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Background: 5-methylcytosine (m5C) RNA methylation plays a significant role

in several human diseases. However, the functional role of m5C in type

2 diabetes (T2D) remains unclear.

Methods: The merged gene expression profiles from two Gene Expression

Omnibus (GEO) datasets were used to identify m5C-related genes and T2D-

related differentially expressed genes (DEGs). Least-absolute shrinkage and

selection operator (LASSO) regression analysis was performed to identify

optimal predictors of T2D. After LASSO regression, we constructed a

diagnostic model and validated its accuracy. Gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to

confirm the biological functions of DEGs. Gene Set Enrichment Analysis (GSEA)

was used to determine the functional enrichment of molecular subtypes.

Weighted gene co-expression network analysis (WGCNA) was used to select

the module that correlated with the most pyroptosis-related genes. Protein-

protein interaction (PPI) network was established using the STRING database,

and hub genes were identified using Cytoscape software. The competitive

endogenous RNA (ceRNA) interaction network of the hub genes was obtained.

The CIBERSORT algorithmwas applied to analyze the interactions between hub

gene expression and immune infiltration.

Results: m5C-related genes were significantly differentially expressed in T2D

and correlated with most T2D-related DEGs. LASSO regression showed that

ZBTB4 could be a predictive gene for T2D. GO, KEGG, and GSEA indicated that

the enriched modules and pathways were closely related to metabolism-

related biological processes and cell death. The top five genes were

identified as hub genes in the PPI network. In addition, a ceRNA interaction

network of hub genes was obtained. Moreover, the expression levels of the hub

genes were significantly correlated with the abundance of various immune

cells.

Conclusion: Our findings may provide insights into the molecular mechanisms

underlying T2D based on its pathophysiology and suggest potential biomarkers

and therapeutic targets for T2D.
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Introduction

Diabetes mellitus is a major health problem worldwide,

causing life-threatening and disabling complications and

lowering life expectancy (Heald et al., 2020). Type 2 diabetes

(T2D) accounts for approximately 90% of all diabetes cases

worldwide. The 10th edition of the International Diabetes

Federation Diabetes Atlas revealed that the prevalence of

diabetes worldwide reached 10.5% in 2021 and would rise to

12.2% by 2045 (Sun et al., 2022). In China, the number of T2D

patients has been increasing annually, and the disease has

become an important public health issue (Li Y. et al., 2020).

T2D is a heterogeneous complex disorder. Furthermore,

scientific understanding of T2D has resulted in the

development of a wider selection of medications. Nevertheless,

there is an urgent need to explore the pathophysiology and new

treatments to improve early prevention and clinical management

of T2D and its complications.

Increasing attention has been given to the role of epigenetic

alterations in metabolic diseases. It has been established that

epigenetic alterations in certain human tissues contribute to the

development of several metabolic disorders, including T2D, and

can be a response to the disease (Ling and Rönn, 2019). In

addition, epigenetic signatures can be used to diagnose cancer

and neurological diseases (Oussalah et al., 2018; Nikolac Perkovic

et al., 2021). Recently, many studies have shown that post-

transcriptional RNA modifications play an essential role in

obesity, diabetes, cardiovascular diseases, cancer, neurological

diseases, and other human diseases (Jonkhout et al., 2017;

Barbieri and Kouzarides, 2020; Chatterjee et al., 2021).

Eukaryotic 5-methylcytosine (m5C) has been well documented

as an important form of RNA modification in all RNA species,

including mRNAs, rRNAs, tRNAs, and a number of non-coding

RNAs (Bohnsack et al., 2019). M5C RNA methylation regulates

RNA metabolism by modulating the binding of the writer

(methyltransferases), eraser (dimethyltransferases), and reader

proteins (Trixl and Lusser, 2019). The m5C modification plays a

vital role in RNA translation, transcription, processing, stability,

and splicing (Yang et al., 2019; Nombela et al., 2021).

Dysregulation and disorder of m5C modification have been

associated with multiple human diseases, suggesting that

aberrant m5C methylation is correlated with human health

(García-Vílchez et al., 2019; Xue et al., 2020). However, the

functional role of m5C in T2D remains unclear.

Regulators of m5C modification have attracted attention as

potential diagnostic biomarkers or therapeutic tools for T2D

(Yanas and Liu., 2019; Chen et al., 2022). In the current study,

we explored the possible role of m5C methylation patterns in

T2D using bioinformatic analysis. The m5C-related genes and

T2D-related differentially expressed genes (DEGs) were

analyzed using the merged gene expression profiles from two

Gene Expression Omnibus (GEO) datasets. We determined the

potential signaling pathways of the molecular subtypes. An

m5C-related gene diagnostic model for predicting the risk of

T2D was constructed, and the diagnostic value of the model was

assessed. The study also explored the association between m5C-

related genes and genes in the pyroptosis module. Based on this,

we selected the top five hub genes based on the protein-protein

interaction network. Moreover, we constructed a competitive

endogenous RNA (ceRNA) regulatory network related to hub

m5C-related genes in T2D. Finally, we assessed the effect of hub

m5C-related genes on immune infiltration in T2D using

CIBERSORT.

Materials and methods

GEO datasets processing

Microarray data and sample information from two gene

expression profile datasets (GSE29221 and GSE182120) were

downloaded from the GEO (Jain et al., 2013; Gabriel et al., 2021).

GSE29221 (Jain et al., 2013) was based on the GPL6947 platform

Illumina HumanHT-12 V3.0 expression BeadChip (Homo

sapiens). It also contained data from 24 human skeletal

muscle samples, of which 12 were from T2D patients and

12 were from patients without diabetes. For the

GSE29221 dataset, 48803 probe IDs were converted to

25159 gene symbols according to platform annotation files.

