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ABSTRACT Determining the severity level of hypoxemia, the scarcity of saturated oxygen (SpO2) in the
human body, is very important for the patients, a matter which has become even more significant during
the outbreak of Covid-19 variants. Although the widespread usage of Pulse Oximeter has helped the doctors
aware of the current level of SpO2 and thereby determine the hypoxemia severity of a particular patient, the
high sensitivity of the device can lead to the desensitization of the care-givers, resulting in slower response to
actual hypoxemia event. There has been research conducted for the detection of severity level using various
parameters and bio-signals and feeding them in amachine learning algorithm. However, in this paper, we have
proposed a new residual-squeeze-excitation-attention based convolutional network (Res-SE-ConvNet) using
only Photoplethysmography (PPG) signal for the comfortability of the patient. Unlike the other methods, the
proposed method has outperformed the standard state-of-art methods as the result shows 96.5% accuracy in
determining 3 class severity problems with 0.79 Cohen Kappa score. This method has the potential to aid the
patients in receiving the benefit of an automatic and faster clinical decision support system, thus handling the
severity of hypoxemia.

INDEX TERMS Saturated oxygen, attention, feature map, excitation, deep learning.

I. INTRODUCTION
Oxygen saturation (SpO2) blood is measured by the ratio
between the concentration of hemoglobin which have formed
a chemical compound with oxygen, called oxy-hemoglobin,
and the total concentration of hemoglobin. In human body,
standard values of oxygen saturation are above 96% [1].

Hypoxemia is the state when the saturated oxygen level
of patient falls generally below 90% [2], a condition which
might be symptom of diseases like asthma or lungs tumor [3].
It can be a dangerous issue and patients of high risk are often
transferred immediately to the Intensive Care Unit (ICU)
for close monitoring and rapid intervention [4]. Hypoxemia
is a common sedation-related complication [5]. Although it
normally remains in mild state, and spontaneous recovery is
likely, hypoxemia remains the principal cause of increased
morbidity and mortality [6], which in turn may become lethal
and require immediate medical attention. It is even the most
common complication of tracheal intubation in ICU [7],

[8], [9], [10] and is associated with cardiac arrest [7], [11],
[12]. Avoidance of hypoxemia during tracheal intubation is a
goal in clinical practice [13]. Therefore, early warning and a
reliable method of risk stratification for hypoxemia may help
the physician select patients who would benefit most from
an aggressive intervention and thereby confirm the optimum
utilization of the medical resource allocation [4], [14].

The detection of hypoxemia is highly dependant on the
detection of current state of saturated oxygen level of the
patient which is widely measured by pulse oximeter using
dual wavelength Photoplethysmography (PPG) [15]. Takuo
Aoyagi is the pioneer to design pulse oximetry in 1971 by
using the ratio of red to infrared light absorption of pulsating
components at the measuring area [16]. The standard of care
for the administration of a general anesthetic in the U.S.
included pulse oximetry and the application of the device
spread from the operating room to recovery rooms, and then
to ICUs. It was of particular value in the neonatal unit.
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However despite the wide application of this device in the
hospital as well as the household, its high sensitivity may lead
to high rate of false alarms [17]. As a result it can desensitize
the care givers to real emergencies [18], [19]. Therefore,
an alternate approach should be pursued to compensate the
sensitivity.

Different machine learning techniques such as support
vector machine and artificial neural network were applied to
predict SpO2 using blood visible spectra during ex-vivo treat-
ments [1]. A prediction model of Hypoxemia was designed
by Geng et al. [14] using demographic data, concurrent
chronic disease information, anesthetic dose and Modified
Observer’s Assessment of Alertness/Sedation (MOAA/S)
scores. McKown et al. [13] developed logistic regression
model to predict severe hypoxemia. An artificial neural net-
work model was designed in [20] where body mass index,
neck circumference and data of habitual snoring were used as
input to predict hypoxemia. Although these novel approaches
are promising, they require several patient data for pre-
diction. Additionally, to facilitate medical resources, it is
extremely crucial to classify the hypoxemia patients in terms
of their severity level which is especially important during
the outbreak of covid variants. In [21], Ghazal et al. used
machine learning approaches such as artificial neural network
(ANN) and bootstrap aggregation of complex decision trees
(BACDT) to evaluate the severity level of the patient. But
their method had to use several patient data in addition to
continuous biomedical signals to predict the outcome.

