this 
exchange is independent of Na+ transporter and Cl−-HCO3

− 
exchange [67]. The second mechanism involves the members 
of family of monocarboxylate transporters that increase the 
chemical reaction of SCFA anions with cations [68]. The 
monocarboxylate transporter-1 (MCT-1) transports SCFAs 
in an H+ dependent electroneutral manner in the apical 
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membrane of enterocytes. Besides this, MCT-1 shows high 
expression in the lymphocytes which denotes its role in 
SCFA transportation. The third mechanism of SCFA anion 
transportation is carried by the sodium-coupled monocar­
boxylate transporter-1 (SMCT-1) [69]. In this, the SCFA 
anions are introduced to Na+ transporters in a 1:2 stoichi­
ometry to increase water and Cl− absorption (Figure 2B). 
The SMCT-1 is highly expressed in the large intestine, kid­
ney, and thyroid gland, where it transports butyrate with 
high affinity as compared to propionate and acetate [70].
  The leftover SCFAs, not absorbed by the colonocytes, are 
transported towards the basolateral membrane. This mem­
brane contains MCT-4 and MCT-5 transporters. The MCT-4 
transporter, transports SCFA anions in an H+-dependent 
electroneutral manner, however, MCT-5 transporter, trans­
ports SCFA through HCO3

− exchangers [71] (Figure 2B). 
The transporters of SCFAs have been observed from duo­
denum, ileum, ceca, colon, lungs, and liver, however, the 
transporters for the uptake of SCFAs from the blood are 
mostly undefined. Organic anion transporters such as organic 
anion transporter 2 and 7 are involved in the transporta­
tion of propionate and butyrate respectively through the 
sinusoidal membrane of liver cells (hepatocytes) [72]. In 

the liver, the propionate and acetate can be used as sub­
strates for the energy-producing tricarboxylic acid cycle to 
produce glucose. For better understanding, the transporta­
tion and uptake mechanisms for SCFAs in various tissues 
should be investigated. 
 
Role of short-chain fatty acids in modulating the 
pathophysiological changes in the gut
It is known that SCFAs play a key role in modulating the gut 
health of pigs and poultry species (Table 2). SCFAs undergo 
antimicrobial pathways and enter the membrane of the 
pathogenic bacteria. The cytoplasmic pH of bacteria is gen­
erally neutral while SCFAs exist in associated or dissociated 
forms [73]. When SCFAs attack, they dissociate into protons 
and anions and reduce the pH of a bacterial cell, failing to 
maintain which, the bacterial cell gets destroyed. Antimicro­
bial activation of formate, acetate, and propionate has been 
documented in in-vitro studies. The in-vivo studies conducted 
in humans, pigs, and broilers have also shown antimicrobial 
effects of SCFAs on pathogens. In this regard, supplementa­
tion of piglets’ diet with wheat, improved the production of 
SCFAs and reduced the incidences/infection of E. coli [74]. 
Similarly, supplementation of butyralated high-amylose maize 

Figure 2. (A) Gut microbial fermentation and enzymatic pathways involved in acetate, propionate, and butyrate generation. Butyrate is produced 
either by the precipitation of two molecules of acetyl CoA or by enzyme butyryl- CoA:acetate-CoA-transferase. Acetate is produced either by acetyl 
CoA or by the Wood-Ljungdahl pathway. Propionate is formed through three pathways namely acrylate, succinate, and propanediol pathways. (B) 
The proposed transport mechanisms of short-chain fatty acids (SCFAs). I) butyrate stimulation of Na+ and Cl−, II) transportation of SCFAs via mo-
nocarboxylate transporter (MCT)-1, III) transportation by sodium-coupled monocarboxylate transporter-1, IV) SCFAs which are not absorbed by 
colonocytes transported through a basolateral membrane, where MCT-4 transports SCFA anions in an H+-dependent electroneutral manner, V) 
transportation by MCT-5 is via unknown HCO3

