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Abstract

Background: Biomarkers derived from neural activity of the brain present a vital tool for the prediction and
evaluation of post-stroke motor recovery, as well as for real-time biofeedback opportunities.

Methods: In order to encapsulate recovery-related reorganization of brain networks into such biomarkers, we have
utilized the generalized measure of association (GMA) and graph analyses, which include global and local efficiency,
as well as hemispheric interdensity and intradensity. These methods were applied to electroencephalogram (EEG)
data recorded during a study of 30 stroke survivors (21 male, mean age 57.9 years, mean stroke duration 22.4 months)
undergoing 12 weeks of intensive therapeutic intervention.

Results: We observed that decreases of the intradensity of the unaffected hemisphere are correlated
(rs = −0.46; p < 0.05) with functional recovery, as measured by the upper-extremity portion of the Fugl-Meyer
Assessment (FMUE). In addition, high initial values of local efficiency predict greater improvement in FMUE
(R2 = 0.16; p < 0.05). In a subset of 17 subjects possessing lesions of the cerebral cortex, reductions of global and
local efficiency, as well as the intradensity of the unaffected hemisphere are found to be associated with functional
improvement (rs = −0.60,−0.66,−0.75; p < 0.05). Within the same subgroup, high initial values of global and local
efficiency, are predictive of improved recovery (R2 = 0.24, 0.25; p < 0.05). All significant findings were specific to the
12.5–25 Hz band.

Conclusions: These topological measures show promise for prognosis and evaluation of therapeutic outcomes, as
well as potential application to BCI-enabled biofeedback.

Keywords: Electroencephalography (EEG), Functional connectivity, Generalized measure of association (GMA),
Graph theory, Plasticity, Stroke, Rehabilitation

Background
Plasticity of the human central nervous system (CNS)
enables us to learn new information and acquire new cog-
nitive or motor skills through structural and functional
reorganization. These changes can occur throughout life,
and can be engaged after CNS trauma or disease in
order to enhance or accelerate recovery [1, 2]. In stud-
ies of stroke recovery, training-induced plasticity has been
shown to improve motor performance even in chronic
patients [3–7].
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New therapeutic strategies employ brain-computer
interfaces (BCI) to present biofeedback from the brain
to the patient during training [8]. This biofeedback
informs the user whether a specific thought or action has
produced the desired physiological response, rewarding
specific patterns of brain activity and increasing the effec-
tiveness of training. In this manner, perception-action
coupling is expanded to include direct perception of neu-
ral activity. BCI-based therapies that utilize visual dis-
plays, functional electrical stimulation (FES), and robotic
and orthotic devices to provide feedback to the user
have been shown to be feasible and somewhat effective
[7, 9–22].
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In order to present neural features to patients as
biofeedback, and to adequately evaluate the effectiveness
of such therapeutic methods, it is necessary to develop
biomarkers that extricate and encapsulate relevant infor-
mation from the available signals. Electroencephalogram
(EEG) features have been shown to correlate with func-
tional recovery after stroke, both across subjects [23–26]
and in longitudinal studies [10, 27–31]. However, the sig-
nal features traditionally utilized for such purposes are
not sufficiently specific, and the search for more suit-
able features continues [13]. Because most brain functions
involve the coordination of multiple neuronal assemblies,
measures that quantify functional connectivity (FC) may
prove more beneficial in this pursuit than traditional sig-
nal analysis techniques [32–37]. Stroke affects areas of the
brain that are distant from, but functionally connected to
lesioned areas [38]. This remote “connectional diaschisis”
is more consistently related to clinical findings than that
of focal areas, and its normalization is related to improved
recovery [39].
Graph theoretical analysis has been increasingly

employed in the study of structural and functional con-
nectivity in the brain [27, 37, 40–54], including motor
imagery after stroke. He and Evans postulate that such
pursuits present a significantly powerful strategy for
understanding brain network topology and pathology,
even in longitudinal studies, due to the high reproducibil-
ity and stability of both structurally and functionally
related graph metrics [50].
The confluence of these methods, however, is yet

uncharted. In the longitudinal study of post-stroke recov-
ery, the utility of functional connectivity measures,
and graph analysis thereof, has received limited explo-
ration [15, 37]. By combining these techniques, we hope
to condense elaborate matrices of connectivity infor-
mation into a concise set of clinically useful indices.
Such biomarkers would represent answers to the ques-
tion: “Toward exactly what neurological ‘goal’ should
we train stroke survivors in order to enhance motor
recovery?”
In this pursuit, we have applied Seth’s generalized mea-

sure of association (GMA) [55] and graph analysis to
the tasks of quantifying post-stroke motor recovery from
EEG, and of generating biomarkers that allow patients
to directly observe the corresponding patterns of neuro-
physiological activity during task execution. We focused
on task-state connectivity because it has been shown to
represent different aspects of functional integration than
resting-state connectivity [27], and is more applicable to
online biofeedback. We selected GMA for its nonpara-
metric nature, its sensitivity to nonlinear relationships,
and because it has been shown in previous studies of
functional connectivity to better discriminate between
conditions than other available dependence measures,

such as Pearson’s correlation coefficient and mutual infor-
mation [56, 57].
The selected biomarkers were calculated from pre- and

post-intervention recordings of chronic stroke survivors,
and both their initial values and change over time were
assessed for association with improvement of Fugl-Meyer
assessment (FMA) scores. In this manner, we examined
the following hypotheses:

• Initial values of these biomarkers can predict
functional recovery, aiding in prognosis.

• These biomarkers may increase or decrease in
concert with functional recovery, establishing their
utility in evaluation of recovery and potential
presentation as biofeedback.