In this paper, we propose a new residual Squeeze and
Excitation (SE)Attention based convolutional neural network
that can predict the severity level of hypoxemia of a critical
patient using only PPG signal. Rather than feeding the signal
only into a stack of convolutional layers, a residual approach
of SE attention based parallel branch is proposed where the
extracted features can be imposed on the traditional convo-
lutional output to generate more fine-tuned parameters. The
result of the model is further compared with conventional
machine learning classification approaches along with the
existing deep neural architectures. The proposed model has
the potential to aid the physicians in rapid classification of the
patients on the basis of their need of intensive care in time of
urgency.

II. PROPOSED METHODOLOGY
The proposed methodology is divided into several section.
At first the pre-processing of the extracted input data
is explained. Then, the necessity and procedure of data
sampling is described. Later on, the novel neural architec-
ture, called ‘‘Res-SE-ConvNet’’ with function of its indi-
vidual blocks is demonstrated with necessary flow charts.
Finally, the loss function necessary for model optimization
is explained with proper detail.

A. DATA PRE-PROCESSING
The digitized PPG data collected from the patients with
corresponding SpO2 value are at first divided into several
frames with fixed frame length to facilitate the processing of
the network. After that, the constructed frames are annotated

into 3 separated labels depending on their oxygen satura-
tion value for evaluation purposes. A patient having SpO2
level of greater than 91% may not need immediate medical
attention whereas patients with SpO2 level between 91% to
85% should be provided with necessary medical attention.
If the oxygen level drops below 85%, then the case should
be considered as critical, and the patient needs immediate
medical procedure to be resuscitated to normal condition.
To this goal, the frames are labelled as 0, 1 and 2 accordingly
depending on the oxygen label- 0 being normal (greater than
91%), 1 beingmoderate (85% - 91%) and 2 being critical (less
than 85%) [21].

Let us consider the whole set of extracted PPG frame set
to be denoted as

D = {(xi, yi)| i = 0, 1, 2, . . . ,N − 1} (1)

whereas N is the total number of frames, xi is the ith frame of
predefined length and yi is its corresponding annotated label.
All the frames are extracted from the raw PPG signal X and
its corresponding annotation vector Y:

xi = X [(1+ s ∗ i), (2+ s ∗ i), . . . , (l + s ∗ i)] (2)

yi = Y [i]

∀i ∈ {0, 1, 2, 3, . . . ,N − 1} (3)

where, s is the frame shift of the raw frame. As we did not
want any data overlapping between two frames, the frame
shift was set to be equal to frame length. The division of
continuous PPG signal to generate pre-processed PPG frames
of fixed length of 1 second can be viewed in Figure 2. For
case of simplicity only a 30 second of duration of the whole
PPG signal has been chosen to demonstrate its division into
3 hypoxemia classes according to their SpO2 level.

B. DATA SAMPLING
After the frame creation, it can be observed that the data
contain a ratio of P:Q:R among the normal, moderate and
severe classes, whereas P � Q ≈ R, a heavy imbalance
due to the extreme scarcity of moderate and critical frames.
Training these data frames directly to any network will have
the tendency to be overfit on the normal class. Due to the
huge number of frames, the model accuracy might be quite
high, but these performance can not be acceptable in realistic
point of view. To train the model to detect all kinds of labels,
the dataset must be balanced for all these 3 classes. For this
purpose, a combination of up-sampling and down-sampling
of relevant classes was necessary before designing the neural
network. Frames of moderate and critical classes were fed to
the Adaptive Synthetic (ADASYN) technique [22] to adap-
tively generate minority data frame while paying attention to
their density distribution. At the same time, frames of normal
class were fed to random under-sampler operation instead of
Tomek Links to avoid the risk of discarding potential data
as borderline samples can be important in specifying the
decision border [23]. By following the operation, a balanced
database was generated for robust model performance. After
the operation the ratio became 1:1:1 for all the classes and
these newly sampled frames were used to train the neural net-
work. After performing these sequential two pre-processing,
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FIGURE 1. Schematic representation of the proposed workflow.

