
Sequence analysis

Deep learning improves antimicrobial peptide

recognition

Daniel Veltri1,2,*, Uday Kamath3 and Amarda Shehu4,5,6,*

1Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology,

National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Rockville, MD 20852, USA,
2Medical Science & Computing, LLC, Rockville, MD 20852, USA, 3Digital Reasoning, McLean, VA 22102, USA,
4Department of Computer Science and 5Department of Bioengineering, George Mason University, Fairfax, VA

22030, USA and 6School of Systems Biology, George Mason University, Manassas, VA 20110, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on December 14, 2017; revised on March 6, 2018; editorial decision on March 21, 2018; accepted on March 28, 2018

Abstract

Motivation: Bacterial resistance to antibiotics is a growing concern. Antimicrobial peptides

(AMPs), natural components of innate immunity, are popular targets for developing new drugs.

Machine learning methods are now commonly adopted by wet-laboratory researchers to screen

for promising candidates.

Results: In this work, we utilize deep learning to recognize antimicrobial activity. We propose a neural

network model with convolutional and recurrent layers that leverage primary sequence composition.

Results show that the proposed model outperforms state-of-the-art classification models on a compre-

hensive dataset. By utilizing the embedding weights, we also present a reduced-alphabet representa-

tion and show that reasonable AMP recognition can be maintained using nine amino acid types.

Availability and implementation: Models and datasets are made freely available through the

Antimicrobial Peptide Scanner vr.2 web server at www.ampscanner.com.

Contact: amarda@gmu.edu (for general inquiries) or dan.veltri@gmail.com (for web server

information)

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antimicrobial resistance remains a serious problem for humans and

livestock around the world, as more drugs lose sensitivity to the patho-

gens they were designed to eliminate (Price et al., 2012; U.S.

Department of Health and Human Services, 2013; World Health

Organization, 2014). Over the past few decades, natural antimicrobial

peptides (AMPs) have been an active area of research and have shown

a lowered likelihood for bacteria to form resistance compared to many

conventional drugs (Boman, 2003; Zelezetsky et al., 2006). AMPs are

short innate immunity peptides that fall into a number of diverse se-

quence families (e.g. cathelicidins, defensins, cecropins, etc.) and kill

their targets through various mechanisms, such as cell membrane dam-

age, DNA interference or signaling for adaptive immune responses, as

reviewed by Wimley and Hristova (2011). While we focus in this work

exclusively on peptides that kill Gram-positive and/or Gram-negative

bacteria, we note some AMPs have also been shown effective against a

variety of fungal and viral pathogens (Wang, 2010).

To aid wet-laboratory researchers in novel AMP discovery, a

variety of computational approaches are proposed for AMP recogni-

tion. Many incorporate machine learning algorithms or statistical

analysis techniques, such as artificial neural networks (ANN) (Lata

et al., 2010; Thomas et al., 2009; Torrent et al., 2011), discriminant

analysis (DA) (Thomas et al., 2009), fuzzy k-nearest neighbor (Xiao

et al., 2013), hidden Markov models (Fjell et al., 2009), logistic re-

gression (Veltri et al., 2017; Randou et al., 2013), random forests

(RF) (Thomas et al., 2009; Veltri, 2015) and support vector ma-

chines (SVM) (Lata et al., 2010; Lee et al., 2016; Meher et al., 2017;

Thomas et al., 2009; Torrent et al., 2011).
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Popular features/predictors for peptide sequences are based on

sequence composition. Basic amino acid counts over the N- and

C-termini or the full peptide are used by the AntiBP (Antibacterial

Peptide) methods (Lata et al., 2007, 2010). The pseudo-amino acid

composition (PseAAC) method (Chou, 2001) also incorporates in-

formation about sequence order (Meher et al., 2017; Xiao et al.,

2013). In the evolutionary feature construction (EFC) method

(Kamath et al., 2014), features encode nonlocal correlations be-

tween position-specific sequence motifs (Veltri et al., 2017, 2014).

Physicochemical properties, such as charge, hydrophobicity, iso-

electric point, aggregation propensity and more, are also used to en-

code sequences as numerical vectors; typically, features are average

values of considered physicochemical properties calculated over the

full-length or terminal ends of a peptide sequence (Fernandes et al.,

2012; Randou et al., 2013; Thomas et al., 2009; Torrent et al.,

2011). While a few methods attempt to numerically predict the

‘strength’ of antimicrobial activity (i.e. inhibition concentration)

(Cherkasov and Jankovic, 2004), most methods use a binary predic-

tion/recognition setting to assign an ‘AMP’ or ‘non-AMP’ label to a

given query peptide sequence.