Methods
Thirty stroke survivors who had persistent coordination
deficit of the arm/shoulder participated in a study of post-
stroke motor recovery. Their demographic information
is listed in Table 1. The mean age of these subjects was
57.90 ± 12.44 years (range 22–79), and 21 were male
(9 female). During data acquisition, each subject used
his/her affected arm (22 right, 8 left), and the affected arm
was the dominant arm in 23 cases (7 non-dominant). The
mean time after stroke was 22.43 ± 12.79 months (range
8–63). All subjects were first-time stroke victims.
All subjects participated in comprehensive intensive

intervention, utilizing current motor learning principles
[6, 58]. Treatment occurred for five (5) hours per day,
five (5) days per week, for 12 weeks (60 treatment visits).
Neural and functional data was recorded before and after
this 12 week period, as shown in Fig. 1. The study was
performed from April 2005 to September 2011, and was
conducted under the oversight of the medical center insti-
tutional review board (IRB). Further details of the original
study from which this data set was derived are avail-
able at clinicaltrials.gov under the registration number
NCT00237744.
In order to assess the effectiveness of the chosen

biomarkers as applied to a more homogeneous subject
group, the subset of 17 subjects who possessed lesions
of the cerebral cortex was analyzed and compared to the
complete group.

Data acquisition
EEG and robot kinematic data were recorded syn-
chronously during task performance in pre- and post-
treatment sessions using a 58-channel “Quik-Cap”
(referenced to linked earlobe electrodes; scalp electrodes
arranged according to the international 10/10 system) and
NeuroScan EEG system (NeuroScan Labs, El Paso, TX),
and a deactivated (no assistance or resistance applied)
InMotion ARM robot (Interactive Motion Technologies,

http://www.clinicaltrials.gov
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Table 1 Demographic information for participating subjects

Patient Months post insult Type Location Affected arm FMUEPre FMUEPost

1 18 Ischemic Cortex R 19 19

2 12 Ischemic SCWM R 38 49

3 16 Ischemic Cortex R 14 27

4 22 Hemorrhagic Subarachnoid R 41 55

5 24 Ischemic Cortex L 21 32

6 16 Ischemic Basal ganglia/IC R 18 38

7 24 Ischemic Cortex R 23 30

8 49 Ischemic Cortex R 10 20

9 28 Ischemic Basal ganglia/IC R 27 47

10 28 Ischemic Cortex L 26 48

11 14 Ischemic SCWM R 23 29

12 26 Ischemic Cortex L 18 25

13 21 Ischemic Cortex L 23 33

14 8 Ischemic Cortex L 44 52

15 14 Ischemic Cortex L 17 20

16 22 Ischemic Cortex L 16 18

17 15 Hemorrhagic Basal ganglia R 16 20

18 13 Ischemic Cortex R 16 23

19 9 Ischemic Cortex R 49 58

20 17 Ischemic Cortex R 13 17

21 17 Ischemic Cortex R 16 27

22 20 Ischemic Basal ganglia/IC R 34 40

23 21 Ischemic Cortex R 21 27

24 9 Hemorrhagic Lobar R 24 33

25 11 Hemorrhagic Lobar R 26 33

26 43 Hemorrhagic Basal ganglia R 26 41

27 63 Ischemic Cortex and subcortex R 8 18

28 20 Ischemic Brainstem/pons R 19 39

29 47 Hemorrhagic Basal ganglia L 20 36

30 26 Ischemic Brainstem/pons R 42 52

Note: SCWM, subcortical white matter; IC, internal capsule

Inc., Cambridge, MA). The change in angle recorded by a
goniometer affixed to the robot was recorded by the EEG
system, and was utilized for offline synchronization of
signals recorded by both systems.
Each subject was secured in an upright, seated posi-

tion with a chest harness, to prevent compensatory torso
movements. Each subject’s affected forearm was secured
to, and supported by the end effector of the InMotion
ARM system. This allowed performance of standardized
linear shoulder/elbow movement in a horizontal plane,
extending directly away from the subject to 14 cm from
the center point. Each subject performed five sets of ten
repetitions of this task, with a 2-minute rest between
sets to avoid fatigue [59]. Such reaching tasks are utilized

extensively in the study of upper limb movement, and are
intrinsic to many activities of daily living. This task was
considered sufficient to examine neural activity related to
upper limb movement, however other movement tasks
may also warrant further study.
The upper-extremity motor function portion of the

Fugl-Meyer Assessment (FMUE) was also recorded in pre-
and post-treatment sessions, providing a functional mea-
sure for use in validation of the biomarkers. The FMA
was specifically designed to evaluate post-stroke motor
recovery, and is widely used in the field for this pur-
pose [60]. The included shoulder flexion and extensor
synergy tests are particularly relevant to the aforemen-
tioned reaching task. The FMA utilizes a 3-point ordinal
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Fig. 1 Study timeline. Timeline of study participation. Pre- and post-intervention data acquisition sessions were separated by 12 weeks of treatment

scale for each test item, and its upper extremity portion
produces a numerical score in the range of 0 to 66. The
recorded FMUE values are presented in Table 1, and their
change over the course of recovery (�FMUE) is displayed
in Fig. 2. 25 of the 30 subjects responded well to thera-
peutic intervention, showing a clinically meaningful gain
of 6 or more in FMUE score [61]. While pre- and post-
treatment FMUE scores are correlated (rs = 0.89; p <

0.001), no significant correlation was found between pre-
treatment FMUE scores and �FMUE. This indicates that
subjects who performed well initially also tended to per-
form well after treatment, but their initial performance

did not predict the amount of improvement that could
be expected.