FIGURE 2. Pre-processing of PPG signal to generate fixed 1 second length
of frames.

the generated PPG frames were ready to be used to train and
evaluate the network.

C. PROPOSED DEEP NEURAL ARCHITECTURE
As shown in Fig. 1, the proposed methodology is divided
into four main sections namely- Convolutional Neural Net-
work (CNN) block, Series CNN Block, Rsidual Squeeze
and Excitation Attention (Res-SE) Block and Dense Layers.
Firstly, the pre-processed signal is fed into the CNN block
for feature extraction. The output feature map is then used
as input to two individual sub-networks. The Series CNN
Block continues to fine tune the features while the Residual
Squeeze and Excitation Attention (Res-SE) Block quantifies
the interdependence of each node of the feature map to the
output. The feedback of these two routes is then merged and
converted to a flattened feature vector to be processed with a
series of densely connected layers to converge towards the
final prediction of hypoxemia label. Detailed architectural
analysis of each sub-network is provided in the following
discussion.

1) CONVOLUTIONAL NEURAL NETWORK (CNN) BLOCK
The name of the block is called as CNN block because of
the primary CNN layer that resides in the segment although

the CNN layer is not the only layer this block contains.
The output of CNN layer is fed into a one dimensional
maxpooling layer along with PRelu activation function prior
to batch normalization. The description of the whole block is
explained here:

Each CNN block contains 1 trainable convolutional layer
with kernel size of 3 and channel number of 64. The 2D fea-
ture map is sub-sampled to reduce the number of parameters
to be computed using MaxPool layer with pool size of 2.
In all the SCNN blocks, Parametric Rectified Linear Unit
(PRelu) is used as non-linear activation function for faster
convergence where PRelu is:

PRelu(x) =

{
x, if x ≥ 0
αx, otherwise

(4)

Here, α is the slope for mapping the negative value of the
input whose value, for our proposed method, was chosen to
be 0.2. As the value of the negative slope is made constant for
thewholemodel training, the PReLU acts as LeakyReLU and
thereby eradicates the dead neuron problem [24] that ReLU
activation can create by turning the neurons to off state if they
are not activated initially.

Lastly, a batch normalization process is performed on the
feature map to avoid overfitting of the model. The complete
block can be viewed in Fig. 3 where the dimension of xin can
be altered randomly and the output feature map xout will have
the same length as the input but the channel number will be
64. For our method the input length was selected to be 125.

2) SERIES CNN BLOCK
This block is made up of a series of CNN block to allow a
hierarchical decomposition of the input data which can be
seen at Fig. 3b. Each stack of repetitive CNN layers helps
the network extract relevant information from spatial local
feature map, resulting in creating deeper representation of
the input than the previous one and thereby improve the
performance of the model at a low computational cost as a
whole. The number of CNN block in this route can be varied
to analyze the performance of the proposed model. Smaller
number of blocks typically denotes lesser number of suitable
features that will result in performance degradation. Higher
number of blocks might be able to achieve better result at
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FIGURE 3. Schematic representation of (a) CNN block, and (b) Series CNN block.

FIGURE 4. Schematic representation of the Res-SE block.

the cost of computational complexity and overfitting of the
dataset.

3) RES-SE BLOCK
In this block we introduce a residual approach where an
attention based architectural unit is applied in parallel to the
convolutional route to model the inter dependencies between
the channels of the convolutional feature map. The mecha-
nism is called Squeeze and Excitation (SE) Attention route
and it performs dynamic channel wise feature re-calibration
to extract global information so that it can selectively pay
more attention to the informative features and subdue others.
The whole operation is completed in two steps: i) Squeeze
and ii) Excitation and can be seen in Fig. 4. The different
colors in the output feature map represents the various weight
of attention that are put on individual channel of the input.