Many AMP recognition methods are provided to the research

community via web servers. Recent ones include iAMPpred (Meher

et al., 2017), iAMP-2 L (Xiao et al., 2013), AntiBP2 (Lata et al.,

2010), CAMP (Thomas et al., 2009) and AMPer (Fjell et al., 2007).

Reported recognition accuracy (ACC) has steadily improved over

the past decade, but there is room for improvement. Comparative

surveys report that state-of-the-art servers, including CAMP and

AntiBP2, miss many true positives (Bishop et al., 2015; Veltri,

2015). Others, such as the Antimicrobial Peptide Database (APD)

(Wang et al., 2016) and AMP predictor, only accept individual

query sequences that limit applications for high-throughput recogni-

tion experiments by wet-laboratory researchers.

In this paper, we improve upon the state of the art in AMP recog-

nition and make several contributions. First, we offer a new training

and testing dataset that reflects the latest available antibacterial pep-

tide data from the recently updated APD vr.3 release. Second, we

introduce a new deep neural network (DNN) classifier that achieves

better AMP recognition compared to the existing methods. Third,

by using a DNN with convolutional (Conv) and recurrent layers, we

remove the burden of a priori feature construction and consequently

reduce our reliance on domain experts. Fourth, we make the pro-

posed DNN model and all datasets freely available to the research

community via the AMP Scanner server at: http://www.ampscanner.

com. The server is specifically designed to support high-throughput

screening experiments, where wet-laboratory researchers want to

conduct systematic virtual screenings of peptide libraries to identify

promising peptides for further characterization and modification.

Finally, to directly support the design of such libraries, we ‘open’ the

box of the proposed DNN model and learn from it a smaller alpha-

bet via which to represent peptide sequences. We demonstrate that

the smaller alphabet allows retaining good AMP recognition ACC.

Moreover, by reducing the number of amino acids from 20 to 8

pseudo-amino acids (plus a padding character), we shrink the size of

the sequence space wet-laboratory researchers have to consider

when designing peptide libraries.

The superiority of DNN models has been demonstrated on many

problems in bioinformatics. While, to the best of our knowledge,

this paper is the first to propose DNN models for AMP classifica-

tion, other recent DNN models improve protein secondary structure

prediction (Spencer et al., 2015), protein fold recognition (Jo et al.,

2015), drug discovery and more (LeCun et al., 2015). The interested

reader is directed to the survey by LeCun et al. (2015) for a review

of deep learning and its performance on diverse problems spanning

from genomics to drug discovery.

The DNN model proposed in this paper captures position-

invariant patterns along an amino acid sequence through the use of

Conv (LeCun et al., 2015) and ‘long short term memory’ (LSTM)

layers (Hochreiter and Schmidhuber, 1997) based on a popular

architecture in speech recognition tasks (Bahdanau et al., 2014;

Vinyals et al., 2015). The proposed DNN uses separate Conv and

LSTM layers and is different from the ‘Convolutional LSTM’ archi-

tecture outlined recently by Xingjian et al. (2015) for precipitation

nowcasting. Our choice of LSTM layers is due to the fact that, as a

type of recurrent neural network, LSTMs have the ability to ‘recog-

nize’ and ‘forget’ gap-separated patterns (Schmidhuber, 2015), and

they have recently been shown successful in bioinformatics contexts

like identifying protein subcellular localization (Nielsen et al.,

2016). We note our use of the term ‘deep’ in this work is intended to

reflect the structure of our model rather than the number of layers

employed.

The rest of this paper is organized as follows. The DNN

model and the construction of the reduced alphabet are detailed in

Section 2. The model is evaluated in a comparative setting in

Section 3, which also evaluates the impact of the reduced alphabet

gleaned from the model on recognition ACC. The paper concludes

in Section 4.