GSE182120 (Gabriel et al., 2021) was obtained using the

GPL17586 platform [HTA-2_0] Affymetrix Human

Transcriptome Array 2.0. It also contained data from

49 human skeletal muscle samples, of which 25 were from

T2D patients and 24 were from patients without diabetes. For

the GSE182120 dataset, 70523 probe IDs were converted to

30905 gene symbols according to platform annotation files.

All samples were extracted, the GSE182120 data were log-

normalized, and the GSE29221 data were normalized using

Z-score transformation. The level of gene expression changes

in different samples and conditions was detected based on the

gene expression data normalized by Z-transformation (Cheadle

et al., 2003). The batch effect was eliminated using the sva

package, which contained functions for adjusting known batch

effects and latent variables in prediction problems (Leek et al.,

2012). Boxplots to visualize expression distribution were

generated using the R package ggplot2 (Wickham, 2011).

After merging the data, the dataset contained 16414 genes

from 37 T2D and 36 normal samples.
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DEG analysis and correlation analysis
of m5C

To identify the differences of m5C in human skeletal muscle

tissues, the samples were assigned to T2D and control groups.

First, we obtained a list of m5C-related genes by reviewing

previous literature (Du et al., 2020; Zhang et al., 2021)

regarding the m5C RNA, including 11 m5C writer genes

(NSUN1, NSUN2, NSUN3, NSUN4, NSUN5, NSUN6, NSUN7,

DNMT1, DNMT2, DNMT3A, and DNMT3B), 16 m5C reader

genes (ALYREF, YBX1, MBD1, MBD2, MBD3, MBD4, MECP2,

NEIL1, NTHL1, SMUG1, TDG, UHRF1, UHRF2, UNG, ZBTB33,

and ZBTB4), and three m5C eraser genes (TET1, TET2, and

TET3). A total of 26 m5C-related genes overlapped with genes

from the merged dataset. Heatmaps depicting m5C-related genes

and boxplots were plotted using the pheatmap (Kolde, 2019), the

ggplot2 (Wickham, 2011) and ggpubr (Kassambara, 2020) R

packages, respectively. We used the Wilcoxon signed-rank test to

confirm the expression changes between the control and T2D

groups (p < 0.05).

To examine the relationships between m5C- and T2D-

related genes, we first conducted DEG analysis using the

limma package (Ritchie et al., 2015) of the R program. T2D-

related DEGs were defined as upregulated genes with fold

changes (FC) above 1.2 or downregulated genes with FC

lower than 0.83, with p < 0.05 (Zhang et al., 2019). The

expression pattern of T2D-related DEGs was established as a

volcano plot using the ggplot2 package. Correlations between

m5C-related gene expression and T2D-related DEG expression

were determined using Pearson’s correlation test. Pearson

correlation coefficient heatmaps were visualized using the

“corrplot” package (Weiet al., 2021). Pearson correlation

coefficients were calculated among m5C-related genes in all

samples and were displayed using Cytoscape software

(Shannon et al., 2003).

Construction of the m5C-related gene
diagnostic model

Because of the important influence of the m5C modification

process, healthy and T2D groups may have different m5C

modification states, so it was viable to construct a diagnostic

model dependent on m5C-related genes.

We performed least-absolute shrinkage and selection

operator (LASSO) regression using the “glmnet” package

(Friedman et al., 2010) in R to determine whether the

occurrence of diabetes was the dependent variable (control =

0, T2D = 1). Only genes with nonzero regression coefficients were

considered.

To check the multi-factor influence of high-weight genes

in the diagnostic model, a new logistic multi-factor regression

model was constructed for m5C-related genes screened from

the previous model using the glmnet R package, and the

prediction score was visualized between the two groups

using the ggpubr R package. In addition, we constructed

the receiving operating characteristic (ROC) curves and

calculated the areas under the ROC curve (AUC) to assess

the model predictive performance (R package pROC) (Robin

et al., 2011).

Unsupervised clustering of samples

Owing to the prevalence of heterogeneity between patients,

unsupervised clustering of samples based on 26 m5C-related

genes can resolve this heterogeneity and reclassify the samples.

Unsupervised consensus clustering of samples was performed

based on an aggregation hierarchical clustering algorithm using

the ConsensusClusterPlus package in R (Leek et al., 2012). The

optimal number of clusters was determined by calculation. To

validate unsupervised clustering results, principal component

analysis (PCA) was performed and visualized using the

ggfortify R package (Horikoshi and Yuan, 2022). The

ggplot2 and ggpubr packages were used to draw boxplots

showing the differential gene expression between molecular

subtypes based on sample clustering. To verify the validity of

molecular subtypes, statistical analyses were performed using the

Wilcoxon signed-rank test, with p < 0.05.

Functional annotation of DEGs

DEGs between molecular subtypes were recognized as FC >
1.2 for upregulated genes or FC < 0.83 for downregulated genes,

with p < 0.05. These DEGs were used for the enrichment analysis.

Gene Ontology (GO) enrichment analysis, including

biological process (BP), molecular function (MF), and cellular

component (CC), is a commonly used method for functional

annotation of genes (Ashburner et al., 2000). Kyoto Encyclopedia

of Genes and Genomes (KEGG) is a database resource providing

genomic and molecular information (Kanehisa and Goto, 2000).