In Squeeze stage, the global information abstraction is
performed by applying a global average pooling oper-
ation to generate an embedding of the global distribu-
tion of channel-wise feature responses. Consequently, the

two-dimensional features are compressed along the spa-
tial dimension and mapped into a one-dimensional feature
vector that demonstrates the global response distribution
of the overall feature map. The output feature vector is
denoted as Z:

z = {zc | c = 1, 2, 3, . . . ,C} ∈ RC (5)

Here, Zc is the values of the feature vector for different cth
channel:

zc =
1

H × W

H∑
i=1

W∑
j=1

Xc(i, j) (6)

In the equation, Xc is a feature map with width W for cth
channel that was extracted by the SCNN block in the back-
bone. For our model of operation channel number was fixed
to 64 for optimum performance.

In the excitation section, two densely connected layers with
ReLU activation function are constructed to learn nonlin-
ear interactions between channels as well as the mutually
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FIGURE 5. Schematic representation of the densely connected layers.

inclusive relationships. To fully capture the channel wise
dependencies a self-gating mechanism with sigmoid layer
was built to extract channel weights w:

ω = ψ(W2 ∗ σ (W1 ∗ AvgPool(Xin))) (7)

where, ψ represents the sigmoid function and σ is the ReLU
activation. Finally, the channel weights are multiplied to the
conv route for improved feature selection.

4) DENSE LAYER
As demonstrated in Fig. 5, the flattened temporal feature
vector extracted by the addition of the feature maps of both
the Res-SEA block and the series SCNN block are directly
fed into a stack of densely connected layers to converge the
model towards the final prediction. The equation can be stated
as:

li = σ (Wili−1 + bi) ∀i ∈ {1, 2, 3, 4} (8)

Here, li is the output and bi is the bias vector of the ith
dense layer. For our model, four dense layers constructed
in series for global feature extraction demonstrated optimum
performance. Finally, output vector from the last dense layer
was mapped into the final prediction of hypoxemia severity
using softmax activation function, whose equation is given
by:

softmax(xi) =
exi∑
j e
xj

(9)

where x represents the values from the neurons of the output
layer, i is a random class for prediction and j represents the
total number of classes for a given problem whose value, for
our objective, was selected to be 3.

D. LOSS FUNCTION
After designing the model, the network was set to train itself
using the preprocessed sampled balanced dataset. However,
to optimize the training, the validation loss should be min-
imized and for this, the categorical cross entropy (CCE)
loss function was defined so that correct severity prediction
could be generated. If we consider a training set consisting
of N pairs: (x1, t1), (x2, t2), (x3, t3), . . . ., (xN , tN ), where xi

denotes the ith input vector and ti denotes the corresponding
annotation target, and yi is the model output, then the CCE
loss can be defined as:

LCC = −
1
n

N∑
i=1

C∑
c=1

(piclog(yic)) (10)

where pic whether the ith training pattern belongs to c label
and output yic is the predicted probability distribution for
ith observation belonging to label c [25]. As for CCE loss
function, the targets must be categorical, the annotation label
was converted from integer to one-hot-encoded and then the
whole dataset was applied to the network for model creation
and validation.

III. RESULTS AND DISCUSSION
This section is divided into several parts. At first the dataset
used to analyze the model performance is described. Then the
evaluation metrics used in this paper is mentioned. Finally,
the model is analyzed by varying the parameters and hyperpa-
rameters and compared with other deep learning and machine
learning approaches.