− exchanger, and VI) transportation of unabsorbed propionate and butyrate into the liver by organic 
anion transporter (OAT) 2 and 7 respectively via sinusoidal membrane of liver cells (hepatocytes).
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starch to broilers challenged with necrotic enteritis resulted 
in the production of ileal acetate and reduction in caecal pH 

which ameliorated the negative effects of disease [75]. In an­
other study supplementation of wheat bran and aArabinoxylo-

Figure 3. Synthesis of short-chain fatty acids (SCFAs) serves as an integrative bridge with intestinal epithelium by binding G-protein-coupled re-
ceptors (GPCRs) or inhibiting histone deacetylases (HDACs) mechanisms. Dietary fibers are converted into SCFAs such as acetate, propionate, 
and butyrate by gut microbiota. Then they go through biological processes and modulate pro- and anti-inflammatory immune phenotypes through 
activating GPCRs and blockading HDACs mechanisms in the gut, blood veins, and bodily tissues including the heart, lungs, and bones. Butyrate is 
one of the main SCFA that is metabolized by mature enterocytes by anaerobic β-oxidation and provides a maximum of the energy up to 60% to 
70%. Butyrate increases the transforming growth factor-beta (TGF-β) and antimicrobial peptides expression in enterocytes [91]. The regulation of 
TGF-β increases the production of IL-10-generating Tregs in the colon. Acetate increase the expression of FFAR2 and FFAR3 which induce histone 
acetylation and cause inhibition of HDACs with decreased inflammatory cytokines production such as TNFα, IL-6, and IL-8. Propionate has been 
used for the treatment of lungs of allergic mice [83] which activates the expression of FFAR3 with reduced inflammatory mediators such as IL-
17A, IL-4, and IL-5. FFAR, free fatty acid receptor; IL, interleukin.
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oligosaccharides in broilers promoted butyrate, propionate, 
and Firmicutes to Proteobacteria production and decreased 
caecal Enterobacteriaceae [76]. Moreover, the supplementation 
of chicory roots and sweet lupins increased the abundance 
of commensal microbiota i.e. Bifidobacterium thermacidoph-
ilum subspp. Porcinum, and Megasphaera elsdenii, lactate 
producers and lactate utilizing butyrate producers respec­
tively and attenuated the abundances of intestinal spirochaete 
and B. hyodysenteriae [77]. So it is clear that fiber intake helps 
in improving gut health and decreases the load of pathogenic 
bacteria, however, it is still to find the best source or combi­
nation of fibers that can maintain gut health and eliminate 
chances of E.coli, Salmonella, and necrotic enteritis type of 
infections from poultry species. In addition to that how fiber 
sources decrease the involvement of pathogens and what are 
specific pathways involved, need further investigations.

RECEPTORS, TARGET TISSUES, AND 

FUNCTIONS OF SHORT-CHAIN FATTY 
ACIDS 

The SCFAs regulate the immune system through signaling 
mechanisms, the understanding of which may help improve 
immune system and reduce risk of certain diseases. There 
are two mechanisms by which SCFAs modulate immune cell 
chemotaxis, cytokines, and reactive oxygen species (ROS) of 
the host. The first mechanism is the activation of G-protein-
coupled receptors (GPCRs) such as free fatty acid receptors 
(FFAR)-2 and -3 (also known as GPR43 and GPR41 recep­
tors), niacin receptor 1, or GPR109A or hydroxyl-carboxylic 
acid 2 receptor, and olfactory receptor (Olfr78) [78,79]. Cur­
rently, we have reviewed four SCFA-sensing GPCRs which 
are expressed on IECs, endocrine cells, and leukocytes and 
play a central role in the regulation of metabolism (Table 3). 
The second mechanism consists of the direct inhibition of 
HDACs [80]. To get insight into HDACs inhibition, the 
mechanisms supporting SCFA-facilitated HDAC inhibition 

Table 2. Role of short-chain fatty acids in modulating the pathophysiological changes in pigs and poultry species

Origin Virulence Virulent factor Challenge Dietary fibers Pathophysiological effects Reference

Broilers Necrotic enteritis and inflamma-
tion of the small intestine

Lactose-negative entero-
bacteria and clostridium 
perfringens

S. Typhimurium DT110 Whole wheat and oat 
hulls

Increased hydrochloric acid secretion 
and grinding processes in the gizzard, 
and reduced its pH

