
RESEARCH ARTICLE

Prevalent Accumulation of Non-Optimal
Codons through Somatic Mutations in
Human Cancers
XudongWu, Guohui Li*

Laboratory of Molecular Modeling and Design, State key Laboratory of Molecular Reaction Dynamics, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Rd., Dalian 116023, PR China

* ghli@dicp.ac.cn

Abstract
Cancer is characterized by uncontrolled cell growth, and the cause of different cancers is

generally attributed to checkpoint dysregulation of cell proliferation and apoptosis. Recent

studies have shown that non-optimal codons were preferentially adopted by genes to gen-

erate cell cycle-dependent oscillations in protein levels. This raises the intriguing question

of how dynamic changes of codon usage modulate the cancer genome to cope with a non-

controlled proliferative cell cycle. In this study, we comprehensively analyzed the somatic

mutations of codons in human cancers, and found that non-optimal codons tended to be

accumulated through both synonymous and non-synonymous mutations compared with

other types of genomic substitution. We further demonstrated that non-optimal codons were

prevalently accumulated across different types of cancers, amino acids, and chromosomes,

and genes with accumulation of non-optimal codons tended to be involved in protein inter-

action/signaling networks and encoded important enzymes in metabolic networks that

played roles in cancer-related pathways. This study provides insights into the dynamics of

codons in the cancer genome and demonstrates that accumulation of non-optimal codons

may be an adaptive strategy for cancerous cells to win the competition with normal cells.

This deeper interpretation of the patterns and the functional characterization of somatic

mutations of codons will help to broaden the current understanding of the molecular basis of

cancers.

Introduction
Genetic redundancy refers to multiple copies of the same or similar genetic sequences [1]. The
benefit comes from having backups of genes with similar functions by gene duplication or by
up-regulating gene products and making more products to drive efficiency. The ‘redundancy’
in the genetic code refers to requiring fewer than 61 tRNAs when 61 codons are translated (iso-
accepting codons) [2], especially in cases where the base at the 5’ end of the anticodon is ino-
sine. According to the ‘wobble’ base-pairing rules, the four main wobble base pairs include
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guanine-uracil (G:U), inosine-uracil (I:U), inosine-adenine (I:A) and inosine-cytosine (I:C)
[3]. Codons can be classified as optimal or non-optimal, where non-optimal codons are charac-
terized by wobble-pairing a low concentration of isoaccepting tRNAs with low binding affini-
ties [4].

The biological importance of non-optimal codon usage has been studied for a long time.
Kimchi-Sarfaty et al revealed that synonymous changes for non-optimal codons had effects on
the expression of human genes [5]. Makhoul and Trifonov reported that non-optimal codons
played a key role in translation ‘pausing’ between protein domains [6]. Zhou et al reported that
non-optimal codons regulated protein expression to gain optimal protein structure and func-
tion [7]. The frequency (frq) gene which has a rhythmic expression pattern that is essential for
circadian clock function in Neurospora, has been shown to exhibit non-optimal codon usage
across its coding region. Optimization of frq codon usage resulted in impaired circadian feed-
back loops and abolished circadian rhythms [7]. Recently, the role of non-optimal codons’
wobble codon—anticodon base pairing in regulating the temporal aspects of protein transla-
tion has been recognized. For example, Frenkel-Morgenstern et al found that cell cycle regu-
lated genes used non-optimal codons to achieve elongation-limited mRNA translation in
eukaryotes as diverse as Schizosaccharomyces pombe, Saccharomyces cerevisiae, Arabidopsis
thaliana and Homo sapiens [8]. Their simulations indicated that non-optimal codon prefer-
ences of cell cycle regulated genes provided opportunities for changes in the tRNA pool to gen-
erate cell cycle-dependent oscillations of protein abundance [8].

Cancer is characterized by uncontrolled cell cycle, checkpoint dysregulation of cell differen-
tiation, proliferation, and apoptosis. The application of whole-genome sequencing has contrib-
uted to the detection of multiple somatic genetic and epigenetic alterations that occur in cancer
cells [9,10]. Somatic mutations caused by carcinogens (environmental factors that increase
cancer risk) include point mutations, deletions, gene fusions, gene amplifications and chromo-
somal rearrangements [11–16]. As a normal part of the aging process, the accumulation of a
large number of mutations in a specific group of cells can cause cell division and growth get
out of control [17], consequently leading to aggressive malignancy and invasive phenotypes
[18–20]. In this study, we analyzed the properties of somatic mutations, and investigated their
transformations among optimal and non-optimal codons in several cancers. In our analysis,
we focused on two points: (i) whether the non-optimal codons were predominately accumu-
lated; and (ii) what was the cellular function of genes with different patterns of non-optimal
codon accumulation.

Materials and Methods

Somatic mutations of codons in cancer genomes
The International Cancer Genome Consortium (ICGC) integrated available genomic, tran-
scriptomic and epigenetic data from many different research groups [21]. Somatic mutations
were identified by cancer genomics projects, the files with nomenclature like ssm.�.txt.gz, were
downloaded from the ICGC data portal (version 11), the source files for each type of cancers
were complied in S1 Table. A subset of mutations matching the human genome build 36 was
mapped to build 37 with the LiftOver software of the UCSC Genome Browser [22].

In each source file, the ‘Mutation’ column was analyzed. The mutations were displayed like
‘W>M’, where the ‘W’ represented the reference nucleotide acid and the ‘M’ represented the
mutant nucleotide acid. The multi-nucleotide substitutions, insertions and deletions were dis-
carded from the datasets.

The genomic coordinates of human genes were retrieved from GENCODE database (ver-
sion 15) [23], and the hg19 (GRCH 37) human genome was used for analysis. The protein-
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coding transcripts with complete coding sequence, namely with both start codon and stop
codon annotated, were used for mapping the somatic mutations. The mutations were discarded
if they created premature stop codons, the remained non-synonymous/synonymous single
nucleotide variants (SNVs) were analyzed. Finally, a total of 135760 somatic mutations were
complied and referred to as CSM dataset (S2 Table).