Data pre-processing
In the analysis of non-invasively recorded neural data,
such as EEG, the problem of volume conduction is of
great concern [34]. Each surface electrode records activ-
ity generated by multiple neuronal sources, due to the
flow of current through the brain and other tissue. This
can result in spuriously high estimates of functional con-
nectivity between channels. Approaches to handle this
issue have long been debated, and common methods

a b c

Fig. 2 FMUE scores. a Fugl-Meyer Upper Extremity Assessment scores of 30 subjects before and after 12 weeks of intensive treatment. Each line
represents an individual subject. Dashed lines represent subjects with lesions of the cortex. b Correlation between pre- and post-intervention FMUE
scores (rs = 0.89; p < 0.001). c Correlation between pre-intervention scores and �FMUE (rs = 0.22; p = 0.24)
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include Laplacian filtering, source estimation, and the
use of dependence measures that ignore in-phase inter-
actions (i.e., the imaginary part of coherence or phase
lag index). Unfortunately, Laplacian and source estima-
tion methods do not fully mitigate the effects of vol-
ume conduction [47, 62, 63], and their inherent spatial
band pass filtering may remove genuine source activity at
low spatial frequencies [35, 64]. In addition, each avail-
able algorithm incorporates assumptions that may influ-
ence estimates of FC in unknown ways, adding another
layer of abstraction between the originally recorded sig-
nals and the produced biomarkers [35, 62]. For these
reasons, we have chosen to forego the aforementioned
procedures, and have instead utilized graph sparsity and
the method of experimental contrasts. By examining
the differences in FC between two conditions (pre- and
post-intervention), rather than the strength of FC in an
individual condition, it is possible to cancel out some
of the effects of volume conduction. This relies on the
somewhat flawed assumption that these effects are iden-
tical across conditions [62, 63], and does not account
for unknown interactions between remaining spurious
links and graph indices. However, when combined with
enforced graph sparsity, this compromise allows us to
preserve genuine interactions while avoiding unnecessary
complexity.
The 58 scalp channels of EEG data were high-pass

filtered at 0.3 Hz in order to remove low frequency arti-
facts, and trials contaminated by other significant artifacts

(including muscle activity or eye blink/movement) were
removed via visual inspection. The onset and end of the
reaching movement were determined for each trial from
the kinematic data, and the EEG data was segmented
accordingly into a window of 1.24 to 3.98 seconds (one
window per trial).
The discrete wavelet transform (DWT) was utilized

to decompose the EEG data into three non-overlapping
frequency sub-bands: 6.25–12.5 Hz, 12.5–25 Hz, and
25–50 Hz. These bands roughly correspond to the tradi-
tionally defined mu/alpha, beta, and low gamma bands,
respectively. The design of this wavelet filter bank, includ-
ing the specific selection of frequency bands, provides
linear phase response and a quality factor near 1 in
each band, which is crucial when examining bivariate
dependence [65]. The Coiflet 1 mother wavelet was
selected for this application, due to its suitability for EEG
classification [66].
These processing steps, and the analysis that follows,

were performed using the MATLAB R2012b (v 8.0.0.783)
development environment (The Mathworks Inc., Natick,
MA), and are illustrated in Fig. 3.

Functional connectivity estimation
For estimation of functional connectivity between EEG
channels, the generalized measure of association (GMA)
was selected, due to its nonparametric nature, sensitivity
to nonlinear relationships, and applicability to vector-
valued variables (e.g., state space embedded EEG signals)

Fig. 3 Data processing pipeline. EEG artifacts were rejected by visual inspection and high-pass filtering, and trial windows corresponding to
reaching movements were extracted based on kinematic data. A wavelet filter bank was then applied to separate 6.25–12.5 Hz, 12.5–25 Hz, and
25–50 Hz bands. Functional connectivity between each pair of electrodes was calculated using tGMA, and the resulting dependence matrices were
binarized using a sparsity threshold. Several graph metrics were applied in order to produce potential biomarkers, which were then analyzed for
statistical relationships with the FMUE functional measure
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[55]. GMA has no free parameters because it is based on
ranks. Such data-driven methods do not require a priori
knowledge of structure, and avoid specific assumptions of
underlying relationships [34].
GMA quantifies the association of “close” sample pairs

of two variables by performing the following for all real-
izations {(xi, yi)}ni=1:

1. Find xj∗ closest to xi in terms of δX i.e.
j∗ = arg minj �=iδX (xi, xj).

2. Find rank ri of yj∗ in terms of δY i.e.
ri = #{j : j �= i, δY(yj, yi) ≤ δY(yj∗ , yi)}.

where δ is the associated distance metric of the respec-
tive space of each variable. Following adjustment for tied
ranks, this produces a rank variable R. The skewness of R
is then captured by normalizing its cumulative distribu-
tion function (CDF) by (n − 1), where n is the number of
samples under test, producing the equation:

GMA = 1
n − 1

n−1∑

r=1
(n − r)P(R = r) (1)

where P(R = r) = #{i : ri = r}/n is the empirical proba-
bility of the rank variable. If the variables are independent,
the distribution of R will be uniform, and the output will
be 0.5. As dependence increases, the ranks will approach
1, as will the skew of the distribution. For in-depth
mathematical reasoning, the interested reader is referred
to [55].
In order to apply GMA to EEG signals, rather than

random variables (which use independently drawn real-
izations), the EEG signal is embedded as a sequence of
m-dimensional vectors in a state space to account for
the complexity of its structure. The GMA test is then
applied in the embedding space and is called TGMA [67].
From the time series one must determine the embed-
ding dimension to avoid crossing of trajectories [68] and
the delay τ to minimize the natural correlation between
the time series consecutive samples. There are accepted
procedures in the literature to select these two param-
eters. Thus, for a time series {xt}Tt=1, the corresponding
time-delay embedding would be represented as:

xm,τ
j = {xj, xj+τ , . . . , xj+(m−1)τ } (2)

for j = 1, 2, . . . ,T − (m − 1)τ .
Minimization of the intrinsic temporal dependence of

each time series is accomplished in TGMA by subsam-
pling to achieve the least possible correlation between
samples. The subsampling rate is generally selected for
each signal through examination of its autocorrelation
function (ACF), as its first zero-crossing (which guaran-
tees that sequential samples are uncorrelated on average),
first minimum, or 1/e decay.