KEGG pathway analysis is widely used in bioinformatics to

annotate and enrich the pathways. GO and KEGG pathway

analyses were performed on the DEGs between molecular

subtypes using the clusterProfiler R package (Yu et al., 2012;

Wu et al., 2021), with p < 0.05 as a significance threshold. The

results of the enrichment analysis were visualized using bubble

plots.

Gene set enrichment analysis (GSEA) and
gene set variation analysis (GSVA)

GSEA is a computational software that assesses whether a

prior-defined set of genes shows statistical differences between
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two biological states and is used to estimate biological processes

and pathways (Subramanian et al., 2005). To study the

differences in biological processes between the two molecular

typing samples, enrichment analysis and visualization were

conducted using the GSEA function in the R package

clusterProfiler (Yu et al., 2012; Wu et al., 2021). Differences

were considered statistically significant when the corrected

p-value was less than 0.05. GSVA is a non-parametric

unsupervised method that estimates variations in GSEA by

transforming a matrix of gene expression across samples into a

matrix of gene set enrichment scores across the same samples

(Hänzelmann et al., 2013). GSEA was performed using the

GSVA R package with gene sets (c5. go.v7.4. entrez_input)

obtained from MSigDB database (Liberzon et al., 2015).

Differential analysis was carried out using the limma

package in R (Ritchie et al., 2015). Differential pathways

were defined as absolute values of log2 FC > 0.02 and

p-value < 0.05 (Li et al., 2021). Heatmaps were drawn using

the pheatmap R package.

Correlations of the m5C-related DEGs

To examine the relevance of m5C-related DEGs between

the two molecular subtypes, Wilcoxon rank sum tests were

performed with p < 0.05 (Tan et al., 2002), and boxplots were

created using the ggpubr package. Correlations among the

expression of m5C-related DEGs were calculated using

Pearson’s correlation coefficient. When analyzing

correlations, Spearman’s correlation coefficient was

considered significant if the p-value was less than 0.05, and

the absolute value of the correlation coefficient larger than

0.8 was considered a strong correlation. Scatter plots and fitting

curves were constructed in R using the ggplot2 package.

FIGURE 1
Workflow for the whole study.
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Histograms were made in R using the ggExtra package (Attali

and Baker, 2022).

Weighted gene co-expression network
analysis (WGCNA)

WGCNA is a method for clustering genes intomodules based

on correlations among gene expression patterns. Co-expression

networks were constructed using the WGCNA package

(Langfelder and Horvath, 2008) (R square value = 0.8, an

appropriate soft threshold to identify clusters). The gray

modules represent genes that had not been classified and,

therefore, these were deleted. Because of the important effects

of pyroptosis on diabetes (Lu et al., 2021), we retrieved

pyroptosis-related genes from the GeneCards database (Stelzer

et al., 2016), searching for the keyword criteria “pyroptosis”.

Module analysis and mining were performed with the

characteristics of pyroptosis-related genes to obtain modules

significantly related to pyroptosis for further analysis.

Protein-protein interaction (PPI)
establishment and identification of hub
genes

As pyroptosis and m5C have important effects on diabetes

(Liu et al., 2021; Lu et al., 2021), we determined if any genes of

FIGURE 2
Landscape of m5C-related genes. (A) Heatmap of the m5C-related genes. (B) Boxplot of m5C-related genes. Ns indicates not significant (p >
0.05), and *p < 0.05, **p <0.01, ***p <0.001, ****p < 0.0001 represent significant p-values. (C) Volcano plot of T2D-related differentially expressed
genes. (D) Correlations among m5C-related genes and T2D-related differentially expressed genes. (E) Network diagram of the correlation
interaction between m5C-related genes.

Frontiers in Genetics frontiersin.org05

Song et al. 10.3389/fgene.2022.1015879

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1015879


FIGURE 3
Diagnostic model of m5C-related genes. (A) LASSO regression curve. (B) Curve for selection of lambda value. (C) Predicted effect of the LASSO
regression model (T2D = 1, control = 0). (D) Receiver operating characteristic curve of the logistic model for diagnosis of T2D.

FIGURE 4
Unsupervised clustering of samples. (A) Selection of the optimal clustering number. (B) Clustering heatmap. (C) Principal component analysis.
(D) Boxplot of the clustering.
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the pyroptosis module overlapped with m5C-related genes. A

PPI network was constructed based on overlapping genes using

the STRING database (von Mering et al., 2003). The PPI pairs

were identified using the confidence threshold (default value of

0.4). The degree of each node was calculated using the

CytoHubba plugin for Cytoscape (Chin et al., 2014). Hub

genes were defined as nodes within the top five-degree

values in a network. These nodes have a high level of

connection with other nodes and thus may play a crucial

role in regulating the entire biological process.

FIGURE 5
GO terms and KEGG pathway enrichment analyses of DEGs. (A) The top 10 significantly enriched biological processes. (B) The top
10 significantly enriched cellular components. (C) The top 10 significantly enriched molecular functions. (D) KEGG pathway analysis.

TABLE 1 GO enrichment analyses. (Only the top 15 terms are shown).

Ontology Description Adjusted p-value

BP cellular respiration 3.97E-10

BP energy derivation by oxidation of organic compounds 6.78E-10

CC contractile fiber 1.27E-08

CC sarcomere 1.58E-07

BP aerobic respiration 2.72E-07

CC myofibril 3.50E-07

BP mitochondrial electron transport, cytochrome c to oxygen 2.13E-06

BP aerobic electron transport chain 2.13E-06

BP respiratory electron transport chain 2.87E-06

MF cytochrome-c oxidase activity 3.41E-06

MF heme-copper terminal oxidase activity 3.41E-06

MF oxidoreductase activity, acting on a heme group of donors 3.41E-06

MF oxidoreductase activity, acting on a heme group of donors, oxygen as acceptor 3.41E-06

BP muscle system process 4.08E-06

BP electron transport chain 1.11E-05
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Construction of ceRNA regulatory
network

A lncRNA-miRNA-mRNA network was constructed

according to the “competing of ceRNA” hypothesis.