Evolutionary substitutions of codons between close species
The One2One orthologs between Homo sapiens and Pan troglodytes were retrieved through
BioMart [24]. For each gene, the isoform with the longest transcript was used. The Clustalw
software was used to align the protein sequences of Human-Chimp orthologs globally [25], and
then the corresponding coding sequences were realigned with the gaps in the alignment
trimmed. The ortholog codons with only one difference of nucleotide acid were analyzed.
Finally, a total of 180346 nucleotide variation were compiled and referred to as Ortholog-Poly
(S3 Table).

Single nucleotide polymorphism of codons among populations
Single nucleotide polymorphisms (SNPs) were targeted by the HapMap project and have been
widely employed in GenomeWide Association Studies for complex traits (GWAS) [26]. The
HapMap Phase III SNPs were retrieved from http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/database/, including ten populations, CEU, CHB, CHD, GIH, JPT, LWK, MEX, MKK,
TSI, YRI [27]. Minor allele frequency (MAF) refers to the frequency at which the less common
allele occurs in a given population. The SNPs with MAF of� 5% were mapped onto the coding
regions in each of populations. Finally, a total of 35269 nucleotide variants located in protein-
coding genes were compiled and referred to as SNP-Poly (S4 Table).

Translational Optimal codons and Non-optimal codons
According to the studies of Watkins et al [4] and Frenkel-Morgenstern et al [8], the following
codons were characterized by low codon—anticodon affinities and defined as non-optimal
codons: GCA,GCT,AGA,CGA,CGT,AAT,GAT,TGT,CAA,GAA,GGA,GGT,CAT,ATA,
ATT,CTA,CTT,TTA,AAA,TTT,CCA,CCT,AGT,TCA,TCT,ACA,ACT,TAT,GTA,
GTT.

The other codons were defined as optimal codons: GCC,GCG,AGG,CGC,CGG,AAC,
GAC,TGC,CAG,GAG,GGC,GGG,CAC,ATC,CTC,CTG,TTG,AAG,ATG,TTC,CCC,
CCG,AGC,TCC,TCG,ACC,ACG,TGG,TAC,GTC,GTG.

The classification of optimal and non-optimal codons was based on the binding free energy
between codons and anticodons at translational stage, the set of optimal codons in chimp was
identical inHomo sapiens and Pan troglodytes.

Analysis of human cellular signaling network
The human signaling network dataset was downloaded from www.bri.nrc.ca/wang [28]. The
nodes with ‘activation’ and ‘inhibition’ regulatory relationships were retrieved. After trans-
forming the gene names to ensembl genes ids, a total of 5405 genes with somatic mutations in
CSM were located in the signaling transduction networks. For each gene, the number of regula-
tor genes was used to measure its importance and regulation complexity in the signal transduc-
tion network.
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Flux Balance Analysis
Recon 2 contained 7440 reactions and 2626 unique metabolites distributed in eight cellular
compartments, it represented the most comprehensive ‘metabolic reconstruction’ of human
metabolism [29]. The model of Recon 2 was retrieved from the http://humanmetabolism.org/
(Biomodels model: 1109130000; SBML format) and loaded with the ‘readCbModel’ in COBRA
Toolbox [29]. FBA formalized the system of equations, and described the metabolic network as
the dot product of a matrix of the stoichiometric coefficients (the S matrix) and the vector of
the unsolved fluxes (V). Linear programming was used to calculate a solution of fluxes corre-
sponding to the steady state by Cobra package [30].

The FBA was performed to maximize CTX, subjected to SV = 0 and lb� x� ub. The lb rep-
resented the lower-bound, and ub represented upper-bound. The V was the vector of fluxes to
be determined, and S was a matrix of coefficients. The maximation of biomass production was
set to be the objective function (CTX in this case). The inequalities lower bound and upper
bound established the maximal rates of flux for every reaction (the columns of the Smatrix).
Using the network and the stoichiometry, every possible reaction knockouts were made. The
lower-bound and upper-bound of the targeted reaction flux were constrained to 0, and the
remainder of the network was re-optimized for maximation of biomass. The maximum flux
across all possible conditions was selected for each reaction.

To connect the metabolic reaction with the ensembl gene ids, the gene species ids and their
corresponding gene symbols were retrieved fromMODEL1109130000.xml, and then the gene
species ids and their metabolic reaction were linked by the genes and rxnGeneMat tables of
model. After transforming the gene symbols to ensembl gene ids, the flux values of 3912 reac-
tions catalyzed by 1,623 ensembl genes were obtained.

Analysis of human enzyme-enzyme metabolic network
The model of Recon 2 [29] was used to reconstruct the enzyme-centered metabolic network.
The enzymes were represented by nodes, and substrate-product metabolite flux were repre-
sented by directional edges. Briefly, the reactions with assigned EC-number were retrieved
using the rxnECNumbers table of model, the direction of reactions were determined by the rev
table of model, and then the transformations between metabolites were used to determine the
interactions among these enzymes using the Smatrix of model. For instance, enzyme EC2.7.7.9
uses alpha-D-glucose-1-phosphate as substrate to produce UDP-glucose, which was then used
by enzyme EC5.1.3.2, the interaction was defined as EC2.7.7.9 -> EC 5.1.3.2. Because small
molecules, adp, amp, nad, nadh, nadp, nadph, nh4, coa, o2, co2, glu, pyr, h, accoa, fad, fadh2,
hco3, pi, ppi, h2o, na1 and udp, are involved in many reactions or are used as carriers for trans-
ferring electrons [31], they were excluded from the analysis based on themets andmetFormu-
las tables of Recon 2 model.

The enzyme-enzyme metabolic network was constructed with 3,648 directional interactions
among 685 enzymes, in which 662 enzymes were included in a large network and the other 23
enzymes in 5 small clusters. The large connected network contained 1826 directional interac-
tions and 899 bi-directional interactions. For directional interaction, the metabolite was the
substrate or product of particular enzyme. For the bi-directional interaction, the metabolite
was used as substrate as well as product of the same enzyme.

Degree was an important measure of the importance of biological network. For metabolic
network with directional interactions, the topological centralities were used to measure the
importance of nodes in the control of information transfer. In-degree referred to the number
of links forwarded to the considered nodes, out-degree referred to the number of links
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outwards from the considered nodes, and the nodes with relatively higher degrees are termed
as hubs.