2 Materials and methods

2.1 Datasets
We build our dataset over experimentally validated AMPs available

in the APD vr.3 database (at http://aps.unmc.edu/AP). These

AMPs are active against Gram-positive and/or Gram-negative bac-

teria. We curate this dataset as follows. After filtering out sequences

shorter than 10 amino acids in length and those sharing � 90% se-

quence identity with the CD-HIT program (Huang et al., 2010), we

are left with 1778 AMPs. We assign 712 AMPs for training, 354 for

tuning/evaluation and 712 for testing, respectively.

As there is currently no large public repository of peptides ex-

perimentally shown to lack antimicrobial activity, we build a nega-

tive dataset of non-AMP sequences using an approach similar to

previous work (Torrent et al., 2011; Xiao et al., 2013). Specifically,

we download peptide sequences from UniProt (Magrane and the

UniProt consortium, 2011) (http://www.uniprot.org) by setting the

‘subcellular location’ filter to cytoplasm and remove any entry that

matches the following keywords: antimicrobial, antibiotic, antiviral,

antifungal, effector or excreted. We also remove sequences<10

amino acid in length, those sharing � 40% sequence identity

(again, using CD-HIT), or any found to match known AMPs by run-

ning a BLAT (Kent, 2002) vr.35 protein-versus-protein search using

default settings. We then randomly select 1778 peptide fragments

from the remaining sequences, ensuring that the length distribution

of the selected non-AMPs approximates that of the AMP dataset

constructed as described earlier. The 1778 non-AMPs selected in

this manner are assigned to training (712 of them), tuning (354 of

them) and testing (712 of them) partitions as done with the AMP

dataset.

The Supplementary Information includes the AMP and non-

AMP sequence length distributions as well as additional analyses to

evaluate the impact of the size and composition of the dataset on

model performance. Sequences are available for download in multi-

FASTA format from the AMP Scanner web server that accompanies

this paper.
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2.2 Architecture of proposed DNN
To identify position-invariant AMP sequence patterns, we build a

DNN with the Keras framework (http://www.keras.io) using a se-

quential model and a TensorFlow (Abadi et al., 2016) deep learning

library back-end. We consider deep learning due to its ability to

identify multiple, ambiguous patterns possibly hiding within the di-

verse families of AMP peptides represented in our comprehensive

dataset. Specifically, the DNN employs Conv and maximal (max)

pooling layers to generate filters that generalize sequence patterns

and uses an LSTM layer to characterize a possibly highly complex

order in which these patterns may occur across various AMPs. An

overview of the approach for sequence embedding and DNN archi-

tecture is shown in Figure 1.

Figure 1 shows that peptide sequences are first converted into

zero-padded numerical vectors of length 200 that fit our dataset’s

longest AMP (183 amino acids) and non-AMP (175 amino acids).

Specifically, each of the 20 basic amino acids are assigned a number

1–20 and unknown ‘X’ characters (not present in any sequence in

our dataset) are assigned 0. Since the DNN quickly learns to ignore

the leading padding characters, it can handle variable-length se-

quences. As detailed in Figure 1, such encoded sequences are then

fed into an embedding layer (embedding_vector_length: 128

in the Keras framework syntax) and then to a 1D Conv layer

(nb_filter: 64, filter_length: 16, init: normal,

strides: 1, border_mode: same, activation: relu). The

purpose of the embedding layer is to convert the indices of discrete

symbols (e.g. amino acids) into a representation of a fixed size

vector. For instance, the layer can convert indices (1; 2; . . . ; 20) cor-

responding to the 20 naturally occurring amino acids into a three-

number vector representation. The benefit of the embedding is that

it can create a more compact representation of input symbols and

can yield semantically similar symbols close to each other in the vec-

tor space. The embedding layer can be trained with other layers of a

DNN, and its weights can be updated during training.

The 64 filters that are activated when a matching sequence pat-

tern/motif is detected are convolved in a single (forward) direction.