However, the subsampling inherent in the wavelet
decomposition simplifies the embedding process because
τ becomes 1 for all frequency bands, essentially removing
a free parameter. An appropriate embedding dimension
m was determined for these EEG signals using the false
nearest neighbors (FNN) method, asm = 4 [69].

Network Analysis
The resulting dependence matrices were averaged across
trials to obtain an adjacency matrix for each subject,
session, and frequency band. These matrices were then
binarized, with values assigned to 0 or 1 based on a thresh-
old, producing unweighted graphs. This step reduces the
extent of spurious connections by enforcing sparsity, and
facilitates the application of the complete set of avail-
able measures in network theory [35, 52]. There is some
controversy, however, over the most effective method of
selecting this threshold. Thresholds may be chosen based
on the statistics of the data distributions, or on the sparsity
of the resulting matrix. The latter approach mitigates con-
founding network density effects by enabling comparison
of graphs with uniform numbers of links [47].
We utilized both of these methods in our analysis, first

evaluating a commonly used statistical threshold of one
standard deviation above the median across conditions
(pre- and post- therapy) for each subject [43]. Sparsity
thresholds ranging from 0 to 0.5 (i.e., 0 to 50% of links
preserved) were compared, assessed on the strength of
correlations between the resulting graph measures and
FMUE [27, 35, 40, 47, 52]. The optimal threshold for this
specific analysis was found to be 0.05.
Recently, De Vico Fallani et al. presented a new crite-

rion for a-priori threshold selection, called efficiency cost
optimization (ECO), which was confirmed through both
simulation and application to neuroimaging data [70].
When applied to our dependence matrices of 58 nodes,
ECO produces a threshold of ρ � 3/(58 − 1) = 0.053,
corroborating our determined threshold of 0.05.
An extensive array of graph metrics are available, sev-

eral of which have been shown to be pertinent in the study
of neural function and disease. While the desire to con-
dense intricate whole-brain graphs into scalar biomarkers
naturally leads to the selection of large-scale (global) met-
rics, we have also examined intermediate (hemispheric)
and small-scale (electrode specific) metrics, due to their
specific applicability to the topic of stroke rehabilitation.
Thus, this analysis considers global efficiency, local effi-
ciency (both network and subgraph level), hemispheric
interdensity, and the intradensity of both the affected and
unaffected hemispheres.
Global and local measures of efficiency were proposed

by Latora and Marchiori to quantify how efficiently a net-
work exchanges information [71]. Brain networks have
been described as possessing “small-world” architecture,
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characterized by clustered local connectivity (func-
tional segregation) and short path lengths (functional
integration) between nodes [40, 42]. The shortest path
length dij between nodes i and j is the shortest distance
(in the case of a binary graph, the smallest number of
links) of all of the possible paths between them. How-
ever, this measure cannot be meaningfully calculated on
disconnected graphs (such as a sparse brain network),
as the shortest distance between disconnected nodes is
infinite. Efficiency, on the other hand, is inversely pro-
portional to path length. Thus its value is zero between
disconnected nodes, and it is appropriate for application
to sparse networks [47, 52].
The average, or global efficiency of graph G with N

nodes is defined as:

Eglo(G) = 1
N(N − 1)

∑

i�=j∈G

1
dij

, (3)

and is generally normalized by its maximum value to
produce a result in the range of 0 to 1. Calculating this
measure for each subgraph Gi consisting of the neighbors
of node i, and averaging across all such subgraphs of G
produces the local efficiency of the network:

Eloc(G) = 1
N

∑

i∈G
E(Gi). (4)

Because i /∈ Gi, representing the situation in which node
i is removed from the network, this metric quantifies fault
tolerance, and is closely related to clustering coefficient
(which has been shown to be predictive of stroke recov-
ery [37]). Global and local efficiency have been shown to
decrease in healthy elderly people [40] and after stroke
[46], and reduced local efficiency has been related to
increased cognitive effort [72].
Interdensity and intradensity were introduced by De

Vico Fallani et al. to examine the intermediate scale prop-
erties of brain networks [46]. These metrics examine the
strength of connections between and within sets, respec-
tively. The interdensity between two sets SA and SB in
graph G is defined as the number of suprathreshold
connections between those sets over all possible edges
between them, and is calculated as:

Kinter = 1
N2

∑

i,j∈SA,B
G(i, j), (5)

where N2 is the total number of edges crossing between
SA and SB, which have the same cardinalityN. Intradensity
is the ratio between the number of suprathreshold con-
nections within a set S, and the total number of possible
edges within that set. It is calculated as:

Kintra(S) = 2
N2
S − NS

∑

i�=j∈S
G(i, j). (6)

These measures have been applied to examine connec-
tivity between and within hemispheres of the brains of
stroke survivors during motor imagery, and were shown
to have significant correlation with behavioral measures
(including FMA).

Correlation with functional measures
In order to validate the significance and possible util-
ity of these FC-based biomarkers, their correlation with
the FMUE functional measure was examined. For this
purpose, Spearman’s correlation coefficient was selected
for its sensitivity to nonlinear relationships, insensitiv-
ity to outliers, and common use in related research
[27, 43, 73]. Similarly, the ability of each initial biomarker
value to predict functional improvement was assessed by
rank regression.
These tests were applied across the complete group of

30 subjects, and across the subset of 17 subjects who pos-
sessed lesions of the cerebral cortex, for the following
combinations of time points:

1. Change in biomarkers (increases/decreases from pre-
to post-intervention) vs. change in FMUE (functional
improvement). These correlations may indicate the
utility of these biomarkers for evaluation of recovery
and/or biofeedback.

2. Initial values of biomarkers (pre-intervention) vs.
change in FMUE (functional improvement). These
regressions may show whether these biomarkers can
predict recovery, possibly aiding in prognosis.