Proto-Oncogenes and Tumor repressors
The proto-oncogenes were retrieved from UniProt (http://www.uniprot.org/uniprot/?
query=keyword:KW-0656) and RAS Oncogene Database (http://14.139.245.18/rasond/home.
php) [32]. After transforming the UniProt Entry and RefSeq Id to ensembl gene id, the 362
proto-oncogenes with somatic mutations available in CSM were obtained. The tumor repressor
genes were downloaded from TSGene database (http://bioinfo.mc.vanderbilt.edu/TSGene/)
[33], and 608 tumor repressor genes with somatic mutations available in CSM were obtained.

Analysis of gene expression profiles
The microarray gene expression profiles of 79 human tissues were extracted from Su et al. [34],
and the probe set sequences were assigned by the human coding sequences by BioMart [24].
Two replicates of each tissue were averaged to determine the gene expression intensity in the
corresponding tissue. The multiple tissues representing similar areas were grouped and the
highest expression level from any tissue in a group were taken as the representative expression
intensity for the tissue group (the expression levels in pathogenic tissues were not considered).
A gene was identified to be tissue-specific if the expression intensity of the highest tissue group
was greater than or equal to twice the expression intensity of the second highest tissue group.
For genes with accumulation of non-optimal codons, 6918 genes have microarray expression
information and 2208 genes were identified to be tissue-specific. For genes without accumula-
tion of non-optimal codons, 4811 genes have microarray expression information and 1518
genes were identified to be tissue-specific.

Recently, Peng et al performed a large-scale RNA-Seq transcriptome analysis of cancers and
normal tissue controls across 12 cancer types (IlluminaHiSeq_RNASeqV2) [35]. The samples
in the clinical category of “primary tumor” or “solid tissue normal” were used for identification
of differentially expressed genes in the corresponding cancers. We used the fdr smaller than
0.001 as cutoff to retrieve these differentially expressed genes.

Compilation of codon transformations in COSMIC and GWAS datasets
The COSMIC database (version67) were retrieved from ftp://ftp.sanger.ac.uk/pub/CGP/
cosmic/data_export/ [36], and the entries recorded as “confirmed somatic mutations” were
analyzed. To avoid the influence of alternative spliced isoforms on the calculation of mutation
event, a unique identifier “genomic position—gene—mutation” was counted once. The GWAS
dataset were downloaded from EBI GWAS Catalogue (https://www.ebi.ac.uk/gwas/) [26,27],
and the rs identifiers were used to map the corresponding mutations onto the mRNA. The can-
cer related GWAS-SNPs were filtered out, and only the disease related GWAS SNPs were
analyzed.

Functional analysis of human genes based on gene ontology
The Gene Ontology (GO) provided three structured controlled vocabularies to describe gene
products [37,38]. The human gene association file was downloaded from http://www.
geneontology.org/gene-associations/ and compiled by BioMart [24]. For each GO term, the
enrichment of annotated genes among the genes with accumulation of non-optimal codons
was investigated by the “Functional Annotation” in http://david.abcc.ncifcrf.gov/. The
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Benjamini corrected p-value with a cutoff of p� 0.001 was used to identify the over-repre-
sented GO terms among the genes with accumulation of non-optimal codons.

Aggregation score and Disorder predictions
The amyloidal aggregation propensities of the 20 naturally occurring amino acids were
retrieved from the study of Pawar et al [39], which were estimated based on amino acid hydro-
phobicity, the alpha-helical propensity, the beta-sheet propensity, the hydrophobic patterning
and the charge.

Protein disorder was predicted by IUPRED [40] on full length wild-type (WT) and mutated
protein sequences, which was generated by changing only one residue at a time. The effects of a
mutation were investigated by comparing the predicted score between a residue to be mutated
in the WT protein and after the mutation. For one mutation located in codons of different
transcripts, all of the transcripts were analyzed.

Computational environment
The project was started and completed in Dalian Institute of chemical Physics. Computations
were performed on a Linux cluster with 50 nodes (Intel 5130, 2.0 GHz CPU, 4G memory, Lab-
oratory of Molecular Modeling and Design, Dalian Institute of Chemical Physics, Chinese
Academy of Sciences).

Results

Preferential accumulation of non-optimal codons in cancer genomes
We obtained the cancer somatic mutations from the International Cancer Genome Consor-
tium [21], and mapped them onto the coordinates of the ensembl genes to investigate their
impact on codon transformations (CSM, see Methods). We also compiled datasets of human
genome-wide natural codon variations and used them as the background for comparisons:
codon variations of ortholog genes between human and chimp (Ortholog-Poly, S3 Table), and
codon variations in the population polymorphisms [41] (SNP-Poly, S4 Table).

According to the different outcomes, the effects of mutations were classified as O->O (opti-
mal to optimal) and N->N (non-optimal to non-optimal) transformations when the optimal
and non-optimal assignments did not change; and as O->N (optimal to non-optimal) and
N->O (non-optimal to optimal) transformations when optimal and non-optimal assignments
switched.

The mutations were classified as synonymous (no amino acid change) and non-synony-
mous (amino acid change) [42,43], and then the dynamics of the optimal and non-optimal
codons were investigated separately. As shown in Table 1, about 8.50% of the cancer non-syn-
onymous mutations in optimal codons resulted in non-optimal codons, while this percentage
decreased to only 4.15% and 4.08% in the SNP-Poly and Ortholog-Poly datasets (p = 9.32e-52
and 4.57e-180, Chi-square, two-tail test). About 3.88% of the cancer non-synonymous muta-
tions of non-optimal codons result in optimal codons, and the percentage increased to 4.50%
and 5.75% in the SNP-Poly and Ortholog-Poly datasets (p = 7.19e-3 and 2.16e-31, Chi-square,
two-tail test). A similar tendency was observed for the cancer synonymous mutations
(p� 5.70e-15 for four comparisons, Chi-square, two-tail test). Therefore, cancer mutations
contained significantly higher frequencies of O->N transformations and lower frequencies of
N->O transformations. Although synonymous and non-synonymous mutations have different
intrinsic propensities for non-optimal/optimal codons transformation, the O->N transforma-
tions were favored and the N->O transformations were disfavored in cancers.
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Intuitively, the preferential transformation from optimal to non-optimal codons would be
expected to contribute to the widespread accumulation of non-optimal codons in cancers. We
estimated this by subtracting the number of N->O from the number of O->N transforma-
tions, for 135760 cancer mutations that occurred in codons, a total of 20913 non-optimal
codons (5003–1567+24774–7297) were accumulated, which corresponded to 15.40% by
20913/135760. This percentage was significantly higher than that observed in the SNP-Poly
(20913/135760 vs. 2837/35269, p<0.001, Chi-square, two-tail test) and Ortholog-Poly (20913/
135760 vs. 187/180346, p<0.001, Chi-square, two-tail test) datasets, respectively.