A max pooling layer (pool_length: 5) then downsamples these

filter values by sliding nonoverlapping windows of length 5 and se-

lecting the largest value. This helps to reduce overfitting and pro-

vides slight invariance to residue position. Next, an LSTM layer

with 100 units is applied (unroll: True, stateful: False,

dropout: 0.1 and rest default settings) which identifies patterns

along a sequence that can be separated by large gaps. The LSTM

dropout parameter (Srivastava et al., 2014), which helps with over-

fitting by randomly ignoring 10% of inputs, is used, as it slightly im-

proves the DNN’s predictive performance. Each LSTM unit is

comprised of the following gates, where W and U are parameter

matrices and b is a bias vector as outlined in Hochreiter and

Schmidhuber (1997).

it ¼ rðWixt þUiht�1 þ biÞ input gate

~Ct ¼ tanhðWcxt þUcht�1 þ bcÞ candidate cell states

ft ¼ rðWf xt þUf ht�1 þ bf Þ forget gate

Ct ¼ it � ~Ct þ ft � Ct�1 cell activation gate

ot ¼ rðWoxt þUoht�1 þ VoCt þ boÞ output gate

ht ¼ ot � tanhðCtÞ hidden gate

Above, � refers to an entry-wise (Schur) product (Davis, 1962).

The cell activation gate C is able to consider previous states ( ~C), and

information is forwarded by f to alter the hidden states h and final

output vector o. We note that LSTMs can be implemented so that f

passes information in reverse or bidirectionally, but we did not find

this to significantly impact recognition performance. In addition, we

note that, while the best model we found uses LSTM, similar per-

formance (within 1–2% ACC) was found when replacing LSTM

with Gated Recurrent Units (Chung et al., 2014) (another type of re-

current layer). Additional information for the interested reader on

the architecture of LSTM and other recurrent layers is available in

Hochreiter and Schmidhuber (1997), Gers et al. (2000) and Graves

et al. (2013).

Finally, as Figure 1 shows, the output from the LSTM layer is

passed through a final dense layer that uses a sigmoid function to

force predictions in the range [0, 1]. We compile our Keras model

Fig. 1. The proposed DNN uses Conv and LSTM layers. Peptide sequences are encoded into uniform numerical vectors of length 200. These vectors (X) are fed to

an embedding layer of length 128, followed by a convolutional layer comprised of 64 filters. Each of these filters undergoes a 1D convolution and is downsampled

via a maximal pooling layer of size 5. Next, an LSTM layer with 100 units allows the DNN to remember or ignore old information passed along the horizontal dot-

ted arrows extending from each Xi input. The final output from the DNN is passed through a sigmoid function so that predictions (Y) are scaled between 0 and 1

2742 D.Veltri et al.
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using 10 epochs with the ‘adam’ optimizer (loss: binary_cros-

sentropy, metrics: accuracy). In a 10-fold cross validation

(CV) setting, we find that removing the Conv and max pooling

layers reduces the ACC by 4% and increases the runtime by ap-

proximately 39%.

2.3 Model tuning and construction
As common practice dictates, we build two separate models, first a

‘training’ model used for evaluating the testing partition and second

a ‘production’ model for the web server, which is trained on all

available data. Model parameters are first tuned through a random-

ized search using the Hyperas wrapper package (https://github.com/

maxpumperla/hyperas) for Keras. The tuning step only uses the

training and tuning partitions. After parameters are selected, the

training model is built by merging the training and tuning partitions

and evaluating performance on the testing dataset. All data parti-

tions are combined to generate the production model and for the 10-

fold CV setting with model parameters unchanged. A prediction

probability threshold of>0.5 is used to denote an ‘AMP,’ with �
0:5 denoting a ‘non-AMP.”

2.4 Model evaluation
We evaluate classification performance in terms of sensitivity

(SENS), specificity (SPEC), ACC and Matthews Correlation

Coefficient (MCC), which are defined using the number of true posi-

tive (TP), true negative (TN), false-positive (FP) and false-negative

(FN) predictions. Specifically, SENS ¼ TP=ðTPþ FNÞ � 100%,

SPEC ¼ TN=ðTN þ FPÞ � 100%, ACC ¼ ðTPþ TNÞ=ðTPþ FPþ
TN þ FNÞ � 100%, and MCC ¼ ððTP� TNÞ � ðFN� FPÞÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTN þ FPÞ � ðTPþ FPÞ � ðTN þ FNÞ

p
.

We also make use of the receiver–operating characteristic (ROC)

curve (Hanley and McNeil, 1982). The ROC curve shows the per-

formance of a classification model as one varies a discrimination

threshold. Specifically, predictions are ranked in descending order,

and a threshold value, used to delineate the number of true and false

predictions, is adjusted so as to capture the TP rate as a function of

the FP rate (Hanley and McNeil, 1982). In addition to drawing the

ROC curve, we report the area under the ROC curve (auROC) to

evaluate performance in a quantitative, comparative setting. auROC

ranges from 0.5 (corresponding to a random guess) to 1 (corres-

ponding to the case when all predictions are correct). We calculate

auROC using the pROC vr.1.8 package (Robin et al., 2011) in R (R

Core Team, 2015) vr.3.4.1.