A. DATABASE
To validate the proposed methodology a suitable database
was to be selected at first. In this regard a large public
physionet [26] dataset called ‘‘BIDMC PPG and Respiration
Dataset’’ [27] from the original publication [28] was chosen
for detailed analysis of the robustness of the scheme. The
data was collected from several severely ill patients at the
Beth Israel Deaconess Medical Centre. Two annotators were
appointed to manually annotate each and individual breath in
each recording utilizing impedance pneumography to derive
reference respiratory rate (RR) values for the purpose of
assisting RR estimation, which we would not need for the
task of hypoxemia severity prediction. There are 53 recording
in total, each containing PPG signal sampled at 125 Hz.
The data points from the same samples correlate with each
other. Each recording contains 60001 samples of data. For
the model input, 1 second of frame length was chosen,
thereby making 480 frames for each patient and bringing the
total number of frames to 25440. The corresponding blood
oxygen saturation levels (SpO2), sampled at 1 Hz, are also
present in the database. While the original source of the
dataset, MIMIC-II [29], recorded data for the entire stay of
the patients, Pimentel et al. [28] randomly selected 8 minutes
of data per patient. Our goal is to predict hypoxemia severity
from just a one-second window to allow quick estimations
from wearable pulse oximeters. Although there were other
recordings in the dataset including electrocardiogram (ECG),
heart rate (HR) and RR, we focused only on the PPG signal
and utilized the corresponding SpO2 level to annotate refer-
ence hypoxemia severity based on the thresholds that we have
explained in data pre-processing for its ease of collection and
processed the signal afterwards to apply to the proposed deep
network.

Pimentel et al. [28] mentioned that the significance of
the dataset is that it demonstrates the necessity of collect-
ing such datasets to help the scientific community improve
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wearable-monitoring algorithms, further aidingmobile health
(m-Health) technologies, although they collected data from
the hospital setting only. This gives us confidence that utiliz-
ing this dataset would help us prepare an algorithm that effi-
ciently estimates hypoxemia severity in hospital in-patients.
However, to expand into the m-Health domain, extensive
study needs to be performed besides collecting a large amount
of PPG data outside of hospital settings with the help of
wearable devices.

The setup of the data collection procedure of the source
ensures that they don’t involve intermittent hypoxemia cor-
related with sleep disorders by including data from patients
during their entire stay and not only during their sleep.
However, although the hospital setting ensures that environ-
mental factors such as low oxygen level aren’t causing the
hypoxemia, it’s possible that temperature or other conditions
might cause peripheral vasoconstriction on fingers, limiting
the reliability of identifying the root cause of having a low
SpO2 level in such situations or the positioning of sen-
sors. Therefore, vasoconstriction-related limitations of pulse
oximetry mentioned in [30] apply here too. Since the patients
were admitted to the ICU, it is safe to assume that the
randomly selected data may include effects of medications
such as analgecis or sedatives as mentioned in [31]. However,
Saeed et al. [29] has reported correlation between low SpO2
levels in ICU patients and their mortality rates. Therefore,
it can be important to be able to quickly identify the severity
of such situations.

B. EVALUATION METRICS
In this paper, various traditional metrics have been chosen
for the evaluation of the proposed method such as F1 score,
accuracy, precision and Cohen’s Kappa score as described in
the equations below:

Accuracy =
TP+ TN

TP+ FN + TN + FP
(11)

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

F1 score =
2× Precision× Recall
Precision+ Recall

(14)

Cohen′s Kappa =
P0 − Pe
1− Pe

(15)

Since, different metrics have been used to analyze the perfor-
mance, the experiments have been carried out in a systematic
way to ensure the optimum result. In our research, different
parameters and factors have been selected and modified to
realize their effect on model performance.

C. PERFORMANCE EVALUATION AND COMPARISON
Initially, to demonstrate the importance of applying deep neu-
ral network for this specific objective over machine learning
approach, we analyzed the performance of different machine
learning classifiers such as Random forest, Naive Bayes,
K-Nearest Neighbor (KNN) with different values of K and

TABLE 1. Demonstration of the high performance of deep learning
approach over machine learning.

TABLE 2. Performance analysis by varying the number of SCNN block.