Correlations between the hub gene expression and lncRNA

expression profiles were assessed. The correlation coefficients

and significance values (p) were evaluated using the Hmisc

package in R (Harrell and Dupont, 2022). The interacting

pairs that had absolute value of r larger than 0.3 and p ˂

0.05 were assumed to be significantly correlated. A list of

experimentally validated human lncRNA-miRNA and

miRNA-mRNA interaction pairs was downloaded from the

mirTarBase database (Huang et al., 2020). After analyzing the

overlap of the significantly correlated interaction pairs with those

of the list, the lncRNA-miRNA-mRNA ceRNA network was

generated using the Cytoscape software.

Correlation analysis of hub genes and
immune infiltration

Immune cells are essential components of the immune

microenvironment and play fundamental roles in the

development of diseases. Immune cell infiltration in tissues

plays a significant and instructive role in disease development

and prognosis prediction. To further explore the relationship

between hub genes and immune cell infiltration, we dissected the

proportion of immune cells in each sample using CIBERSORT

(Chen et al., 2018) and the LM22 signature matrix. Boxplots were

constructed using the ggpubr package. To investigate the

correlations between hub gene expression and immune

infiltration levels, we used the ggpubr package to generate

boxplots based on 22 immune cell subtypes. Statistical

comparisons were performed using the Wilcoxon signed-rank

test, with p < 0.05.

Statistical analyses

All data calculations and statistical analyses were performed

using R (version 4.0.2). To compare the two groups of continuous

variables, the statistical significance of the normally distributed

variables was estimated using the independent t-test. To compare

the two groups of non-normally distributed independent

variables, the difference was analyzed using the Wilcoxon

rank sum test for non-normally distributed independent

variables. ROC curves were plotted, and AUC values were

calculated using the R package pROC. All statistical tests were

2-sided, and p < 0.05.

Overall study design and methodologies were summarized as

a workflow (Figure 1).

Results

Identification of m5C-related genes

First, m5C-related gene expression maps were established.

The boxplots (Supplementary Figure S1) showed that the

expression distribution of all samples were consistent after

batch correction. This assured the accuracy of downstream

analysis. Heatmaps and boxplots were drawn according to the

expression matrix of the samples to show the difference in m5C-

related gene expression between the control and T2D groups

(Figures 2A,B). The m5C-related genes between the two groups

were identified using a two-group comparison (Supplementary

Table S2). The TET gene family was highly expressed in the T2D

group, while the ZBTB gene family was highly expressed in the

control group.

Then, to explore the relationship between m5C-related

genes and T2D-related DEGs, a total of 58 T2D-related DEGs

were screened (Supplementary Table S1) and visualized using

a volcano plot (Figure 2C). Figure 2D depicts the Pearson’s

correlation coefficients between m5C-related genes and T2D-

related DEGs. M5C-related genes were significantly correlated

with most T2D-related DEGs such as DNMT1-NUCB1 (r =

TABLE 2 KEGG enrichment analyses.

ID Description p-value

hsa05016 Huntington disease 1.14E-06

hsa04260 Cardiac muscle contraction 1.72E-06

hsa05020 Prion disease 1.84E-06

hsa00190 Oxidative phosphorylation 5.24E-06

hsa05012 Parkinson disease 8.37E-06

hsa04932 Non-alcoholic fatty liver disease 1.71E-05

hsa05415 Diabetic cardiomyopathy 2.39E-05

hsa05010 Alzheimer disease 7.18E-05

hsa04714 Thermogenesis 7.44E-05

hsa05014 Amyotrophic lateral sclerosis 0.000180368

hsa05208 Chemical carcinogenesis - reactive oxygen species 0.000286287

hsa04922 Glucagon signaling pathway 0.000570642

hsa05022 Pathways of neurodegeneration - multiple diseases 0.000596652

hsa04931 Insulin resistance 0.000599597

hsa04211 Longevity regulating pathway 0.001660804

hsa04657 IL-17 signaling pathway 0.002115276

hsa05134 Legionellosis 0.002193253

hsa05215 Prostate cancer 0.002428137

hsa05131 Shigellosis 0.002597656

hsa00640 Propanoate metabolism 0.003557727

hsa03010 Ribosome 0.004196813

hsa04920 Adipocytokine signaling pathway 0.0043975

hsa05417 Lipid and atherosclerosis 0.004694059

hsa01200 Carbon metabolism 0.005052249
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0.758, p = 8.75e-15) and DNMT1-MYBPC1 (r = -0.741, p =

6.29e-14). These results suggest that the m5C-related genes

are associated with diabetes. Using Pearson’s correlation, we

found notable positive and negative correlation in the

expression among m5C-related genes (Figure 2E),

including UHRF1-TET3 (r = 0.855, p = 5.82e-22) and

DNMT3B-TDG (r = -0.751, p = 2.02e-14). In conclusion,

these results suggest that m5C-related genes may regulate

T2D-related DEGs through positive or negative regulatory

interactions.

Construction of diagnostic model based
on m5C-related genes

LASSO regression was performed on 26 m5C-

related genes. The lambda value with minimal average

deviance was determined as the optimal lambda

(0.1,019,701) by cross-validation (Figures 3A,B). We

found that only the ZBTB4 gene was ultimately retained.