[107]

Broilers Necrotic enteritis and inflamma-
tion of the small intestine

C. perfringens Necrotic Enteritis The acetylated high 
amylose maize starch 
and Butyralated high 
amylose maize starch

Increased short-chain fatty acids 
(SCFAs) generation and decreased 
luminal pH

[75]

Broilers Paratyphoid infections, S. Enter-
itidis, and  foodborne  diseases

Salmonella enterica and 
E. coli

Streptomycin resistant 
S. enterica serotype 
Enteritidis phage type 4 
strain 147 (SE147)

Wheat bran and Arabi-
noxylo-oligosaccharides

Increased butyric acid, propionic acid, 
and Firmicutes to Proteobacteria 
production and decreased caecal 
Enterobacteriaceae levels

[76]

Broilers Destroy the epithelial mucosal 
layers and infection of Peyer's 
patches of the small intestinal 
wall

S. Typhimurium S. Typhimurium invasion 
genes (invA, B, C, and D)

Salmonella with wheat 
bran

Decreased the impacts of hilA (a 
transcriptional activator of Salmonella 
pathogenicity island I vital for Salmo-
nella) into epithelial cells

[108]

Laying hens Destroy the epithelial mucosal 
layers and infection of Peyer's 
patches of the small intestinal 
wall

Salmonella Gavage Fructooligosaccharide Decreased the intestinal bacterial 
populations by increasing the growth 
of Lactobacillus and Bifidobacterium 
spp.

[109]

Piglets Post-weaning diarrhea E. coli and Salmonella - Oat hulls Decreased fecal biogenic amines, 
cadaverine, and β-phenylethylamine.

[110]

Piglets Post-weaning diarrhea E. coli E. coli K88 Wheat bran Increased butyric acid and total 
SCFAs production with reduced 
intestinal enterobacterial populations 
particularly challenged Ileal E. coli K88 
adhesions.

[74]

Piglets Diarrhea E. coli E. coli Inulin Increased Lactobacillus: coliform ratio 
and SCFA concentrations.

[111]

Piglets Intestinal mucosal damage and 
diarrhea

E. coli Enterotoxigenic E. coli 10% Wheat bran fiber 
and pea fiber

Increase Lactobacillus in ileum and 
Bifidobacterium populations in colon 
which further increased colonic gob-
let cells, peptide trefoil factors, and 
villous height: crypt depth ratio in the 
ileum.

[112]

Pre-weaned pigs Salmonella induced diarrhea S. typhimurium S. typhimurium798 Fermentable fiber Increased SCFAs in the colon and 
glutamine transport.

[113]

Pigs Swine dysentery (contagious 
diarrheal disease) and Trichuris 
suis (whipworm)

Intestinal spirochaete 
and B. hyodysenteriae

B. hyodysenteriae Chicory root (fructans) and 
sweet lupins (galactans)

Increased the abundance of commensal 
microbiota such as Bifidobacterium 
thermacidophilum subsp. porcinum and 
Megasphaera elsdenii, lactate producers 
and lactate utilizing butyrate producers 
respectively.

[77]

Pigs Swine dysentery (SD) (contagious 
diarrheal disease)

Affected large-intestinal 
microbiota to induce ex-
tensive inflammation and 
necrosis of the epithelial 
surface of the caecum and 
colon.

B. hyodysenteriae Inulin and lupins Increased the caecal SCFAs with reduced 
concentration of SD colonization

[114]
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and their immunological consequences are discussed here.