2.5 Embedding visualization
To generate the amino acid embedding vector visualization, Conv

layer embedding weights are first extracted from the trained Keras

model using all the data. Then, t-distributed stochastic neighbor

embedding (t-SNE) (Van der Maaten and Hinton, 2008) is applied

(n_components: 2, init: pca, perplexity: 30, n_iter_

without_progress: 300, method: exact) through the scikit-

learn (Pedregosa et al., 2011) vr.0.18.1 package to reduce the

original 128D vectors down to two dimensions. Plotting is done

using matplotlib (Hunter, 2007) vr.2.0.2.

2.6 Reduced alphabet construction and testing
Clusters are assigned to (amino acid) letters in the embedding using

scikit-learn’s k-means algorithm (Lloyd, 1982) (n_clusters: 8)

using only the 20 classic amino acids. The setting of k¼8 is selected

after plotting the sum of squared distances between samples and

cluster centroids for k ranging [1, 19] and looking for a bend based

on the elbow method (Thorndike, 1953) (detailed analysis is shown

in the Supplementary Information). The nonbiological ‘X’ padding

character is manually assigned to its own cluster to bring the total

number of clusters to 9.

After a unique letter is randomly chosen to represent each cluster

(maintaining the padding cluster as’ X’), a new ‘DNN-reduced’ al-

phabet is obtained. The DNN model is then trained using the same

hyperparameters as above but representing peptide sequences using

the DNN-reduced alphabet. This process is repeated 100 times

(using different seeds), and ACC and MCC results on the testing

dataset (also converted to the new, reduced alphabet) are reported

as averages, along with standard deviations (SD) to check for

consistency.

To assess whether the DNN-reduced alphabet’s particular cluster

membership outperforms random cluster membership, 100 add-

itional ‘randomized’ alphabets are also constructed. For each, ‘X’ is

maintained as its own cluster, but the 20 real amino acids are ran-

domly assigned to 8 clusters of the same relative sizes as for the

DNN-reduced alphabet. The experiment described above is then re-

peated, training the DNN model (using the same hyperparameters)

on peptide sequences represented using a particular randomized

alphabet. Differences in recognition performance between the

DNN-reduced and randomized models are evaluated as follows.

A two-sample, one-tailed t-test with 95% confidence interval using

R is applied to see whether the ACC or MCC means of the 100

DNN-reduced alphabet model classifications are statistically higher

than the ACC or MCC means, respectively, of the 100 random al-

phabet model classifications.

To ensure that findings are applicable beyond DNNs, we repeat

the DNN-reduced versus randomized alphabet experiment described

above using gkmSVM vr.2.0 (Ghandi et al., 2014). The gkmSVM

uses a gapped k-mer SVM algorithm based on sequence compos-

ition. Unlike the proposed DNN, the gkmSVM is not stochastic, so

only one result per alphabet for a given dataset is produced.

Accordingly, we use a one sample, one-tailed t-test (treating the

reduced alphabet result as a ‘true mean’) and check whether the

mean of the 100 random alphabet results is significantly lower.

2.7 Experimental setup and runtime performance
Experiments are conducted on an Intel i5 laptop with a four core

1.7Ghz processor and 8GB of RAM. The DNN is constructed using

the Keras vr.2.0.6 open-source Python neural network library with a

CPU-based TensorFlow vr.1.2.1 back-end. Training takes approxi-

mately 2 min with the training partition, 5 min using all data and 1 h

for 10-fold CV. Hyperparameter tuning using the Hyperas vr.0.4 li-

brary takes approximately 8 h using 100 model permutations.

Running the trained network on the testing partition takes <1 min.

3 Results

3.1 Model performance
Table 1 shows the classification performance for each of the data

partitions. The partitions (training set and evaluation set) are shown

in columns 1 and 2. Columns 3–7 list SENS, SPEC, ACC, MCC and

auROC. In particular, row 4 shows the performance of the DNN

model used for comparing performance to other AMP recognition

servers. Row 5 shows the performance of the ‘production model’

made available on the AMP Scanner web server (we recall that this

model is trained on all available data). Row 6 shows recognition

performance in a 10-fold CV setting, where each of 10-folds is used
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once as a testing partition (with the model trained on the other

9-folds).