To aid in group analysis, the data for subjects with
lesions of the right hemisphere were flipped along the
midsagittal plane, so that the ipsilesional side was con-
sistent. While this procedure may introduce confound-
ing effects, it has been validated in previous studies
[15, 27, 46].
For global measures that produce a single value for

each subject, session, and frequency band (i.e., global
efficiency, local efficiency, and interdensity), the analysis
is straightforward. Intradensity was calculated across 15
electrodes for each hemisphere, left/affected (F1, F3, F5,
C1A, C3A, C5A, C1, C3, C5, C1P, C3P, TCP1, P1, P3, P5)
and right/unaffected (F2, F4, F6, C2A, C4A, C6A, C2, C4,
C6, C2P, C5P, TCP2, P2, P4, P6). Subgraph local efficiency,
which produces a corresponding value for each seed elec-
trode, was analyzed separately for each of the 58 available
channels.
When considering a set of statistical inferences simul-

taneously (e.g., correlation across 58 seed electrodes and
four frequency bands), the likelihood of type I error (false
positives) increases. The notorious multiple comparisons
problem can be mitigated using one of several available
methods [43]. Accordingly, in order to properly assess
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statistical significance, we have employed nonparamet-
ric permutation testing, which requires no assumptions
of the underlying distribution of the test statistics. In
this context, nonparametric permutation testing is per-
formed by repeatedly shuffling condition labels randomly
across subjects, and recalculating the test statistic for each
arrangement. The proportion of these random tests that
produces a larger test statistic than the one generated by
the experimental data is the p-value [74]. In this anal-
ysis, we shuffled �FMUE values across subjects 10,000
times to generate the necessary null distribution for each
measure.

Results
Correlation between global/hemispheric measures and
functional improvement
In order to determine the utility of the global/hemispheric
biomarkers for purposes of online biofeedback or evalu-
ation of recovery, we calculated the correlation between
their change over time (difference between pre- and post-
intervention recordings) and the change over time of the
FMUE functional measure.
For graphs that were binarized using the common sta-

tistical threshold of one standard deviation above the
median (across conditions, per subject), the generated
biomarkers showed no statistically significant relationship
with FMUE over time in either the full subject group, or
the subgroup of cortically lesioned subjects. The results
are presented in Table 2.
However, analysis of a range of sparsity thresholds (0 <

t ≤ 0.5) revealed a threshold (t = 0.05) that pro-
duces several significant correlations, as shown in Table 3.
For the full subject set (N = 30), in the 12.5–25 Hz

Table 2 Correlation between change in graph measures and
�FMUE. Binarizing threshold: 1 standard deviation above median
across conditions

All subjects (N = 30) 6.25-12.5 Hz 12.5-25 Hz 25-50 Hz

Global Efficiency -0.25 -0.11 -0.07

Local Efficiency -0.26 -0.06 0.09

Interdensity -0.25 -0.15 -0.25

Intradensity Unaffected Hemi -0.27 -0.18 -0.14

Intradensity Affected Hemi -0.31 0.00 0.01

Cortex Subjects (N = 17)

Global Efficiency -0.21 -0.26 -0.26

Local Efficiency -0.20 -0.30 -0.09

Interdensity -0.33 -0.29 -0.28

Intradensity Unaffected Hemi -0.19 -0.42 -0.14

Intradensity Affected Hemi -0.30 -0.16 -0.05

“Cortex Subjects” are those possessing lesions of the cerebral cortex

Table 3 Correlation between change in graph measures and
�FMUE. Binarizing threshold: 5% connection density

All subjects (N = 30) 6.25-12.5 Hz 12.5-25 Hz 25-50 Hz

Global Efficiency -0.13 -0.25 0.15

Local Efficiency -0.21 -0.33 0.08

Interdensity -0.15 -0.13 0.02

Intradensity Unaffected Hemi -0.26 * -0.46 -0.07

Intradensity Affected Hemi -0.07 -0.14 0.23

Cortex Subjects (N = 17)

Global Efficiency -0.05 * -0.60 0.08

Local Efficiency -0.26 * -0.66 -0.20

Interdensity 0.08 -0.21 0.01

Intradensity Unaffected Hemi -0.24 * -0.75 -0.40

Intradensity Affected Hemi 0.04 -0.39 0.49

“Cortex Subjects” are those possessing lesions of the cerebral cortex.
*denotes significance (p < 0.05)

band, we observed a negative correlation between the
intradensity of the unaffected hemisphere and FMUE
(rs = −0.46, p = 0.015). For the subset of cortically
lesioned subjects (N = 17), in the 12.5–25 Hz band, there
were negative correlations between FMUE and global effi-
ciency (rs = −0.60, p = 0.017), local efficiency (rs = -0.66,
p = 0.004), and the intradensity of the unaffected hemi-
sphere (rs = −0.75, p = 0.003). These relationships are
illustrated in Fig. 4 (panel a) and Fig. 5 (panels a-c).
No significant correlations were found between the pre-

and post-treatment values of these graph measures, as
shown in Table 4.