Prevalent accumulation of non-optimal codons across different cancers,
amino acids, and chromosomes
Because the dataset of cancer mutations was integrated from several types of cancers, amino
acids, and chromosomes, it is possible that the observed of preferential accumulation of non-
optimal codons is attributable to only a few types of cancers, amino acids, or chromosomes. To
control these potential biases, we investigated the optimal/non-optimal codon transformations
separately in each type of cancer, each amino acids, and each chromosome.

For each type of cancers, we counted the O->N and N->O transformations. The fold was
calculated by dividing the number of O->N by the number of N->O transformations, and
then comparing it with the fold observed in the Ortholog-Poly and SNP-Poly datasets. As
shown in Fig 1a for synonymous mutations, 45212 optimal codons were transformed to non-
optimal codons and 45127 non-optimal codons were transformed to optimal codons in
Ortholgy-Poly, and in the 15 cancers with available data for statistical analysis, 14 cancers
clearly showed significantly higher numbers of O->N transformations (see the detailed num-
ber and the p-values in S5 Table); As shown in the Fig 1b for non-synonymous mutations,
1856 optimal codons were transformed to non-optimal codons and 1754 non-optimal codons
were transformed to optimal codons in Ortholgy-Poly, and in the 15 cancers with available
data for statistical analysis, each of the cancers clearly showed significantly higher number of
O->N transformations (S6 Table).

Similarly, for each amino acid and chromosome, we calculated the number of O->N and
N->O transformations, and compared the fold with that observed for related transformations
in Ortholog-Poly and SNP-Poly. The results demonstrated that the accumulation of non-opti-
mal codons did not depend on the types of amino acids (Fig 1c and S7 Table for statistical anal-
ysis for synonymous mutations of each amino acid, Fig 1d and S8 Table for statistical analysis
for non-synonymous mutations of each amino acid) or the location of chromosomes (Fig 1e
and S9 Table for statistical analysis for synonymous mutations of each chromosome, Fig 1f and
S10 Table for statistical analysis for non-synonymous mutations of each chromosome). There-
fore, the preferential accumulation of non-optimal codons may implicate biological processes
that are significant in cancers.

Table 1. The frequencies of O->N and N->O transformations. The p-values were estimated by Chi-square, two-tail test.

Dataset O->O O->N % p-value N->N N->O % p-value

Non-Synonymousmutations CSM 53845 5003 8.50 - 38803 1567 3.88 -

SNP-Poly 9846 426 4.15 9.32E-52 7166 341 4.50 0.007193

Ortholog-Poly 43674 1856 4.08 4.57E-180 28749 1754 5.75 2.16E-31

Synonymous mutations CSM 2872 24774 89.61 - 1599 7297 82.02 -

SNP-Poly 1397 9186 86.80 5.70E-15 473 6434 93.15 6.96E-94

Ortholog-Poly 10398 45212 81.30 5.80E-209 3576 45127 92.66 4.02E-228

doi:10.1371/journal.pone.0160463.t001
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Genes encoding hubs of protein interaction and signaling network tend
to accumulate non-optimal codons
For the 17966 genes with somatic mutations that were identified in this study, we investigated
the dynamics of optimal/non-optimal codons by comparing the number of N->O transforma-
tions with the number of O->N transformations. In accordance with the genome-wide accu-
mulation of optimal codons, 7615 genes had not acquired non-optimal codons (O->N less
than N->O) whereas 10351 genes had acquired one or more non-optimal codons (O->N
more than N->O) (S11 Table).

We first studied how the genes that had accumulated non-optimal codons were distributed
in the protein interaction network [44]. By transforming the ref protein ids to ensembl gene
ids, interacting partners for the 8615 of 17966 genes were obtained from the Human Protein
Reference Database [45]. We found that genes with accumulation of non-optimal codons
tended to be involved in protein interaction networks. About 45.29% of genes without accumu-
lation of non-optimal codons had interacting partners, while 49.91% for genes with accumula-
tion of non-optimal codons had interacting partners (p = 7.73e-10, Chi-square, two-tail test)
(Fig 2a). We then investigated the number of interacting partners (also referred to as degree)
and found that genes with accumulation of non-optimal codons tended to have significantly
higher numbers of interacting partners. As shown in Fig 2b, the average degree for genes

Fig 1. O->N transformations enriched in different cancers, amino acids and chromosomes. (a) Synonymous mutations in different types of
cancers. (b) Non-synonymous mutations in different types of cancers. (c) Synonymous mutation for each amino acid. (d) Non-synonymous mutations for
each amino acid. (e) Synonymous mutations in each human chromosomes. (f) Non-synonymous mutations in each human chromosome. The p-values
were estimated by the comparison between CSM and Ortholog-Poly (Chi-square, two-tail test), ** p-values� 0.01; * p-values between 0.01 and 0.05.

doi:10.1371/journal.pone.0160463.g001
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without accumulation of non-optimal codons was 7.25, and the average degree increased to 8.1
for genes with accumulation of non-optimal codons (p = 6.49e-3,Mann–Whitney U, two-tail
test).