Pro- and anti-inflammatory effects of short-chain fatty 
acids in immune cells 
The host immune system impedes the pathogens by produc­
ing inflammatory cytokines. Though, unnecessary secretion 
of cytokines gives rise to systemic inflammation. SCFAs 
modify systemic inflammation by modulating the release of 
immune cell cytokines, ROS, and chemotaxis (Figure 3). 
Propionate and butyrate activate FFAR2/3 or GPR109A or 
inhibit HDACs to decline the nitric oxide synthase and tu­
mor necrosis factor-alpha (TNFα) expression in monocytes. 
Upon tracheal inflammation, SCFAs activate FFAR2 and 
FFAR3 from the macrophages and neutrophils which lead 
to the reduction of interleukin-8 (IL-8) in the trachea [81]. 
Butyrate acts anti-inflammatory factor in macrophages by 
activating FFAR3 and reducing interleukin-6 (IL-6), monocyte 
chemoattractant protein-1 (MCP-1), TNFα, and inducible 
nitric oxide synthase [82]. In mononuclear cells of humans 
and mice, acetate had anti-inflammatory effects and it inhibits 
lipopolysaccharides (LPS)-induced TNFα production through 
FFAR2 and FFAR3 activation. Treatment of allergic mice with 
propionate decreased inflammatory mediators, e.g. interleu­
kin-17A (IL-17A), IL-4, and IL-5 through FFAR3 activation 
pathway [83]. Similarly, propionate was found useful in 
treating lungs of allergic mice.
  Activation of FFAR2 and FFAR3 down-regulate the ex­
pression of nuclear factor kappa B (NF-KB) downstream 
genes and are linked with the regulation of phosphoinositide 
3-kinase, mitogen-activated protein kinases, c-Jun N-termi­
nal kinase, extracellular signal-regulated kinase (ERK), p38 
mitogen-activated protein kinase (p38MAPK), and rapamycin 
signaling pathways [84]. Upon activation of FFA receptors, 
acetate regulates p38MAPK and extracellular signal-regulat­

ed kinases 1/2 (ERK1/2) signaling pathways thus enhancing 
the synthesis of cytokines (chemokine (C-X-C motif) ligand1/2 
and IL-6). In mice, the knockout of FFA receptors decreased 
IL-6 synthesis and delay the expression of chemokines and 
interferon-gamma (INF-γ) [85]. These hallmark studies de­
termine the pro-inflammatory effects of activated FFAR2 
and FFAR3. 
  The expression of GPR109A in macrophages by enhanced 
INF-γ represents its importance in inflammation and im­
mune regulation system. The activation and regulation of 
GPR109A blockade the production of MCP-1, IL-6, and 
TNFα and the expression of TLR4, thus, reducing the chanc­
es of atherosclerosis [86]. Butyrate on activating GPR109A 
acts as an anticancer mediator in human cancer cell lines. In 
vitro treatment of human hepatoma cells by butyrate decline 
the activity of telomerase through HDAC blockade. Butyrate 
as an activator of GPR109A in human colon cancer cells en­
hances the butyrate transporter MCT-1 expression and further 
increases apoptosis independent of HDAC inhibition [87]. 
This suggests that the activation of GPR109A may directly 
halt colon cancer development or indirectly transport the 
butyrate to the cell by increasing MCT-1 expression. The en­
hanced MCT-1 expression in the colon cancer cells is necessary 
for histone acetylation and also for its anti-tumorigenic func­
tion. The intake of whole grain and cereals were coupled 
with decreased incidence of colorectal cancer predicting the 
efficient role of SCFAs in cancer treatment [88]. 
  Gut microbial fermentation of polysaccharides undergoes 
SCFAs production which goes through the portal vein cir­
culation and becomes a part of plasma. A novel receptor of 
SCFAs “Olfr78” has been observed in blood vessels and au­
tonomic nerves in heart [79] (Figure 3). In a study, antibiotics 
were used to reduce a load of gut microbiota to notice whether 
the antibiotics affect blood pressure (BP) in Olfr78−/− mice or 

Table 3. Summary of the currently recognized SCFAs-activated GPCRs including their ligands, expression, and functions

Receptor Ligands Expression in tissues Expression in cell types Functions References

GPR43 (FFAR2) Acetate, 
propionate, 
butyrate, 
caproate, and 
valerate

Intestine, immune cells, murine hemo-
poietic tissues, and spleen

Endocrine L-cells, colonocytes, 
enterocytes, eosinophils, basophils, 
neutrophils, monocytes, dendritic 
cells, mucosal mast cells, and bone 
marrow 

Anorexigenic effects through the secretion of peptide YY and 
glucagon-like peptide-1, development or differentiation of 
immune cells, anti-inflammatory role in reducing the risk of 
preterm labor induced by pathogens, decreases cyclic adeno-
sine monophosphate (cAMP) levels and increases cytoplas-
mic calcium concentrations, inhibits  NF-KB, and reduces the 
expression of pro-inflammatory cytokines, IL-6 and IL-1β.