Table 1 reports averages along with SD listed in parentheses. All

models show generally good recognition, with SENS, SPEC, ACC

and auROC values all in the 80–90% range and MCC scores rang-

ing from 0.76 to 0.98. The 10-fold CV results in row 6 may best re-

flect how the model would perform, given new, unseen AMPs. The

relatively low SD values reported in row 6 for ACC, MCC and

auROC suggest the models have strong performance on about 90%

of the dataset but may struggle with AMP families that are still

poorly represented in the APD vr.3 database. Inspecting the FN se-

quences from the ‘All Data’ model (row 6) reveals 34 (of 1778)

AMPs are missed (the detailed list is available in Supporting infor-

mation). Many of these include sequences that share low (<30%)

sequence identity to other AMPs in the APD vr.3 database.

3.2 Comparison with state-of-the-art methods
Table 2 compares our DNN model (trained and tuned on different

datasets tested on a withheld dataset) to eight state-of-the-art ma-

chine learning methods for AMP recognition. Column 1 in Table 2

lists the methods being compared along the five performance metrics

listed in columns 2–6. Row 9 shows our DNN model. The perform-

ance of the DNN model on the DNN-reduced alphabets and ran-

dom alphabets is also shown in rows 10–11, respectively. The

performance of gkmSVM on the DNN-reduced and random alpha-

bets is shown in rows 12–13, respectively. Results in bold in Table 2

denote the best performance for a given metric (column). Default

settings are used with AntiBP2 (full sequence composition, SVM

threshold: 0); we note that other AMP servers do not allow adjust-

ment of algorithm parameters.

Table 2 shows that our DNN model achieves the best perform-

ance in terms of SPEC, ACC, MCC and auROC. The CAMP

Database RF model obtains the highest SENS score (�3% higher

than our model). The next best performer on ACC and MCC is the

gkmSVM method, while the AntiBP2 server obtains similar per-

formance (approximately 1% and 0.03 lower ACC and MCC values

compared to our DNN model, respectively). The method imple-

mented in the AntiBP2 server is a nongapped SVM method based on

terminal sequence composition (which explains the similar perform-

ance with gkmSVM), but we note that results obtained with

AntiBP2 exclude 211 testing sequences that fail the server’s 15–100

amino acid length requirement. The most recent version of the

iAMPpred server also obtains good performance overall (2.7%

and 0.05 lower ACC and MCC values compared to our DNN

model, respectively), likely due to its ability to capture correlated se-

quence positions via PseAAC in addition to other physicochemical

features.

Figure 2 visually compares the performance of the different ser-

vers and of our DNN model by plotting ROC curves. As Table 2

shows, the auROCs range between 85% and 96%. The auROC for

our DNN model (ROC curve drawn in black) is roughly 2% higher

than the next best curve, which is achieved by iAMPpred (ROC

curve drawn in blue).

Comparative analysis showing our DNN to have better perform-

ance against the above AMP prediction servers on three additional

datasets is provided in the Supplementary Information.

Table 2. Performance comparison on the AMP dataset testing partition

Method SENS(%) SPEC(%) ACC(%) MCC auROC(%)

AntiBP2 87.91 90.80 89.37 0.7876 89.36

CAMP-ANN 82.98 85.09 84.04 0.6809 84.06

CAMP-DA 87.08 80.76 83.92 0.6797 89.97

CAMP-RF 92.70 82.44 87.57 0.7554 93.63

CAMP-SVM 88.90 79.92 84.41 0.6910 90.63

iAMP-2L 83.99 85.86 84.90 0.6983 84.90

iAMPpred 89.33 87.22 88.27 0.7656 94.44

gkmSVM 88.34 90.59 89.46 0.7895 94.98

Our DNN 89.89 92.13 91.01 0.8204 96.48

DNN reduced amino acid 88.66 (64.06) 90.47 (63.05) 89.57 (60.94) 0.7938 (60.02) 96.13 (60.32)

DNN random amino acid 81.00 (65.95) 81.64 (67.73) 81.32 (63.19) 0.6310 (60.06) 89.55 (62.55)

gkmSVM reduced amino acid 87.92 87.64 87.78 0.7556 94.16

gkmSVM random amino acid 80.02 (63.77) 78.13 (63.22) 79.07 (63.16) 0.5819 (60.06) 86.68 (63.17)

Note: Recognition performance on the testing dataset is shown for state-of-the-art methods (listed in column 1) on the metrics listed in columns 2–6. Best per-

formance on a metric is marked in bold. Our DNN model is shown in row 9. The four bottom rows show performance of the DNN model and the gkmSVM

model on the DNN-reduced versus random alphabets.