Then, logistic regression was used to develop a diagnostic

model containing the ZBTB4 gene and estimate

regression coefficients. The prediction scores of the

diagnostic model differed between the control and T2D

groups (Figure 3C). A multivariate logistic regression

model was constructed to validate the accuracy of the

diagnostic model. The predictive model showed acceptable

diagnostic performance with an AUC value of 0.655

(Figure 3D).

Unsupervised clustering of samples

An unsupervised clustering of the 26 m5C-related genes for

the diabetic samples was performed. Two clusters had the best

clustering effect (Figure 4A); therefore, we used K = 2 as the

optimal number of clusters to perform unsupervised clustering

and clustered the diabetic samples into two categories. Then, the

clustering effect was visualized using clustering heatmaps

(Figure 4B). The principal component analysis conducted to

verify the unsupervised clustering results showed that m5C-

related genes could effectively separate the two molecular

subtypes (Figure 4C), demonstrating the accuracy of clustering

results. Finally, the Wilcoxon rank-sum test was used to examine

the expression levels of T2D-related DEGs in the two molecular

subtypes. IGFBP6, PDK4, RPS4Y1, S100A4, TPT1, and ZFP63

genes showed significant differences in their expression levels

between the two molecular subtypes (Figure 4D). These results

indicated that these genes were also related to their typing, which

also reflected the validity and accuracy of the clustering results.

GO and KEGG pathway enrichment
analyses of DEGs

To probe the biological functions of the molecular subtypes,

all DEGs between the two molecular subtypes were subjected to

GO and KEGG enrichment analyses. A total of 120 enriched

GO terms were observed in GO enrichment analyses. The top

five most significant terms were cellular respiration, energy

FIGURE 6
GSEA and GSVA. Gene set enrichment analysis demonstrating the protein-containing complex (A), cell death (B), and apoptotic process (C)
signaling pathways enrichment in T2D. (D) GSVA analysis of differential pathway.
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derivation by the oxidation of organic compounds, contractile

fiber, sarcomere, and aerobic respiration. These results involved

multiple biological processes related to energy metabolism and

further confirmed the accuracy of the identified gene set

(Figure 5A-C, Table 1). KEGG pathway analysis revealed

that 24 pathways were enriched, including oxidative

phosphorylation, thermogenesis, propanoate metabolism, and

carbon metabolism pathways. These results can also

complement the GO enrichment results. This further

demonstrated that these genes were associated with

metabolism-related biological processes or functions

(Figure 5D, Table 2).

GSEA and GSVA

GSEA was used to identify the functional enrichment of the

two molecular subtype. Six significant GO-terms were found to

be enriched (Figure 6A-C, Table 3). These include protein-

containing complexes, cell death, and apoptosis process. These

results validated and complemented our GO and KEGG analysis

results. In addition, the GSVA method was used to assess the

significance of pathway alterations in diabetic samples. We

computed pathway expression scores for each sample and

identified 4,091 pathways with significant differences. These

included palmitoyltransferase activity, collecting duct

development, and telencephalon regionalization (Figure 6D,

Table 4).

Correlations of the m5C-related DEGs
expression

To further analyze the correlations of m5C-related DEGs

expression between the two molecular subtypes, the Wilcoxon

rank-sum test was used to identify 18 m5C-related DEGs: YBX1,

TET3, NSUN3,MBD4, NSUN7, TET2, NSUN2, UHRF2, ZBTB33,

NSUN6, TDG, UNG, NEIL1, NTHL1, MBD2, UHRF1, MBD3,

and DNMT3B (Figure 7A). After calculating the correlation

coefficients between any two m5C-related DEGs, correlation

scatter plots and fitted curves were generated. Four gene pairs

met the statistical significance threshold: TET3-DNMT3B (r =

0.814, p = 8.83e-10), TET3-UHRF1 (r = 0.848, p = 3.43e-11),

UHRF1-DNMT3B (r = 0.844, p = 5.44e-11), and UHRF1-MBD3

(r = 0.804, p = 2.03e-09) (Figures 7B–E). Overall, UHRF1, TET3,

and the other genes were significantly positively correlated. This

indicated an interaction between the m5C-related genes based on

patient typing.

WGCNA

To determine the relationship between diabetes and

pyroptosis, the R package WGCNA was used to cluster the

samples in this study. First, an appropriate soft threshold was

selected using the pickSoftThreshold function and was set at 6

(Figure 8A). In this study, β = 6 was chosen to construct the

network, at which time the correlation coefficient between log(k)

and log (p(k)) was close to 0.8 (Figure 8B). We constructed a

hierarchical clustering tree using a dynamic hybrid tree–cut

algorithm. Every leaf in the tree corresponded to a gene, and

a branch of the tree represented a gene module, which meant that

these genes had similar expression data, and a total of 11 modules

were generated (Figure 8C). Among the 11 modules, the

TABLE 3 GSEA.

Description NES p-value

protein-containing complex -1.630309425 0.02027027

cell death 1.756117512 0.027777778

apoptotic process 1.72075552 0.03003003

programmed cell death 1.72075552 0.03003003

regulation of cell death 1.669531533 0.031700288

regulation of apoptotic process 1.617003364 0.045714286

TABLE 4 GSVA. (Only the top 10 pathways are shown).