[78,115]

GPR41 (FFAR3) Acetate, 
propionate, 
butyrate, 
caproate, and 
valerate

Adipose tissues, spleen, intestine, 
immune cells, and pancreas

Adipocytes, monocytes, enteroendo-
crine L-cells, neutrophils, mono-
cyte-derived dendritic cells, and 
peripheral blood mononuclear cells

Inhibits adenylyl cyclase, reduces the levels of cAMP, and 
stimulates sympathetic activation by acting on the sympathet-
ic ganglion.

[116]

GPR109A or HCA2 or 
NIACR1

Butyrate and 
niacin

Immune cells, intestine, and adipose 
tissues

Dermal dendritic cells, monocytes, 
macrophages, neutrophils, and adipo-
cytes 

Suppresses lipolysis and plasma-free fatty acid levels and 
regulates the vascular inflammation in atherosclerosis

[86]

Olfr78 Acetate and 
propionate

Kidney, colon, lungs, heart (autonomic 
nerves), and prostate

Juxtaglomerular cells, enteroendo-
crine cells, airway smooth muscle 
cells, prostate epithelium, and melano-
cytes

Mediates renin secretion in response to SCFAs and controls 
blood pressure system

[79,117]

SCFAs, short-chain fatty acids; GPCRs, G-protein-coupled receptors; IL, interleukin; GPR43, free fatty acid receptor; GPR109A, G-protein-coupled receptor 
109A; HCA2, hydroxycarboxylic acid receptor 2; NIACR1, niacin receptor 1; Olfr78, olfactory receptor. 
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not. The results showed a significant increase in BP in Olfr78-
deficient mice which suggests that propionate and acetate 
produced by gut microbiota might be involved in controlling 
BP. Based on current literature, we can say that SCFAs act as 
a bridge in maintaining gut health (Figure 3). In poultry 
species, the role of SCFAs receptors and their efficient par­
ticipation in inhibiting HDACs has not yet been studied. So 
further research is required to unveil these processes in poultry.

Short-chain fatty acids (SCFAs)-facilitated histone 
deacetylases (HDACs) inhibition
Many of the HDACs show expression on smooth vascular 
muscle cells, immune and endothelial cells. Microflora helps 
SCFA-facilitated HDAC inhibition and protects immune 
system. The exact mechanism supporting SCFA-facilitated 
HDAC inhibition is unclear however it is proposed that two 
mechanisms are involved i.e. the expression of SMCT-1 trans­
porter and the activation of GPCRs. The SMCT-1 mechanism 
might cause direct inhibition of HDACs by entering into the 
cells with the help of transporters. The SMCT-1 promotes 
butyrate- and propionate-induced barrier of a murine den­
dritic cell which results in induced HDAC inhibition and 
DNA acetylation [89]. The GPCRs mechanism involves in­
direct inhibition of HDACs by SCFAs. For example, the 
stimulation of FFAR3 in Chinese hamster ovary cell lines in­
hibited HDACs and caused suppression of histone acetylation 
[90]. Not only FFAR3 but other receptors of SCFAs may in­
volve in the inhibition of HDACs. SCFA-coupled HDAC 
inhibition that occurred in the colon was mostly dependent 
on FFAR2 [91]. Besides this, acetate may have controversial 
effects in stimulating inflammatory processes in a GPCRs-
independent manner by regulating epigenetic modifications. 
Apart from this, propionate and butyrate may restrain the 
HDAC activity independent of FFAR3 and FFAR2 [82]. 
Further research is however required to find how SCFAs in­
hibit the activation of HDACs directly or indirectly in poultry 
species. 