Table 1. Model performance on different training and evaluation data partitions

Training set Evaluation set SENS(%) SPEC(%) ACC(%) MCC auROC(%)

Train-Only Train 98.60 98.87 98.69 0.9706 99.87

Train-Only Tune 95.76 83.85 87.80 0.7582 96.67

TrainþTune TrainþTune 97.19 99.53 98.36 0.9674 99.75

TrainþTune Test 89.89 92.13 91.01 0.8204 96.48

All Data All Data 98.26 99.66 98.96 0.9793 99.94

All Data 10-fold CV 88.81 (63.53) 94.21 (62.68) 91.51 (60.89) 0.8327 (60.02) 96.58 (60.66)

Note: Performance is shown for DNN models built and evaluated on the datasets listed in columns 1 and 2, respectively, on metrics listed in columns 3–7.

The bottom row shows 10-fold CV performance; accompanying SD values are shown in parentheses.
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3.3 Reduced alphabet model analysis
A 2D t-SNE representation for the trained amino acid embedding vec-

tors of our DNN production model (described in Section 2) is shown

in Figure 3. Based on the proximity of neighboring amino acids in this

representation, one can see that the DNN has learned basic amino

acid physicochemical properties. Residues located closer together

share more similar activation patterns, while more dissimilar amino

acids are also farther in the projection. For example, the negative

amino acids aspartic acid (D) and glutamic acid (E) are close to each

other, and their distance from the padding character (X) may reflect

the importance of charge in attracting AMPs to bacterial membranes

(Boman, 2003; Wang, 2010). Amino acids with uncharged side

chains, such as serine (S), threonine (T), asparagine (N) and glutamine

(Q), are also neighbors. It is perhaps unsurprising to see amino acids

with unique roles for structure formation or ligand interactions as

slightly isolated and more distant. For example, cysteine (C), which

forms disulfide bonds, stands on its own in the bottom right.

Tryptophan (W), slightly separated on the right, has a preference for

hydrophobic cores and a bulky indole side chain that is involved in

aromatic stacking interactions (Betts and Russell, 2003).

The coloring of the amino acids in Figure 3 denotes the 9 clusters

(based on k-means) that can now be used to encode a peptide se-

quence in place of the classic amino acids and the padding ‘X’ letter.

We evaluate whether this reduced encoding still retains enough in-

formation to recognize AMPs from non-AMPs. As described in

Section 2, average ACC and MCC values (over 100 independent

evaluations via our DNN model) and SD values are shown in row

10 in Table 2. Comparison with the DNN model operating on the

full alphabet (of 21 letters) shows a slight drop of about 1.4% in

ACC and 0.03 in MCC by the reduced alphabet. Despite using only

9 of the original 21 letters, the DNN-reduced model still outper-

forms all other non-DNN predictors listed in Table 2 in terms of

ACC, MCC and auROC. Table 2 also shows that DNN-reduced al-

phabet confers good performance to gkmSVM as well (row 12).

ACC and MCC scores are similarly reduced (compared to the full-

size alphabet) by around 1.7% and 0.03, respectively. Evaluations

using additional values for k are available in the Supplementary

Information.