Description logFC p-value Adjusted p-value

GOMF_C_PALMITOYLTRANSFERASE_ACTIVITY -0.903282932 2.19E-12 2.23E-08

GOBP_COLLECTING_DUCT_DEVELOPMENT 0.583850809 5.18E-12 2.63E-08

GOBP_TELENCEPHALON_REGIONALIZATION 0.723419914 1.46E-11 4.93E-08

GOCC_ENDOPLASMIC_RETICULUM_PALMITOYLTRANSFERASE_COMPLEX -0.697389902 2.34E-11 5.93E-08

GOMF_EXORIBONUCLEASE_ACTIVITY -0.584344635 3.55E-11 7.20E-08

GOCC_PALMITOYLTRANSFERASE_COMPLEX -0.621978615 5.45E-11 9.22E-08

GOBP_RNA_PHOSPHODIESTER_BOND_HYDROLYSIS_EXONUCLEOLYTIC -0.572339064 1.36E-10 1.97E-07

GOBP_URETER_MORPHOGENESIS 0.699920401 1.86E-10 2.07E-07

GOMF_N6_METHYLADENOSINE_CONTAINING_RNA_BINDING -0.835486369 2.03E-10 2.07E-07

GOBP_CITRATE_TRANSPORT 0.723749741 2.10E-10 2.07E-07
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turquoise module was associated with the most pyroptosis-

related genes (|r| > 0.3, p < 0.05), indicating that it was more

relevant to pyroptosis (Figure 8D). We chose the genes in the

turquoise module for further analysis.

PPI network establishment and
identification of hub genes

Genes that regulate the same biological processes are closely

related because of their widespread linkage. To further analyze

the differentially expressed m5C-related genes in the pyroptosis

module, we first intersected the genes in the turquoise module

with m5C-related DEGs and obtained 12 genes, namely, TET3,

MBD4, NSUN7, NSUN2, NSUN6, TDG, UNG, NEIL1, NTHL1,

UHRF1,MBD3, andDNMT3B (Figure 9A). Next, we set up a PPI

network using the STRING database, which included 12 genes

and 24 interaction relationships. The average node degree was

four in the PPI network, with an enriched p-value < 1.0e-16,

clustering coefficient of 0.73, density of 0.583, and centralization

of 0.375. Subsequently, visualization of the PPI network was

completed using Cytoscape software (Figure 9B).

FIGURE 7
Correlations of m5C-related genes. (A) The boxplots of the m5C-related genes between two molecular subtypes. (B–E) Scatter plots and the
fitting curves of the differentially expressed m5C-related genes.
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In the network, a few nodes were more closely connected

with the remaining nodes; that is, these genes will have more

impact on the whole network, emphasizing the significance of the

network. Using the plugin Cytohubba in Cytoscape software, the

top five genes were defined as hub genes from the PPI network:

MBD4, TDG, UHRF1, UNG, and TET3 (Figure 9C).

Construction of ceRNA network

Seven lncRNAs (lncRNA SNORA70, HSP90B3P, MEIS3P1,

SPRR2C, DLEU1, lncRNA TOP1P2, and LY6G6E), 11 miRNAs

(has-let-7b-5p, has-miR-124-3p, has-let-7a-5p, has-miR-6831-

5p, has-miR-196a-5p, has-miR-3927-3p, has-miR-98-5p, has-

miR-106b-5p, has-miR-26b-5p, has-miR-4686, and has-miR-

192-5p), and five mRNAs (TET3, MBD4, UHRF1, UNG, and

TDG) were identified (Figure 10). These results suggest several

post-transcriptional regulatory programs for expressing key

genes in diabetes.

Assessment of the immune
microenvironment in T2D

To identify the interactions between hub gene expression

and immune infiltration, we first calculated the proportion of

22 immune cells in each sample using the CIBERSORT

algorithm (Figure 11A). We also computed the correlation

coefficients between the hub gene expression and immune cell

infiltration levels. The results showed that the expression

levels of the hub genes were significantly correlated with

various immune cell proportions (Figures 11B–F). For

example, the expression of MBD4 was related to

M0 macrophage proportion. The expression of TET3 was

correlated with the levels of M1 macrophages and CD8+

T cells. In addition, the expression levels of UHRF1, UNG,

and other genes significantly correlated with various immune

cells. These results indicate that the hub genes are related to

the immune infiltration microenvironment from multiple

perspectives.

FIGURE 8
WGCNA. (A) Analysis of the scale-free index and themean connectivity for various soft-threshold powers. (B)Checking the scale-free topology
when β = 6. (C) Dendrogram of the pyroptosis-related genes. The color band shows the results obtained from the automatic single-block analysis.
(D) Heatmap of the correlations between the modules and traits of pyroptosis.
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Discussion

T2D is a lifelong metabolic disorder with high prevalence

worldwide. The exact pathogenesis of T2D remains unclear, and

drug therapy for T2D involves lowering blood sugar levels

(Draznin et al., 2022). Therefore, additional insights into T2D

pathophysiology and treatment are urgently needed to improve

the clinical management of T2D. Increasing evidence shows that

post-transcriptional RNA modifications play an important role

in diabetes (Jonkhout et al., 2017; Ling and Rönn, 2019).

FIGURE 9
Protein-protein interaction and identification of hub genes. (A) Venn diagram of the differentially expressedm5C-related genes in the turquoise
module. (B) Protein-protein interaction network of the differentially expressed m5C-related genes in the turquoise module. (C) CytoHubba plugin
analysis of the top five hub genes with the degree algorithm.

FIGURE 10
CeRNA network. MiRNAs (green arrow), m5C-related genes (blue triangle), and lncRNAs (orange oval) are represent.
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However, the role of m5C methylation as one of the most

common RNA modifications in T2D remains unclear.