Because different genes have distinct proportions of optimal codons in their transcripts, it is
likely that genes encoding hubs of protein interaction networks may have significantly higher
proportions of optimal codons and may, therefore, be more likely to accumulate non-optimal
codons through cancer somatic mutations. To control this potential bias, the percentages of
optimal codons in these genes were sorted from small to large, and then sampled sequentially
into a new dataset until the average proportion of optimal codons of the sampled dataset
equaled that of the genes without accumulation of non-optimal codons (S11 Table). Using this
sampled dataset of genes that accumulated non-optimal codons and had the similar average
proportions of optimal codons, the comparison also showed that the genes with accumulation
of non-optimal codons had a higher proportion of genes involved in protein interaction net-
works (p = 1.21e-7, Chi-square, two-tail test) and a higher average number of interacting part-
ners (p = 4.09e-3,Mann–Whitney U, two-tail test) (S1 Fig).

We further studied how the genes with accumulation of non-optimal codons were distrib-
uted in the signaling network. We obtained 5405 genes with CSM somatic mutations in the sig-
naling transduction networks, which included 2077 genes without accumulation of non-
optimal codons, and 3328 genes with accumulation of non-optimal codons. As shown in Fig
2c, about 32.15% of the genes with accumulation of non-optimal codons were involved in sig-
naling networks, compared with 27.27% of the genes without accumulation of non-optimal
codons (p = 1.89e-12, Chi-square, two-tail test). Furthermore, the number of regulatory part-
ners for the genes with accumulation of non-optimal codons was also significantly higher than
for the genes without accumulation of non-optimal codons (p = 0.012,Mann–Whitney U, two-
tail test, Fig 2d). Using the sampled dataset of genes, similar tendencies were also observed; i.e.,
genes with accumulation of non-optimal codons had a higher proportion of genes involved in

Fig 2. Genes with accumulation of non-optimal codons tend to be involved in protein interaction networks. (a) The comparison in the percentage
of genes with protein interacting partners. The p-values were estimated by Chi-square, two-tail test. The N1 represents the number of genes without
accumulation of non-optimal codons, and the N2 represents the number of genes with accumulation of non-optimal codons. (b) The comparison in the
number of protein interacting partners of genes. The average degree was represented and the p-values were estimated byMann–Whitney U, two-tail
test. The N1 represents the number of genes without accumulation of non-optimal codons in the protein interaction networks, and the N2 represents the
number of genes with accumulation of non-optimal codons in the protein interaction networks. (c) The comparison in the percentage of genes involved in
cellular signal transduction network The p-values were estimated by Chi-square, two-tail test. The N1 represents the number of genes without
accumulation of non-optimal codons, and the N2 represents the number of genes with accumulation of non-optimal codons. (d) The comparison in the
number of regulatory partners. The average number was represented and the p-values were estimated byMann–Whitney U, two-tail test. The N1
represents the number of genes without accumulation of non-optimal codons in the signal transduction networks, and the N2 represents the number of
genes with accumulation of non-optimal codons in signal transduction networks.

doi:10.1371/journal.pone.0160463.g002
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signal transduction networks (p = 8.69e-9, Chi-square, two-tail test) and a higher average num-
ber of regulatory partners (p = 0.015,Mann–Whitney U, two-tail test) (S1 Fig).

Genes catalyzing the high flux reactions of metabolic network tend to
accumulate non-optimal codons
We used the recently updated Recon 2 [29] to explore the reactions catalyzed by the genes with
accumulation of non-optimal codons. Using the COBRA Toolbox [30], we performed a flux
balance analysis of Recon 2 model and obtained flux values for 3912 metabolic reactions that
were catalyzed by 1623 ensembl genes (see Methods). Correlation analysis showed a positive
relationship between the flux values of reactions and the proportion of genes with accumula-
tion of non-optimal codons for their enzyme encoding genes (rho = 0.106, p = 1.00e-6,
Spearman analysis, two-tail test, n = 3912). This comparison confirmed that the genes with
accumulation of non-optimal codons had significantly higher values of flux in the metabolic
network (p = 0.018,Mann–Whitney U, two-tail test) (Fig 3a). The same tendency was also
observed after excluding the null fluxes (correlation: rho = 0.109, p = 1.00e-6, Spearman analy-
sis, two-tail test, n = 2970; comparison: p = 6.91e-5,Mann–Whitney U, two-tail test, Fig 3b).
Obviously, the genes involved in the high-flux reactions tended to accumulate non-optimal
codons in cancers.

Next, we studied the importance of genes with accumulation of non-optimal codons from
the metabolic network point of view. A human enzyme-enzyme metabolic network was con-
structed using the Recon 2 model [29] (see Methods). In the large connected network, 571
enzymes were encoded by genes with somatic mutations, including 155 enzymes that were
encoded by genes without accumulation of non-optimal codons and 416 enzymes which were
encoded by genes with accumulation of non-optimal codons (Fig 3c). We used the topological
centralities to measure the importance of the enzymes in the metabolic network (see Methods).
As shown in Fig 3d and 3e, the enzymes encoded by genes with accumulation of non-optimal

Fig 3. Genes with accumulation of non-optimal codons tend to be involved in high flux reactions in metabolic network. (a) Comparison of
metabolic flux. N1 represents the number of reactions not catalyzed by genes with accumulation of non-optimal codons in Recon 2, and the N2
represents the number of reactions catalyzed by genes with accumulation of non-optimal codons in Recon 2. (b) Comparison of metabolic flux after
filtering out null-flux. N1 represents the number of reactions not catalyzed by genes with accumulation of non-optimal codons in Recon 2 after filtering out
null-flux, and the N2 represents the number of reactions catalyzed by genes with accumulation of non-optimal codons in Recon 2 after filtering out null-
flux. (c) The largest sub-network of human enzyme-enzyme metabolic networks Red nodes represent the enzymes encoded by genes with accumulation
of non-optimal codons. (d) Comparison of in-degree. N1 represents the number of enzymes encoded by genes without accumulation of non-optimal
codons in enzyme-enzyme metabolic networks, and the N2 represents the number of enzymes encoded by genes with accumulation of non-optimal
codons in enzyme-enzyme metabolic networks. (e) Comparison of out-degree. N1 represents the number of enzymes encoded by genes without
accumulation of non-optimal codons in enzyme-enzymemetabolic networks, and the N2 represents the number of enzymes encoded by genes with
accumulation of non-optimal codons in enzyme-enzymemetabolic networks. The average flux value and in/out-degree were represented. The p-values
were estimated by comparisons between the genes without accumulation of non-optimal codons and the genes with accumulation of non-optimal codons
(Mann–Whitney U, two-tail test).

doi:10.1371/journal.pone.0160463.g003
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codons had significantly higher in-degree and out-degree values (p = 0.005, p = 0.012 respec-
tively,Mann–Whitney U, two-tail test), indicating that they preferentially acted as hub enzymes
in the metabolic network.