To ensure specific amino acid membership in clusters is playing a

role and that a DNN would not perform just as well with randomly

assigned clusters (randomly grouping amino acids into pseudo-

amino acids), we generate 100 random alphabets (as described in

Section 2) and evaluate them via our DNN model on the testing

dataset. The performance of DNN models and the gkmSVM models

on the random alphabets (averaged over the 100 runs), shown in

rows 11 and 13 of Table 2, respectively, are the worst compared to

all other methods in terms of SENS, ACC and MCC, suggesting

cluster membership is important; the gkmSVM model on the ran-

dom alphabets also yields the lowest ACC. A one-sided t-test reveals

that the greater performance for the DNN-reduced alphabet DNN

model over the random alphabet DNN models is statistically signifi-

cant in terms of both ACC (P<2.2 � 10�16, df¼116.1, t¼24.8)

and MCC (P<2.2 � 10�16, df¼112.3, t¼25.5). Similarly, a one-

sided t-test reveals that the greater performance for the DNN-

reduced alphabet gkmSVM model over the random alphabet

gkmSVM models is statistically significant in terms of both ACC

(P<2.2 � 10�16, df¼99, t ¼ �27:5) and MCC (P<2.2 � 10�16,

df¼99, t ¼ �27:4).

4 Discussion

We have presented a new DNN-based classifier that achieves better

AMP recognition performance compared to existing, state-of-the-art

methods. To the best of our knowledge, this is the first time a deep

learning approach has been applied to address AMP classification.

By utilizing a deep network architecture, the proposed model auto-

matically extracts expert-free features and so removes the reliance

on domain experts for feature construction. The production model

and all datasets are made available via the AMP Scanner web server

that accompanies this paper. The production model can correctly

identify over 98% of the AMPs listed as active against Gram-

positive and/or Gram-negative bacteria currently available in the

APD vr.3 and � 10 amino acid in length. The server supports high-

throughput screening experiments to aid systematic virtual screen-

ings of peptide libraries by wet-laboratory researchers. The reduced

alphabet (of 9 letters) learned from the DNN model (additionally

utilizing statistical techniques) further aids these efforts by reducing

the size of the sequence space that can be considered when exploring

for novel peptides with AMP activity. The DNN model on the

reduced alphabet retains good AMP recognition accuracy, even

Fig. 2. ROC curves are shown for the various methods compared, ordered

from high to low performance in terms of area under the curve (AUC).

Straight lines for AntiBP2, CAMP-ANN, and iAMP-2 L approximate the ROC

curve using binary prediction results, as probability values are not provided.

For the AntiBP2 curve, 211 testing sequences are excluded by the AntiBP2

server due to length restrictions set by the server

Fig. 3. A 2D t-SNE (Van der Maaten and Hinton, 2008) projection of the 128D

amino acid embedding vectors. K-means was used to select clusters for the

DNN-reduced alphabet as listed in Table S6 of the Supplementary Information
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outperforming other non-DNN methods operating on the full alpha-

bet of 21 letters.

An open question in AMP research is how computational AMP

predictions may relate to actual biological activity. Recent work by

Lee et al. (2016) supports the notion that some models may predict

more indirect properties. After comparing predictions on a-helical

AMPs using an SVM and 12 physicochemical descriptors to small-

angle X-ray scattering data, Lee et al. (2016) find that results best

correlated with negative Gaussian membrane curvature. While re-

sults for the particular features used in (Lee et al., 2016) do not cor-

relate with a more direct measure of AMP activity like minimum

inhibitory concentration, disruption of bulk membrane properties

(e.g. membrane curvature, lipid clustering, etc.) is a well-known

mechanism of action for AMPs to kill bacteria and has been exten-

sively studied in AMPs such as the human cathelicidin LL-37

(Epand et al., 2016).

It is possible that indirect AMP signatures are also being identi-

fied by the DNN model which relate more to their structural proper-

ties than direct measures of their antibacterial activity (such as

minimum inhibitory concentration). Therefore, probabilities associ-

ated with model predictions ought to be limited to the context of

recognizing AMP-like peptides within a list of one or more unknown

sequences. In other words, the probabilities for two peptides pre-

dicted as ‘AMP’ should not be directly compared and interpreted as

one having ‘stronger’ or ‘weaker’ antibacterial activity against any

given bacteria. The availability of reliable direct measures of AMP

activity on large AMP datasets will allow the field to proceed be-

yond binary classification to build models, DNN ones included, that

directly predict antibacterial activity against specific species of

bacteria.

Additional future work can consider different network architec-

tures, such as variational encoders and/or generative adversarial net-

works, which have been shown highly effective in finding latent

structures and features (Goodfellow et al., 2014; Kingma and

Welling, 2014). More recent methods, such as Dynamic Memory

Networks, which have seen great success in complex natural lan-

guage-processing and speech recognition tasks, may also present ap-

pealing directions for further investigation (Kumar et al., 2016).
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