TABLE 3. Performance analysis of the blocks. (Both individual and
combined.)

compared them to simple CNN layers and finally to our
proposed method. The summary can be viewed in Table 1.
Class 0, Class 1 and Class 2 in the table refer to the per-
formance in the individual segments of original sample of
Normal, Moderate and Severe Hypoxemia cases in the test
set. The huge difference in per class F1 score prediction
achieved from machine learning approaches confirms the
need of Deep Learning. However, as the result of simple CNN
suggests, a deeper model is required to acquire better result,
thereby better suited for real life application. As the high
efficiency of deep learning models over machine learning
can be fairly comprehended, a statistical analysis should be
performed to realise the appropriate depth of the model for
this particular objective. The increased performance of model
with the increment of CNN layer or series CNN block in
the proposed method is displayed in Table 2. For CNN layer
greater than 5, results in the overfitting of the model. Layer
number lesser than 5 however results in poor performance.
As the need for Deep Learning has been justified for this
application, the individual effect of attention block and series
CNN block must be analyzed. For this purpose, the perfor-
mance of individual routes and have been summarized in
Table 3. Although both can fairly detect each class frames,
only by merging them altogether can result in the optimum
performance. The combined architecture clearly outperforms
the individual performance in all the evaluation metrics,
thus justifying the application of residual attention with the
traditional series convolutional approach.

The number of filters may also affect the model perfor-
mance. Keeping that in mind, Fig. 6 shows the values of
different parameter metrics of the test set while the number
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FIGURE 6. Variation of the performance metrics value with the change in
channel number.

TABLE 4. Change of performance with the variation of node number in
dense layers.

is varied. It can be seen that taking 64 channel results in opti-
mum performance. Although reducing the channel number to
32 result is almost similar model performance, channel num-
bers more than 64 result in drastic performance degradation,
especially in detecting moderate and severe hypoxemia.

While varying the CNN layers, the nodes in dense clas-
sification layers have been kept fixed. As by method of
inspection, the optimum number of layers have been detected,
the effect of the node number of dense layers in the model
must be observed and the summary can be seen in Table 4.
Here the node number of final layer is 3 for all cases to keep
in accordance the 3 labels of Hypoxemia severity.

After varying the parameters and finalizing the values of
individual variable, the value of different performance met-
rics of the proposedmodel can be seen in Table 5. For the final
model, each CNN block has 64 filters with kernel size of 3.
4 layers have been chosen to be cascaded together in the series
CNN block. While training the model, the data had been
divided into 2 segments by random stratification process-
70% data were chosen for the training set and 30% data were
chosen for the test set respectively. For the validation dataset,
samples were chosen from the last training set samples pro-
vided before shuffling, and 30% of the train data was used to
generate this validation set to fine-tune the hyperparameters
of the model to ensure optimum performance. It is to be
noticed that the validation data was used only for evaluating
the architecture, it was not used to train the model. The data
in the test set did not contain any frame used in the train set
either, which later underwent a series of sampling processes
for data balancing. Therefore, the test data only contained
new data to ensure universal performance. The effect of
sampling process on the dataset can be seen in Table 6. The
test set was kept isolated and did not undergo the sampling
process. The model was trained for 150 epochs and gained
94.52% validation accuracy with validation loss of 0.24. The
accuracy curves of the model can be seen in Fig. 7.
To compare the effect of frame length variation, the

proposed 1 second frame length approach was compared

TABLE 5. Performance of the proposed architecture.

TABLE 6. Effect of sampling process on the number of frames in train
and test set.

TABLE 7. Performance comparison with the variation of frame length.

to 2 second frame length approach. The complete comparison
can be seen in Table 7. It can be seen that 1 second frame
approach supersedes 2 second approach although the reason
may well be the lower number of frames in the training and
test dataset, as increasing the sample number in each frame
resulted in a lower number of frames for the model to train.

To demonstrate its efficiency, the performance of the pro-
posed model has been compared with other conventional
deep networks such as Resnet, Inception Net, Google Net
and VGG16-net and the result is shown in Table 8. For
implementation purpose, the feature map extracted from the
first CNN blockwas used as input to individual deep network.
It can be seen from Table 6 that although the deep networks
have shown better performance than the previous machine
learning models, our proposed model outperforms the exist-
ing networks in almost every parameter.