Using the sampled dataset of genes (S11 Table), the comparison also showed that genes
with accumulation of non-optimal codons tended to catalyze the reactions with significantly
higher flux values (p� 6.37e-7,Mann–Whitney U, two-tail test) and encoded the hub enzymes
in the metabolic network (p� 0.004,Mann–Whitney U, two-tail test) (S2 Fig).

Genes with accumulation of non-optimal codons tend to participate in
cancer-related pathways
Generally, cancer somatic substitutions are identified by sequencing genes from healthy and
tumor tissues of the same individuals. The variable substitution sites would be present at rela-
tively high frequencies in the tumor. Based on the available microarray profiles of normal tissues
(see Methods), a similar proportion of tissue-specific genes were observed in the genes with accu-
mulation of non-optimal codons and the genes without accumulation of non-optimal codons
(1518/4811 vs. 2208/6918, p = 0.68, Chi-square, two-tail test). We further explored the available
differentially expressed transcripts in cancer RNA-Seq datasets (see Methods), and found that
genes with accumulation of non-optimal codons tended to be differentially expressed in cancers
(p = 5.60e-16, Chi-square, two-tail test) (Fig 4a), and had a significantly higher average number
of differential expressed tissues (p = 1.64e-9,Mann–Whitney U, two-tail test) (Fig 4b).

We then studied the codon dynamics in two major groups of protein-coding genes, proto-
oncogenes and tumor repressor genes. For proto-oncogenes, gain of function activated by
point mutations can stimulate cell proliferation and promote cell survival by interfering with
apoptosis [46]. For tumor suppressor genes, loss of function can contribute to the development
of cancer [47] (see Methods and S12 Table). As shown in Fig 4c, the tumor repressor genes
tended to have a significantly higher percentage in the genes with accumulation of the non-
optimal codons (p = 0.0025, Chi-square, two-tail test), while the proto-oncogenes tended to
have a similar proportion of genes with accumulation of the non-optimal codons and the genes
without accumulation of non-optimal codons (p = 0.12, Chi-square, two-tail test).

We used the Gene Ontology (GO) to explore the functional pathways that the genes with
accumulation of non-optimal codons were involved in. Of the 10351 genes with accumulation
of optimal codons, 7502 genes were annotated with GO terms under the biological process cat-
egory; and 7076 genes were annotated with GO terms under the molecular function category.
We performed a GO functional analysis to determine whether the genes with accumulation of
non-optimal codons encoded proteins that were enriched with specific molecular functions or
particular biological processes. (see Methods). As shown in Fig 4d and 4e, genes with accumu-
lation of non-optimal codons were enriched in cell adhesion, cell motility, cell-cell signaling,
anatomical structure morphogenesis, cell surface receptor linked signal transduction, angio-
genesis, protein amino acid phosphorylation, extracellular transport. These processes were
generally considered to be environment-oriented and well-known to be cancer-related. For
instances, reduced intercellular adhesiveness made it possible for cancer cells to disobey the
social order, and lead to destruction of histological structure [48] Up-regulation of the motility
machine pathways contributed to tumor cells’ invasion of neighboring extracellular matrix tis-
sue and the lymphatic system [49], Ion channels regulate cell cycle and differentiation by con-
trolling membrane potential and interaction between the extracellular matrix and cytoskeleton
[50]. Although the group of oncogenes were not found to accumulate the non-optimal codons
or optimal codons, their regulatory genes tend to accumulate the non-optimal codons
(GO:0046578, regulation of Ras protein signal transduction). Therefore, the genes with
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accumulation of non-optimal codons may participate in dysfunctional transduction of a large
variety of external signals in response to a wide range of cellular responses.

Accumulation of non-optimal codons tends to favor amino acids with
higher aggregation and lower disorder properties
The proper three-dimensional structures were usually pre-requested to form the protein inter-
action interfaces and catalytic cavities. In the normal cell, protein folded into stable globular

Fig 4. Function analyses of genes with and without accumulation of non-optimal codons. (a) Proportion of differentially expressed genes in
cancers. The red box represents the proportion of differentially expressed genes in the genes with accumulation of non-optimal codons, the blue
box represents the proportion of the proportion of differentially expressed genes in genes without accumulation of non-optimal codons. The p-values were
estimated by Chi-square, two-tail test. (b) Number of cancer types for differentially expressed genes. The red box represents the number of differentially
expressed cancer types for the genes with accumulation of non-optimal codons. The p-values were estimated byMann–Whitney U, two-tail test. (c)
Proportion of proto-oncogenes and tumor-repressors in the genes without accumulation of non-optimal codons, and the genes with accumulation of non-
optimal codons. The red box represents the proportion of annotated genes in the genes with accumulation of non-optimal codons, the blue box represents
the proportion of the proportion of annotated genes in genes without accumulation of non-optimal codons. The p-values were estimated by Chi-square,
two-tail test. (d) Functional enrichment analysis of genes with and without accumulation of non-optimal codons annotated with GO terms under molecular
function. The red box represents the proportion of annotated genes in the genes with accumulation of non-optimal codons, the blue box represents the
proportion of the proportion of annotated genes in genes without accumulation of non-optimal codons. The p-values were estimated by Hypergeometric
test and Benjamini corrected. (e) Functional enrichment analysis of genes with and without accumulation of non-optimal codons annotated with GO terms
under biological process. The red box represents the proportion of annotated genes in the genes with accumulation of non-optimal codons, the blue
box represents the proportion of the proportion of annotated genes in genes without accumulation of non-optimal codons. The p-values were estimated by
Hypergeometric test and Benjamini corrected.

doi:10.1371/journal.pone.0160463.g004
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conformations and competed with aggregation into non-functional insoluble structures,
because the biophysical properties of folding also favored intermolecular contacts [51,52].
Recent research indicated cancer as an aggregation disease, the destabilized p53 mutant
induced misfolding and co-aggregation of wild-type p53, p63 and p73 into cellular inclusions,
and lead to inefficiency of target genes that control cell growth [53,54]. Another important
prosperity of protein structure is the intrinsically disordered region, which widely act as flexible
linkers connecting two domains and served as switches in transforming to ordered conforma-
tion [55,56]. Recent study reported that disease mutations often destroyed the intrinsic disor-
der regions of human proteins in the etiology of diseases [57].