Correlation between node-specific measures and
functional improvement
Corresponding analysis of local efficiency at each node
did not exhibit any statistically significant relationships
after correction for multiple comparisons. Results for
the complete subject group (N = 30) are presented in
Fig. 6. The value at each point in these plots represents
how strongly functional improvement (�FMUE) corre-
lates with changes in local efficiency, as calculated for each
scalp electrode. For this visualization, cubic interpolation
is utilized to calculate values between electrode locations.
Possibly relevant relationships are observed in the 12.5–
25 Hz band near the supplementary motor area (FCZ: rs =
-0.44), and in the 25–50 Hz band near the hand/arm rep-
resentation of primary motor cortex (M1) of the affected
hemisphere (C3: rs = 0.35) as well as parietal/occipital
areas (PO5: 0.49, PO4: 0.45). However, because these
correlations were not determined to be statistically
significant, they should be regarded as exploratory
in nature.
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a b

Fig. 4 Significant relationships (full subject group). a Change in intradensity of the unaffected hemisphere (�Kintra(Uhemi)) and �FMUE, 12.5–25 Hz
(rs = −0.46; p = 0.015). b Initial values of local efficiency (Eloc) and �FMUE, 12.5–25 Hz (R2 = 0.16; p = 0.030)

Global/hemispheric measures as predictors of functional
improvement
In order to investigate the potential utility of these
biomarkers for purposes of prognosis, we applied rank
regression on their initial values (calculated from data
recorded during the pre-intervention session) to predict
the change (difference between pre- and post-intervention
recordings) of the FMUE functional measure.

Utilizing the previously established sparsity threshold
(t = 0.05), several significant relationships were revealed,
and are presented in Table 5. For the full subject set
(N = 30), in the 12.5–25 Hz band, higher initial val-
ues of local efficiency (R2 = 0.16, p = 0.030) predict
greater improvement in FMUE. For the subset of cor-
tically lesioned subjects (N = 17), in the 12.5–25 Hz
band, higher initial values of global efficiency (R2 =

d e f

a b c

Fig. 5 Significant relationships (cortex subject group). a Change in global efficiency (�Eglo) and �FMUE, (rs = −0.60; p = 0.017). b Change in local
efficiency (�Eloc) and �FMUE, (rs = −0.66; p = 0.004). c Change in intradensity of the unaffected hemisphere (�Kintra(Uhemi)) and �FMUE,
(rs = −0.75; p = 0.003). d Initial values of global efficiency (Eglo) and �FMUE, (R2 = 0.24; p = 0.047). E) Initial values of local efficiency (Eloc) and
�FMUE, (R2 = 0.25; p = 0.042). e Initial values of intradensity of the unaffected hemisphere (Kintra(Uhemi)) and �FMUE, (R2 = 0.21; p = 0.067). All in
the 12.5–25 Hz band
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Table 4 Correlation between pre- and post-intervention graph
measures. Binarizing threshold: 5% connection density

All subjects (N = 30) 6.25-12.5 Hz 12.5-25 Hz 25-50 Hz

Global Efficiency -0.10 -0.15 -0.32

Local Efficiency -0.23 -0.27 -0.23

Interdensity -0.21 0.31 0.15

Intradensity Unaffected Hemi 0.25 0.14 -0.13

Intradensity Affected Hemi -0.06 0.03 -0.19

Cortex Subjects (N = 17)

Global Efficiency 0.03 -0.25 -0.33

Local Efficiency -0.15 -0.35 -0.22

Interdensity -0.18 0.20 0.26

Intradensity Unaffected Hemi 0.12 0.08 -0.16

Intradensity Affected Hemi 0.20 0.00 -0.10

“Cortex Subjects” are those possessing lesions of the cerebral cortex

0.24, p = 0.047) and local efficiency (R2 = 0.25, p =
0.042) predict greater improvement in FMUE. Addition-
ally, a marginally significant positive relationship was
observed with the intradensity of the unaffected hemi-
sphere (R2 = 0.21, p = 0.067) for the same subset/band.
These relationships are illustrated in Fig. 4 (panel b) and
Fig. 5 (panels a-f).

Discussion
The physiological interpretations of the selected graph
theoretic measures are multifaceted, incorporating char-
acteristics of several underlying mechanisms of motor
recovery. We can consider the steps of information
processing as increasing levels of abstraction, from mea-
sured electrical activity, to functional connectivity, to met-
rics of network topology [47]. Inferring meaning on the
level of neurological processes from these graph metrics
is in essence reverse inference, and should be done with
great care. Changes in these biomarkers can be related
directly to changes in measures of FC (in this case GMA),
but not directly to changes in the underlying neural activ-
ity. Thus, our focus is on their specific association to
functional recovery, and possible clinical applications.

Global/hemispheric measures and functional recovery
In the analysis of the aforementioned large- and
intermediate-scale measures, the stark difference in sig-
nificance across binarizing thresholds highlights the
importance of their careful selection. Similar effects
of threshold choice have been shown in related work
[27, 35, 40, 47, 52, 70]. The particular values found to be
most effective in similar studies vary greatly, and no sin-
gle “rule of thumb” threshold value has previously been
considered sufficient, even in preliminary analysis. Sweep-
ing tests across a range of values, based on sparsity or

statistics of the graph, have provided a relatively simple,
practical approach to determining an appropriate thresh-
old. This issue has been further unraveled by the recent
introduction of the efficiency cost optimization method.
These methods yield an optimal sparsity threshold of

t = 0.05 for this particular study, which produces a
sparse FC graph that should minimize the occurrence
of spurious connections. Several global and hemispheric
metrics calculated from these sparse graphs show signif-
icant correlation to functional improvement (as assessed
by FMUE) in the subset of subjects with cortical lesions.
In this group, decreases in both global and local effi-

ciency in the 12.5–25Hz band were found to be associated
with motor recovery. Upon first examination, this result
is somewhat surprising. Healthy, sparse brains generally
possess high global and local efficiency, representing func-
tional integration and segregation [42, 71]. These features
have been shown to decrease in fMRI, both with age and
with dopamine blockade [40]. In post-stroke EEG, motor
imagery (MI) of the affected hand elicited reduced local
efficiency in the beta band, and this reduction was cor-
related with increased interhemispheric connectivity [46].
One might expect recovery to accompany increased effi-
ciency, as the brain progresses toward “normal function.”
However, the assumption that normalization is appropri-
ate or even possible after stroke or other neural injury
is not necessarily valid, at least not for every subject.
Additionally, Kitzbichler et al. showed that greater cog-
nitive effort caused decreases in local efficiency and
clustering, which may indicate dependence upon a third
variable [72].
The relevance of local efficiency may be further illumi-