Immunological consequences of short-chain fatty 
acids-induced histone deacetylases inhibition 
Once SCFA-facilitated HDAC inhibition is developed, it re­
sults in a strong anti-inflammatory immune response as briefly 
described in Figure 3. Previously utilization of butyrate and 
propionate in the treatment of human peripheral blood mono­
nuclear cells, reduced the production of LPS-induced-TNFα 
in a similar way to trichostatin A [92]. Similarly, the in-vitro 
use of acetate for the treatment of human macrophages re­
markably diminished the HDAC activity and improved 
histone acetylation with reduced inflammatory cytokines 
production such as TNFα, IL-6, and IL-8 [93]. It has been 
observed that NF-kB has a central role in the stimulation of 
inflammatory cytokines. This suggests that SCFAs might be 

involved in the modulation of NF-kB by HDAC inhibition. 
Similarly, treatment of neutrophils and LPS-activated mono­
nuclear cells by butyrate and propionate decreased the NF-kB 
activity and TNFα production, and subsequently increased 
the production of anti-inflammatory cytokine interleukin-10 
(IL-10) [94]. These results suggest the prominent role of SCFAs 
in the production of pro-inflammatory cytokines through 
inhibition of HDAC activity in humans and rodents. HDAC 
inhibition resulting from SCFAs is not limited to the cell's 
innate immune system but it may also affect the white blood 
cells especially regulatory T cells (Tregs). The inhibition of 
HDAC9 in mice promotes the expression of forkhead box 
P3 (Foxp3) transcription factor, which increases proliferation 
of Tregs [95]. Similarly, butyrate increases the transforming 
growth factor-beta (TGF-β) and antimicrobial peptides ex­
pression in enterocytes [91]. The regulation of TGF-β increases 
the production of IL-10-generating Tregs in the colon, sug­
gesting its role in restricting the proliferation of effector T 
cells. Though RNA-Seq analysis revealed that few birds in­
cluding Falco cherrug, Falco peregrinus, and Parus humilis 
express Foxp3 [96] yet it is not known whether the gut-de­
rived microbial SCFAs disturb the Tregs in poultry because 
the Foxp3 has not yet been identified in chickens and turkeys. 

CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

In conclusion, DFs can promote specific SCFA producing 
bacteria that may present a novel approach for managing E. 
coli, necrotic enteritis, and Salmonella in broilers and pigs. 
Fermentative bacteria mostly target the crop and cecum, 
whereas impacts of exogenously administered SCFAs may 
depend on the way of administration and hence diverse from 
microbially produced metabolites. As an example, oral ad­
ministration of butyrate may target directly the small intestine 
and reach the periphery without being consumed by the 
colonocytes. Tissue-specific impacts of SCFAs have been 
revealed by propionate, whereby propionate-dependent 
gluconeogenesis improves metabolic health in the small 
intestine, whereas hepatic gluconeogenesis is injurious. Con­
sidering the expression of SCFA receptors in the blood vessels, 
small intestine, macrophages, and colonocytes, it can be vital 
to comprehend SCFA generation. 
  It is a major challenge to recognize the exact role of impos­
ing opportunities for utilizing SCFAs in host pathophysiology 
which indispose a good understanding of the mechanisms 
through which SCFAs exploit their impacts in the animals' 
gut, tissues, and organs. Of course, studies with the SCFAs 
seem to affect health via three main mechanisms; (I) activat­
ing GPCRs, (II) increasing histone acetylation and inhibiting 
HDAC activity, and (III) regulating anti-inflammatory mecha­
nisms because of the first two mechanisms in the tissues and 
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periphery, which can provide new and exciting possibilities 
for modulating poultry health.
  To sum up, DFs can be considered key ancestral com­
pounds which regulate the macronutrients and preserve 
host physiology. In brief, we discussed how SCFAs are be­
ing generated, transported, and modulated the pro-and 
anti-inflammatory immune responses against pathogens 
and improve host physiology and gut health. Finally, screen­
ing novel fibers, both extracted and purified from food as 
well as those synthesized (prebiotics), and defining effec­
tive strategies to restore a high amount of fibers aiming at 
reintroducing the gut microbiome with important omitted 
SCFAs producing microbes, will be the next question to 
significantly affect gut microbiota-associated poultry dis­
eases.
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