We studied the potential effects of N->O and O->N non-synonymous mutations on pro-
tein structures at the level of aggregation disorder propensity (see Methods). We found that
65.78% of O->N transformations would result in amino acids with higher aggregation propen-
sity, which was significantly higher than the 53.22% obtained for N->O non-synonymous
transformations (p = 1.99e-19, Chi-square, two-tail test). Similarly, 47.00% of the O->N trans-
formations would lead to amino acids with lower disorder scores, which was significantly
higher than the 31.70% observed for N->O non-synonymous transformations (p = 1.22e-26,
Chi-square, two-tail test) (S13 Table).

Codon dynamics in COSMIC and GWAS datasets
The accumulation of non-optimal codons in cancer genomes was confirmed by examining
the data in the COSMIC database (ftp://ftp.sanger.ac.uk/pub/CGP/cosmic/data_export/, ver-
sion67), freely available resource of associations between somatic mutations and cancers
[36]. For the 299028 recorded ‘confirmed somatic mutations’ that occurred in codons, cancer
mutations contained significantly higher frequencies of O->N transformations and lower
frequencies of N->O transformations (p� 2.19e-9 for non-synonymous mutations and
p� 2.43e-17 for synonymous mutations, Chi-square, two-tail test, S14 Table). A total of
43959 non-optimal codons (13272–3211+43791–9893) were accumulated in cancer
genomes, which corresponded to 14.70% (43959/299028) of the ‘confirmed somatic muta-
tions’, and is similar to the proportion observed in CSM datasets. For a specific group of 1105
COSMIC “recurrent”mutations that were implicated as drivers in the tumorigenesis process,
513, 197, 42, and 353 were observed for the O->O, O->N, N->O and N->N codon transfor-
mations, respectively, with a proportion of 14% ((197–42)/1105) accumulation of non-opti-
mal codons.

We used the GWAS diseases-SNPs data to investigate single nucleotide polymorphisms
(SNPs) that occurred in protein-coding regions to gain further insights into their codon
dynamics. We found 6310 non-cancer-related GWAS-SNPs that were located in the gene
regions (including 5’UTR, Coding Region, 3’UTR and introns); 402 of them were located in
coding regions that exhibited codon dynamics and only 23 non-optimal codons were accumu-
lated (O->O,175; O->N, 66; N->O, 43; N->N, 118) and corresponded to a proportion as
5.70% by 23/402, which was significantly lower than the proportion observed in the CSM data-
sets (23/402 vs. 20913/135760, p<0.01, Chi-square, two-tail test). Thus we found that the accu-
mulation of non-optimal codon was not significant in the GWAS coding SNPs.

Discussion
In this study, we showed that non-optimal codons were preferentially accumulated through
somatic mutations in human cancers. The pattern [58,59] and the functional impact [60] of
somatic mutations have been investigated extensively in the past decade; however, the trans-
formations of codons themselves are far less studied. Synonymous mutations were often
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ignored by traditional studies because the same amino acids were conserved. In an early
study, a likelihood ratio test (the classical Ka/Ks test) was developed to estimate the fixation
of the mutations in cancer progenitor cells [61]. In this study, we used the codon—anticodon
binding affinities-based classification of codons. This classification schema has two advan-
tages. One advantage is that the partition of optimal and non-optimal codons is based on the
binding free energy between codons and anticodons at the translational stage, and the set of
optimal codons is independent on the species or cell status. The other advantage is that
codons with low codon anticodon binding affinities (non-optimal codons) were recently
found to be related to the ability genes to control the cell cycle [8], which is closely related to
tumors. We used this classification to comprehensively investigate the dynamics of codons in
cancers, and demonstrated that the majority of genes accumulated non-optimal codons with
both synonymous and non-synonymous mutations. We also showed that genes with accumu-
lation of non-optimal codons tended to participate in biological pathways associated with
cell-cell communication and cell motility, the dysfunction of which was frequently associated
with carcinogenesis.

It is interesting that the accumulation of non-optimal codons seemed to be favored in can-
cer genomes where the balance between proliferation and cell death is generally upset [62,63].
Non-optimal codons were found to provide their resident genes with more opportunities to
change in the tRNA pool and generate cell cycle-dependent oscillations of protein abundance
[8]. Our study indicated that the accumulation of non-optimal codons may be an adaptive
strategy for cancer cellular competition for survival. Rapid progress in the understanding of
human genetic variations has indicated that tumorigenesis can be studied within a cellular
“mutation vs. fitness and evolution vs. selection” framework [18]. In normal tissues, the
immune system exerts pressures on cells, and tissue compartmentalization constrains cells
from abnormal proliferation [19–21]. Exposure to external genotoxic stress or environmental
chemicals [64,65] can cause the accumulation of non-optimal codons, which may enable an
individual cell to evade selective pressures and gain cellular fitness over normal cells, and pro-
vided positive selectiveness for these cells.

The pattern of somatic mutations was also investigated in oncogenes and tumor repressor
genes. The results indicated that the accumulation of non-optimal codons mainly had an adap-
tive role in the non-controlled cycle of tumor cells with the trade-off being loss of some impor-
tant functions, but did not provide the original driving force in “gain of function” for tumor
occurrence. Recently, Ostrow et al identified positively selected genes and suggested that cancer
evolution was related with positive selection on globally expressed genes [66]. Our result may
complement the pattern of cancer genetic codons; that is, while some driver genes (generally
oncogenes) can gain new functions by positive selection, a majority of genes with accumulation
of non-optimal codons tended be to differentially expressed in cancers, and became more
adaptive to the non-controlled cell cycle in tumors [67–69].