nated by its close relationship to clustering coefficients. In
fact, when applied to this data set, clustering coefficients
produce results that mirror those obtained using local
efficiency. Wang et al. observed that reductions in nor-
malized clustering coefficient after stroke correlated with
several clinical measures in resting-state fMRI recordings,
which they suggest may indicate a shift toward a random
network configuration, possibly due to random outgrowth
of new connections [37]. Cheng et al. found negative cor-
relations between network clustering coefficient and FMA
in task-state fMRI [27]. Our EEG-based metrics may pro-
vide a more direct measure of mechanisms previously
noted in fMRI, with improved frequency specificity.
Of particular interest is the intradensity of the unaf-

fected hemisphere in the 12.5–25 Hz band, which was
associated with recovery in both the cortical and com-
plete subject groups. No other measure was found to
have such a relationship with functional improvement
in the larger, less homogeneous group. De Vico Fallani
et al. found that, in the beta band, the intradensity of the
unaffected hemisphere was significantly decreased dur-
ing motor imagery of the affected hand, as compared to
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Table 5 Regression fit (R2) of �FMUE on initial graph measure
values. Binarizing threshold: 5% connection density

All subjects (N = 30) 6.25-12.5 Hz 12.5-25 Hz 25-50 Hz

Global Efficiency 0.01 0.01 0.01

Local Efficiency 0.03 * 0.16 0.00

Interdensity 0.00 0.03 0.00

Intradensity Unaffected Hemi 0.04 0.03 0.00

Intradensity Affected Hemi 0.01 0.02 0.10

Cortex Subjects (N = 17)

Global Efficiency 0.03 *0.24 0.00

Local Efficiency 0.03 *0.25 0.01

Interdensity 0.00 0.07 0.01

Intradensity Unaffected Hemi 0.07 ◦ 0.21 0.13

Intradensity Affected Hemi 0.03 0.01 0.16

“Cortex Subjects” are those possessing lesions of the cerebral cortex.
*denotes significance (p < 0.05). ◦ denotes marginal significance (p < 0.07)

MI of the unaffected hand [46]. FMRI studies have also
observed recovery-related activity of the contralesional
hemisphere, including decreases in task-related activation
[75] and increased cerebellar centrality [37]. These effects
have been interpreted as attenuation of interhemispheric
inhibition and reduction/persistence of vicarious activity
(depending on severity of injury). The complex role of the
contralesional hemisphere in stroke recovery has received
increasing scrutiny, and warrants further investigation
[4, 76, 77].
Considered collectively, these results indicate a process

of decreasing clustering and efficiency of parallel infor-
mation transfer over the course of motor recovery. This
reduction of functional segregation and integration might
be interpreted as the abatement of distributed vicarious
function, though such conjecture should be viewed with
a reasonable level of skepticism, considering the inherent
levels of abstraction discussed previously.

The confinement of all significant results to the 12.5–25
Hz band conforms to related literature, including simi-
lar graph analysis of stroke survivors, and more general
examination of motor control. This serves to further con-
firm the importance of the beta band in motor rehabilita-
tion applications, particularly those that employ EEG.

Node-specific local efficiency
Subgraph local efficiency could represent the propensity
of the cortex near the electrode to promote connections
between its neighbors. However, changes in local effi-
ciency could also be interpreted as altered connectivity
of a network in response to diminished function of the
node under test (e.g., a cortical lesion near the seed elec-
trode). With these tentative interpretations in mind, the
decrease in local efficiency over time observed in the
12.5–25 Hz band in Fig. 6 may represent a reduction of
vicarious function of the supplementary motor area. Con-
versely, an increase in the 25–50 Hz band in the vicinity
of the hand/arm representation of the affected primary
motor cortex could indicate restitution of more “normal”
patterns of connectivity.
Previous work has shown that intact areas of the brain

likely supplement some function of the infarcted area
after stroke, and that this vicarious function may fade
with recovery, possibly in concert with reperfusion of
ischemic penumbra [78–80]. Specifically, such vicari-
ous function has been observed in the premotor cor-
tex (PMC) [2, 75, 81, 82], supplementary motor area
(SMA) [75, 82–84], prefrontal areas [81], parieto-occipital
regions in both hemispheres [46], and areas related to
the motor network in the contralesional hemisphere
[7, 24, 28, 75, 80–82, 84–92]. Similar patterns are evident
in our findings.
It is crucially important to note, however, that these

particular relationships were not determined to be statisti-
cally significant after correction for multiple comparisons.
While opinions on multiple comparisons in multi-
channel neural data vary, and there are indications that

Fig. 6 �FMUE and subgraph local efficiency. Correlation between functional improvement (�FMUE) and increases/decreases in local efficiency of
each node’s subgraph (i.e., at each scalp electrode), for the complete subject group (N = 30). Potentially relevant relationships are observed in the
12.5–25 Hz band near the supplementary motor area (FCZ: rs = -0.44), and in the 25–50 Hz band near the hand/arm representation of primary motor
cortex (M1) of the affected hemisphere (C3: rs = 0.35) as well as parietal/occipital areas (PO5: 0.49, PO4: 0.45)
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distinguishing between global and sensor-specific null
hypotheses may be illogical, these findings should be con-
sidered exploratory. They have been included in support
of the production of hypotheses for further investigation.