Although it is true that this paper primarily focuses on
accuracy and sensitivity, it has only been done to eradicate the
chance of desensitization in case of emergency ICU patients.
The false negative rate of a particular model can also be
comprehended by the precision-recall curve, where a high
recall value relates to a low false negative rate, and a high area
under the curve represents both high recall and high precision.
The precision-recall curve for the proposedmodel can be seen
in Figure 8, where unlike the softmax operation, mentioned
in section II.C.4, the curve applies per class binary thresholds
to determine the PR values. Despite that, it approximates
the precision recall trade-off. It can be seen that the model
demonstrates a considerable trade-off between precision and
recall.

To the best of our knowledge, there is no published work to
detect the severity level of oxygen scarcity using Deep Neural
Network. Although publication has been found regarding
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FIGURE 7. Performance of the proposed model (Epoch = 150)
(a) Accuracy curve (b) Loss curve.

TABLE 8. Performance comparison among various established deep
neural networks.

TABLE 9. Performance comparison with existing approach.

machine learning approach where bootstrap aggregation of
complex decision trees (BACDT) has been applied for oxy-
gen level prediction in different database, the performance
is not stable for individual classes as can be seen from
Table 9 whereas the proposed method demonstrates greater
stability for all the classes. The high performance of the
model by using only PPG signal as input, makes the method
a promising topic to investigate and implement in near future.

IV. FUTURE PROSPECTIVE
Although the proposed method has demonstrated consider-
able performance in comparison to other deep neural network
and existing approach, there are still some issues that need to

FIGURE 8. Precision-recall curve for proposed model.

be acknowledged and completed in near future. The issues
that can be addressed are mentioned in this section.

A. GENERALIZATION GAP
As we can observe in Fig. 7, due to data limitations, although
the oversampling-undersampling based data balancing meth-
ods are helpful based on our performance metrics, there is
a noticeable gap between training and validation loss and
accuracy curves, which gradually decreases as the model
keeps learning, as supported by [32]. This can be related to
overfitting or generalization gaps. In future, further work can
be done to address this gap, inspired by methods proposed in
works such as [33], [34], and [35], etc.

B. CONSIDERATION OF HEART RATE LESS THAN 60 BIT
PER MINUTE (BPM)
As the frame length is taken to be 1 second in this research,
there may arise a possibility when the frame will contain
no heartbeat at all if the beat rate of the subject is less
than 60 BPM. Therefore taking frame length of 2 second
should be more appropriate approach. Yet, applying this
method on the BIDMC database [26] cannot generate satis-
fying results due to the very low number of 2 second frames,
especially for the case of class 1 and class 2, as can be seen
from Table 7. We plan to utilize a larger dataset to analyze
this 2 second approach and compare the performance with
the variation of frame length.

C. ABSENCE OF PATIENT HOLD-OUT TESTING METHOD
Due to the frame number constraint, a mixed data approach
had to be performed to analyze themodel performance, where
different frames of the same patient were present in training
and test set. Although it was made sure that no frame existed
in both set, the process does not proof the universality of
the proposed method. Moreover, excluding certain number
of patients’ data and isolating them only for test purpose will
severely affect the model training as it will not have enough
unique training samples for class 1 and 2. Therefore, a larger
dataset will be employed in the future for the verification of
themodel universality by performing the patient hold-out test.

V. CONCLUSION
In this paper, a new approach for severity prediction of
Hypoxemia using PPG signal alone has been proposed. Tra-
ditional application of Pulse oximeter does demonstrate high
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sensitivity towards detecting oxygen degradation, yet its high
rate of false alarm might lead to desensitization of the care
givers. To the best of our knowledge, there has been no other
research paper that has applied deep learning in predicting the
saturation level. The incorporation of convolutional path and
the attention route in our model has succeeded in extracting
the optimum features from the input which can be easily
deducted by observing the high performance of the method.
Additionally, the manuscript explores the changing effect of
various parameters of the model and compares the result
with existing machine learning model. The high performance
in all the evaluation metrics ensures the potentiality of the
model for practical applications of hypoxemia severity level
predictions.
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