Based on our analyses, we propose that the preference of O->N codon transformations
may play dual roles in cancers (Fig 5). During tumorigenesis, this is like an evolutionary
dynamics of normal cells and cancer cells with the phenotypic variability. The accumulation
of non-optimal codons promotes ability of the tumor cell to adapt to non-controlled prolifer-
ative cell cycle, and leads to modification of the original biological networks and conse-
quently stimulates the occurrence of dysfunctional modules. Therefore, we consider that in
future anti-cancer studies more attention should be given to the mechanisms that affect the
transformation of codons. This is a genome-wide integrative analysis of cancer mutations
within the framework of optimal/non-optimal codon transformations. A better understand-
ing of the roles of non-optimal codons will be valuable for studying the impact of mutations
on human health.
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Supporting Information
S1 Fig. Genes with accumulation of non-optimal codons tend to be involved in protein
interaction and signaling network. (a) The comparison in the percentage of genes with pro-
tein interacting partners, the p-values were estimated by Chi-square, two-tail test. The N1 rep-
resents the number of genes without accumulation of non-optimal codons, and the N2
represents the number of genes with accumulation of non-optimal codons. (b) The comparison
in the number of protein interacting partners of genes, the average degree was represented and
the p-values were estimated byMann–Whitney U, two-tail test. The N1 represents the number
of genes without accumulation of non-optimal codons in the protein interaction networks, and
the N2 represents the number of genes with accumulation of non-optimal codons in the pro-
tein interaction networks. (c) The comparison in the percentage of genes involved in cellular
signal transduction network, the p-values were estimated by Chi-square, two-tail test. The N1
represents the number of genes without accumulation of non-optimal codons, and the N2 rep-
resents the number of genes with accumulation of non-optimal codons. (d) The comparison in
the number of regulatory partners, the average number was represented and the p-values were
estimated byMann–Whitney U, two-tail test. The N1 represents the number of genes without
accumulation of non-optimal codons in the signal transduction networks, and the N2 repre-
sents the number of genes with accumulation of non-optimal codons in the signal transduction
networks. The genes with accumulation of non-optimal codons were sampled to have a similar
average proportion of optimal codons with the genes without accumulation of non-optimal
codons.
(TIF)

S2 Fig. Genes with accumulation of non-optimal codons tend to be involved in high flux
reactions in metabolic network. (a) Comparison of metabolic flux. N1 represents the number
of reactions not catalyzed by genes with accumulation of non-optimal codons in Recon 2, and
the N2 represents the number of reactions catalyzed by genes with accumulation of non-opti-
mal codons in Recon 2. (b) Comparison of metabolic flux after filtering out null-flux. N1 repre-
sents the number of reactions not catalyzed by genes with accumulation of non-optimal
codons in Recon 2 after filtering out null-flux, and the N2 represents the number of reactions
catalyzed by genes with accumulation of non-optimal codons in Recon 2 after filtering out
null-flux. (c) Comparison of in-degree. N1 represents the number of enzymes encoded by
genes without accumulation of non-optimal codons in enzyme-enzyme metabolic networks,
and the N2 represents the number of enzymes encoded by genes with accumulation of non-

Fig 5. Schematic representation of the dual roles of O->N transformations during the tumorigenesis.

doi:10.1371/journal.pone.0160463.g005

The Cancer and Nonoptimal Codons

PLOS ONE | DOI:10.1371/journal.pone.0160463 August 11, 2016 15 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160463.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0160463.s002


optimal codons in enzyme-enzyme metabolic networks. (d) Comparison of out-degrees. N1
represents the number of enzymes encoded by genes without accumulation of non-optimal
codons in enzyme-enzyme metabolic networks, and the N2 represents the number of enzymes
encoded by genes with accumulation of non-optimal codons in enzyme-enzyme metabolic net-
works. The average flux value, in-degree and out-degree were represented, and the p-values
were estimated byMann–Whitney U, two-tail test. The genes with accumulation of non-opti-
mal codons were sampled to have a similar average proportion of optimal codons with the
genes without accumulation of non-optimal codons.
(TIF)

S1 Table. The source files for each type of cancers.
(PDF)

S2 Table. Somatic mutations of codons in cancers.
(XLSX)

S3 Table. Variation of codons between Chimp-Human orthologes.
(XLSX)

S4 Table. Variation of codons among human populations.
(XLSX)

S5 Table. Synonymous O->N transformations are significantly enriched in each type of
cancers. The p-values were estimated by Chi-square, two-tail test.
(PDF)

S6 Table. Non-synonymous O->N transformations are significantly enriched in each type
of cancers. The p-values were estimated by Chi-square, two-tail test.
(PDF)

S7 Table. Synonymous O->N transformations are significantly enriched in each type of
amino acids. The p-values were estimated by Chi-square, two-tail test.
(PDF)

S8 Table. Non-synonymous O->N transformations are significantly enriched in each type
of amino acids. The p-values were estimated by Chi-square, two-tail test.
(PDF)

S9 Table. Synonymous O->N transformations are significantly enriched in each type of
chromosomes. The p-values were estimated by Chi-square, two-tail test.
(PDF)

S10 Table. Non-synonymous O->N transformations are significantly enriched in each type
of chromosomes. The p-values were estimated by Chi-square, two-tail test.
(PDF)

S11 Table. The list of the genes with accumulation of optimal codons, the genes with accu-
mulation of non-optimal codons, the sampled genes with accumulation of non-optimal
codons. As the genes with accumulation of non-optimal codons have a significantly higher
average proportion of optimal codons than the genes without accumulation of non-optimal
codons, a subset of genes with accumulation of non-optimal codons were the sampled to have
a similar average proportion of optimal codons with the genes without accumulation of non-
optimal codons.
(PDF)
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S12 Table. The list of 362 proto-oncogenes and 608 tumor repressors with somatic muta-
tions identified in CSM.
(PDF)

S13 Table. The variation of aggregation and disorder scores for non-synonymous O->N
and N->O transformations. The calculation of aggregation and disorder were based on gene
unit, the p-values were estimated by Chi-square, two-tail test.
(PDF)

S14 Table. The frequencies of O->N and N->O transformations in COSMIC v67 somatic
mutations. The p-values were estimated by Chi-square, two-tail test.
(PDF)
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