Therefore, to investigate the functional role of m5C in T2D,

we performed an integrative analysis of the merged gene

expression profiles of 37 T2D patients and 36 controls. A

total of 26 m5C-related genes and 58 T2D-related DEGs were

identified. The expression of m5C-related genes was significantly

correlated with the expression of most T2D-related DEGs. After

LASSO regression, the ZBTB4 gene was obtained, and we

constructed a diagnostic model and validated its accuracy.

GO, KEGG, and GSEA analyses indicated that these enriched

pathways were closely related to metabolism-related biological

processes, protein-containing complexes, cell death, and

apoptotic processes in T2D. WGCNA showed that the

turquoise module was associated with the most pyroptosis-

related genes. Furthermore, the top five hub genes associated

with T2D were screened from the PPI network based on the

12 m5C-related DEGs in the turquoise module. In addition, a

FIGURE 11
Immune infiltration analysis. (A) Boxplot of the proportion of 22 types of immune cells. (B–F) Immune cell infiltration characteristics between
high gene expression and low gene expression groups: (B) MBD4, (C) TDG, (D) TET3, (E) UHRF1, and (F) UNG.
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ceRNA interaction network of hub m5C-related genes was

obtained. Moreover, the expression levels of hub m5C-related

genes were significantly correlated with the levels of various

immune cells.

In the first part of this study, we identified 26m5C-related genes

in the merged dataset, which included 37 T2D and 36 normal

skeletal muscle samples. The TET family members were highly

expressed in the T2D group, whereas the ZBTB family members

were highly expressed in the control group. Cluster analysis also

supported this finding, showing that the expression levels of m5C-

related genes could differentiate the two groups. This indicated that

the m5C-related genes are associated with diabetes. We also

identified 58 T2D-related genes from this dataset. The expression

of m5C-related genes was significantly correlated with that of most

T2D-related DEGs. For example, DNMT1 expression was positively

and negatively correlated with NUCB1 and MYBPC1 expressions,

respectively. A significant correlation between the expression of

m5C-related genes was also observed. m5C regulated

epitranscriptome expression, mainly by modulating the binding

of writer (methyltransferases), eraser (dimethyltransferases), and

reader proteins (Trixl and Lusser, 2019). The TET family

proteins function as RNA dimethylases, including TET1, TET2,

andTET3, and their functions involve RNA degradation. A previous

study has demonstrated that TET2, the most commonly regulated

5 mC dimethyl transferases, was characterized as demethylase in

adipogenesis (Hou et al., 2020). Low expression levels of TET2 have

been correlated with poor prognosis in hepatocellular carcinoma

(Jin et al., 2020). ZBTB4, also known as KAISO-L1 or ZNF903, acts

as a transcriptional repressor and is vital for maintaining

mammalian genomic stability (Roussel-Gervais et al., 2017). Our

study found that the ZBTB family was highly expressed in the

control group, implying that altered ZBTB expression may play a

role in T2D. Several studies have shown that ZBTB4 is

downregulated in multiple tumor types, such as breast cancer,

Ewing sarcoma, and colorectal cancer (Kim et al., 2012; Yu et al.,

2018; Xiang et al., 2020). Xiang et al. showed that high expression

levels of ZBTB4 were associated with a good prognosis in colorectal

cancer (Xiang et al., 2020). Regarding the diagnostic value, we

constructed a diagnostic model based on ZBTB4, which was

obtained using LASSO regression analysis. The AUC value of the

model was 0.655, suggesting that this model exhibited moderate

accuracy (Akobeng, 2007) and may be an ideal target for the

diagnosis of T2D. It has been documented that ZBTB4 is

involved in the regulation of diabetes-related complications (Zhu

et al., 2019). Zbtb7c gene, which belongs to the ZBTB4 zinc finger

protein family, has been identified as a critical gluconeogenic

transcription factor (Choi et al., 2019).

In the second part of this study, we identified two molecular

subtypes by performing unsupervised clustering for T2D samples

based on 26 m5C-related genes. Six T2D-related DEGs (IGFBP6,

PDK4, RPS4Y1, S100A4, TPT1, and ZFP36) significantly differed in

their expression levels between the two molecular subtypes. IGFBP6

and PDK4 were upregulated in patients with diabetes and diabetes-

related complications (Lu et al., 2012; Moon et al., 2012). A recent

study found that the upregulated RPS4Y1 in endothelial cells in a

high-glucose environment may contribute to endothelial cell

dysfunction by regulating the p38 MAPK signaling pathway

(Chen et al., 2021). S100A4 has been identified as a biomarker

for insulin resistance (Anguita-Ruiz et al., 2020). TPT1 regulates

glucose metabolism and has been investigated as a drug target for

type 2 diabetes (Jeon et al., 2021). Caracciolo et al. found that wild-

type and ZFP36−/− mice became diabetic and obese under a high-fat

diet and that ZFP36−/− mice exhibited improvements in insulin

sensitivity (Caracciolo et al., 2018). These results suggested that these

genes were also related to their typing, reflecting the validity and

accuracy of the clustering results. We performed GO analysis to

demonstrate the biological functions of DEGs. The top five most

significant GO terms were cellular respiration, energy derivation by

the oxidation of organic compounds, contractile fiber, sarcomere,

and aerobic respiration. These results indicated multiple biological

processes related to energy metabolism and further confirmed the

accuracy of the identified gene set. A disturbance between cellular

demands for energy and energy supply is a key element in the

development of T2D (Steinberg, 2018). A recent study showed that

abnormal cellular energy metabolism caused elevated blood glucose

levels and was closely associated with insulin resistance

(Dulkadiroğlu et al., 2021). For KEGG pathway analysis,

24 pathways were enriched, including oxidative phosphorylation,

thermogenesis, propanoate metabolism, and carbon metabolism.