Prospective utility in prognosis
In the investigation of the prognostic value of graph-
based biomarkers, significant relationships were revealed
between the initial values of several metrics and increases
in FMUE over time. In both the cortical and complete
subject groups, high values of global efficiency and local
efficiency in the 12.5–25 Hz band were predictive of
enhanced therapeutic outcomes. A marginal positive rela-
tionship (p < 0.070) was also observed in the 12.5–25 Hz
band with the intradensity of the unaffected hemisphere
for the cortical subgroup. High clustering and efficiency
are the hallmarks of functional segregation/integration,
and their relationship with functional improvement may
signify a useful prognostic tool. A brain that is less dam-
aged, in terms of network topology, retaining features of
functional integration and segregation after insult, may be
better equipped to recuperate.
The utility of measures of functional connectivity in

prognosis after stroke has been the focus of some
preliminary investigation. However, Cheng et al. seem to
have been the first to explore the prognostic value of brain
network topology in stroke rehabilitation [27]. In a simi-
lar analysis, they showed that initial values of normalized
clustering coefficient and small-world index are positively
correlated with FMA, though their study was restricted
to the sub-acute phase (no longer than 3 months post
stroke).
The fact that multiple graph-based biomarkers pre-

dicted improvement, while initial FMUE scores did not,
highlights the potential of such methods to augment
purely functional assessment tools. However, it should be
noted that many functional and behavioral measures are
available, and any proposed biomarker should be eval-
uated in a wider context than solely its relationship to
FMA.
Once again, the concentration of significant results in

the 12.5–25 Hz band may indicate that activity and con-
nectivity in the beta band will play a pivotal role in prog-
nosis, evaluation of function, and eventually the guidance
of BCI-enabled therapeutic interventions.

Lesion location and severity
Previous work indicates that mechanisms of recov-
ery vary based on multiple factors, many of which
are not yet fully understood. In non-human primates,
enlargement of the hand representation in ventral PMC
(PMv) appears to correlate with the extent of damage
to M1 [93], and diminishes over time when less than
50% of M1 is destroyed [94]. Similar patterns emerge

in human patients: recruitment of contralesional cor-
tex persists in subjects with significant M1 injury, but
focus gradually returns to ipsilesional cortex when M1
is spared [86]. Other human studies provide evidence
of functional recovery correlating to persistent con-
tralesional activation [7, 28, 82], ipsilesional refocusing
[75, 85, 87, 88, 92], ipsilesional refocusing combined
with new overactivation in PMC and left prefrontal
areas [81], and decreases in task-related coupling between
cortical areas [24]. This suggests that optimal processes of
recovery vary between subjects, and that severity of M1
damage and patterns of vicarious function may prove to
be useful factors in prognosis and selection of therapeutic
protocols [7, 80, 95].
The subjects of this study (N = 30) sustained neural

damage of varying severity and location (cortical and sub-
cortical), which may hinder our ability to select optimal
biomarkers. Further analysis of a more homogeneous sub-
set of subjects (with lesions of the cerebral cortex;N = 17)
revealed stronger correlations to functional improvement,
and additional pertinent measures. This suggests that
optimal biomarkers may vary across subject groups. Fur-
ther examination of increasingly uniform subject groups
is necessary.

Caveats
There are several limitations of this study, which merit
further consideration. (i) As discussed previously, volume
conduction is a particularly troublesome issue in the pro-
cessing of EEG data. While many apply spatial filtering
methods to partially mitigate this issue, we have relied
upon experimental contrasts and enforced graph spar-
sity to reduce spurious connections. This compromise
allowed us to preserve genuine interactions and avoid
increasing levels of abstraction. (ii) The effectiveness
of experimental contrasts is reduced in the analysis of
prognostic value, as this analysis utilizes the initial values
of the biomarkers, rather than the difference between
conditions. The associated findings are, however, some-
what corroborated by others included herein and found
in the literature. (iii) GMA is not yet as prevalent as mea-
sures of coherence or synchronization in neuroimaging
applications, which complicates comparison to related
literature. However, its use in this study illuminated
neural-functional relationships that were not evident
when utilizing standard methods (i.e., magnitude-
squared coherence.) (iv) There is some controversy
over approaches to the selection of matrix binarization
thresholds, and neither of the approaches utilized herein
is without flaw. While our determined threshold is cor-
roborated by the recently presented ECO method, the
associated results should be considered in the context of
this caveat. (v) Separate examination of the cortical sub-
group of subjects reinforces the hypothesis that optimal
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biomarkers may vary based on lesion location and sever-
ity. This limitation should be addressed in subsequent
studies by inclusion of suitably large subject groups of
sufficiently homogeneous neural injury. (vi) This analysis
was performed using two time points: before and after
therapeutic intervention. A longitudinal study across
multiple time points during the course of recovery may
reveal that optimal biomarkers change with phases of
recovery. (vii) Eight of the 30 participating subjects per-
formed the associated task with the left arm, and for seven
subjects, the affected arm was non-dominant. Inversion
across the midsagittal plane of the FCmatrices of the right
hemisphere lesioned subjects may address this inconsis-
tency, but the potential for confounding effects still exists
[96]. (viii) The eventual application of graph topology
measures to biofeedback therapy will require volitional
modulation of FC. A small body of work suggests that this
may be feasible, but further investigation is necessary [97].

Conclusions
This graph analysis of task-state functional connectiv-
ity illuminates several topological measures that corre-
spond to chronic phase motor recovery after stroke.
For subjects with lesions of the cerebral cortex, high
initial values and training-induced reduction of global
efficiency, local efficiency, and the intradensity of the
unaffected hemisphere are associated with greater func-
tional improvement. For the complete, non-homogeneous
subject group, high initial values of local efficiency, as well
as decreases of the intradensity of the unaffected hemi-
sphere show similar associations. All of these findings
are restricted to the 12.5–25 Hz (beta) band, indicating
its importance in motor rehabilitation. The prominence
of the contralesional hemisphere augments existing evi-
dence of its involvement in stroke recovery. On the whole,
these results suggest that topological biomarkers derived
from EEG-measured functional connectivity may hold
significant utility in pre-therapy assessment and progno-
sis, longitudinal appraisal of recovery, and perhaps online
biofeedback for people whose motor function has been
impaired by stroke.
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