These results can also complement the GO enrichment results.

GSEA was used to identify the functional enrichment of the

molecular subtypes, and six significant GO-term enrichments

were identified. The most enriched terms were protein-

containing complexes, cell death, and apoptosis process.

Accumulating evidence has demonstrated that the pathogenesis

of T2D involves multiple types of programmed cell death,

including apoptosis, autophagy, pyroptosis, and ferroptosis

(Demirtas et al., 2016; Mamun et al., 2021; Sha et al., 2021).

GSVA was also performed between the two clusters, and

4,091 pathways with significant differences were identified. These

included palmitoyltransferase activity, collecting duct development,

and telencephalon regionalization. Previous studies have reported

high levels of circulating fatty acids in prediabetes and T2D patients,

and excessive tissue exposure to fatty acids can result in insulin

resistance (Serlie et al., 2007). Carnitine palmitoyltransferase I is the

rate-limiting enzyme in fatty acid oxidation, and increased carnitine

palmitoyltransferase I activity can accelerate fatty acid oxidation (Qu

et al., 2016). In summary, these results indicate that energy

metabolism and programmed cell death may be the major

contributors to T2D.

In the third part of the present study, we identified 18 m5C-

related DEGs between these two molecular subtypes. Then, we

found there were interactions between the differentially expressed

m5C-related genes in patient typing. Gene-gene interactions have

been recognized to be important for understanding genetic causes of

type 2 diabetes (Zhou et al., 2018; Banerjee et al., 2019). Diabetes
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mellitus is an autoimmune disease characterized by chronic

inflammation and metabolic disorders (de Candia et al., 2019).

Pyroptosis, a type of programmed cell death related to the response

to innate immunity, has received more attention in the onset and

progression of diabetes and its complications (Mamun et al., 2021).

Most studies on the identification of hub genes have compared gene

expression profiles between the control and disease groups (Che

et al., 2019; Lin et al., 2020; Zhu et al., 2020). However, the effects of

m5C modification or its connections with pyroptosis genes in T2D

have not yet been reported. To determine the relationship between

diabetes and pyroptosis, we conducted a WGCNA analysis to

identify the pyroptosis module. The turquoise module was

associated with most pyroptosis-related genes.

In the PPI network constructed in this study, five

differentially expressed m5C-related genes in the turquoise

module were identified as hub genes. MBD4, TDG, UHRF1,

UNG, and TET3 are recognized as binding proteins in the

dynamic regulation of m5C. TET3 has been involved in T2D

by inducing HNF4α fetal isoform expression (Li D. et al., 2020).

The mRNA expression of TET3 was upregulated in diabetic

patients and rats. Upregulated TET3 expression can affect the

dynamic regulation of m5C in T2D (Yuan et al., 2019). The

ceRNA regulatory role of long non-coding RNA (lncRNA) in

T2D has been identified (Lin et al., 2017). Recent studies revealed

that m5C-related lncRNA signatures play important role in

human cancers (Wang et al., 2021; Zheng et al., 2022). In this

study, we constructed a ceRNA interaction network. Seven

lncRNAs, 11 miRNAs, and five mRNAs were identified,

suggesting that post-transcriptional regulation played a role in

the expression of key genes related to T2D.

Recently, immune system-based treatments for many diseases

have emerged, including cancer and diabetes. In animal models,

targeting immune cells enhances or suppresses diabetes

development. There is increasing evidence that components of

the innate immune system contribute significantly to T2D

(Dalmas, 2019). Our current study showed that the expression of

hub genes was significantly associated with the levels of various

immune cells. For example, MBD4 expression was related to

M0 macrophage levels. TET3 expression correlated with the

levels of M1 macrophages and CD8+ T cells. The expression of

UHRF1,UNG, and other genes was significantly correlated with the

levels of various immune cells. Unlike CD4+ regulatory T cells, CD8+

T and CD4+ T helper one counterparts promoted insulin resistance

(Shu et al., 2012). Jin et al. found that hyperglycemia induces

M1 macrophage activation and increased the expression of

inflammatory genes through the NF-κB pathway (Jin et al.,

2015). Ahmed et al. reviewed epigenetic mechanisms, including

DNA methylation and the regulation of macrophage activation in

T2D (Ahmed et al., 2017). Together, these findings imply that these

hub genes play a vital role in the recruitment and regulation of

immune-infiltrating cells in T2D.

Our study had some limitations. First, to fully understand the

role of m5C-related genes in T2D, a comprehensive evaluation of

blood samples and skeletal muscle tissues is required. Second, our

study validated the diagnostic accuracy of ZBTB4 expression for

T2D; further external validation employing a larger sample size

will help authenticate the results. Third, the lack of detailed

clinical data precluded an evaluation of the relationships between

risk factors and molecular subtypes according to T2D

complications. For instance, more severe inflammation

appears in T2D patients with clinical complications. More

detailed clinical features of T2D patients should be included

in the future for further subset analysis. Finally, full clarification

of the function of hub genes in T2D will require further

experimental investigation, such as quantitative real-time PCR,

western blot analysis, and immunohistochemical assays.

In conclusion, our results demonstrate that 5-methylcytosine

methylation plays a role in T2D, broadening our knowledge of its

pathophysiology. Furthermore, we believe this hypothesis-

generating study provides new insights into the molecular

mechanisms underlying T2D and identifies several potential

biomarkers for its diagnosis and treatment.
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