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Developing thymocytes interact sequentially with two distinct structures within the thy-
mus: the cortex and medulla. Surviving single-positive and double-positive thymocytes
from the cortex migrate into the medulla, where they interact with medullary thymic
epithelial cells (mTECs). These cells ectopically express a vast set of peripheral tissue
antigens (PTAs), a property termed promiscuous gene expression that is associated with
the presentation of PTAs by mTECs to thymocytes. Thymocyte clones that have a high
affinity for PTAs are eliminated by apoptosis in a process termed negative selection,
which is essential for tolerance induction. The Aire gene is an important factor that
controls the expression of a large set of PTAs. In addition to PTAs, Aire also controls the
expression of miRNAs in mTECs. These miRNAs are important in the organization of the
thymic architecture and act as posttranscriptional controllers of PTAs. Herein, we discuss
recent discoveries and highlight open questions regarding the migration and interaction
of developing thymocytes with thymic stroma, the ectopic expression of PTAs by mTECs,
the association between Aire and miRNAs and its effects on central tolerance.

Keywords: AIRE, miRNA, MTEC, thymus gland, thymocytes, cell adhesion, promiscuous gene expression, central
tolerance

Introduction

The induction of central immune tolerance is an increasingly complex and intricate process that
occurs within the thymus (1, 2). Inside this organ, immature thymocytes interact sequentially and
in a three-dimensional architecture with two distinct structures: the cortex and the medulla. In
the cortex, the double-negative (DN) and double-positive (DP) thymocytes interact with cortical
thymic epithelial cells (cTECs), allowing MHC-mediated self-peptide presentation to DP thymo-
cytes expressing the α/β T cell receptor (α/β TCR), featuring intermediate affinity/avidity. Positive
selection is a result of this interaction, which causes DP thymocytes to differentiate into mature
single-positive (SP) thymocytes (3, 4).

The DP thymocytes that do not undergo positive selection are eliminated through death by
neglect. Thereafter, the surviving SP and DP thymocytes migrate to the thymic medulla, where they
interact with medullary thymic epithelial cells (mTECs). These cells are very peculiar because they
ectopically express a large set of peripheral tissue antigens (PTAs) (5–8). Therefore, it is possible to
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find insulin, a PTA that represents pancreatic beta cells, and a
myriad of other autoantigens in the thymus.

The immunological significance of this property, which was
termed promiscuous gene expression (PGE) (9–12), is associated
with the presentation of PTAs by mTECs to SP and DP thy-
mocytes. Thymocyte clones that express α/β TCR with a high
affinity for PTAs are eliminated by apoptosis in a process termed
negative selection or clonal deletion, which is essential for central
tolerance induction (13–16). This process prevents the passage of
autoreactive T cell clones to the periphery, which could provoke
aggressive autoimmunity.

Therefore, the migration of thymocytes within the thymus
enables the physical association of these cells with different thymic
microenvironments (15, 17). Immunologists are interested in elu-
cidatingwhich chemotactic factors and/or adhesionmolecules are
involved in this process (18, 19).

Another very important factor in central tolerance is the
autoimmune regulator (Aire) gene that controls the expression of
a large set (but not all) of PTAs in mTECs (20, 21). Mutations
in these gene that lead to a loss of Aire function can result
in autoimmune polyendocrinopathycandidiasis-ectodermal dys-
trophy (APECED), an autoimmune disease characterized by
hypoparathyroidism, candidiasis (yeast infection), and adrenal
insufficiency (22–24). The mechanism of the Aire gene as a tran-
scriptional regulator of Aire-dependent PTAs and the effect of
point mutations found in the Aire gene sequence on clinical phe-
notypes (APECED or other autoimmune diseases) have received
attention in recent years (25–27).

In addition, researchers have observed that in addition to PTAs,
Aire controls the expression of microRNAs (miRNAs) in mTECs
(28). In turn, miRNAs are important for the organization of
thymic architecture and act as posttranscriptional controllers of
PTAs (29, 30).

In this mini-review, we briefly discuss (1) the main aspects of
three-dimensional thymus architecture, focusing on themigration
and interaction of developing thymocytes with the thymic stroma
and positive and negative selection; (2) the ectopic expression
of PTAs by mTECs and role of the Aire gene; and (3) the cur-
rent evidence for the link between Aire and miRNAs in thymic
architecture and the induction of central tolerance.

Thymus Architecture, Migration of
Thymocytes and the Induction of Central
Tolerance

Developing thymocytes interact with the thymic microenviron-
ment while they migrate and differentiate within the organ. This
microenvironment is subdivided into two main regions, and each
region is composed of different cell types that produce soluble and
non-soluble molecules that can modulate thymocyte migration
and maturation (31, 32). Thymic lobules are divided into cortical
and medullary regions that are connected by a cortico-medullary
junction. The cortex microenvironment is filled with cTECs,
thymic nurse cells (TECs-thymocyte-forming lymphoepithelial
complexes), macrophages, migratory dendritic cells (DCs), and
fibroblasts. The medullary region contains mTECs, macrophages,

resident and migratory conventional DCs, plasmacytoid DCs,
fibroblasts, and B cells (16) (Figure 1A). Both regions are
filled with a network of extracellular matrix (ECM) molecules,
such as type I and IV collagens, fibronectin, and laminin. Sol-
uble molecules, such as hormones, cytokines, growth factors,
chemokines, and sphingolipids, are also found in the thymus and
are produced by the lymphoid and non-lymphoid compartments.
These soluble moieties can be present in the ECM and mediate
cell–ECM and cell–cell interactions (33–35).

Thymocyte differentiation and migration occur simultane-
ously in the thymic microenvironment. T cell progenitors enter
the cortico-medullary region via post-capillary venules (36) and
rapidly migrate through the cortex toward the subcapsular zone,
where DN thymocytes are primarily located. Subsequently, thy-
mocytes migrate to the middle cortex and begin expressing both
CD4 and CD8 co-receptors, becoming DP cells. During this stage,
cells are selected based on the rearrangement of TCR genes,
which leads to the membrane expression of productive TCRs.
Cells that do not express productive TCRs undergo apoptosis,
whereas cells expressing productive TCRs continue the differ-
entiation process. Then, cells with TCRs that interact with high
avidity with MHC-presented self-antigens expressed by mTECs
andDCs undergo apoptosis in a process termed negative selection
(37). The presentation of self-antigens by mTECs is controlled
by Aire and guarantees the deletion of autoreactive T-cell clones,
supporting central tolerance (38). In this context, cells with TCRs
that interact with low/median avidity with MHC-presented self-
antigens survive and continue the maturation process. Survival
signals mediated by TCRs and CD4/CD8 co-receptors lead to the
down-regulation of a co-receptor, and thymocytes becomemature
CD4+CD8− or CD8+CD4− SP cells (Figure 1A).

Thymocyte localization and guidance are controlled by
ECM molecules and chemokines, among others molecules, and
their respective receptors. For example, the entrance of T-cell
progenitors in the thymus is controlled by CCL21/CCR7 and
CCL25/CCR9 (chemokine/chemokine receptor) interactions
(39). Migration of immature cells within the thymus is controlled
by CXCL12/CXCR4 and CCL20/CCR6 interactions (40, 41), and
CCR7 signaling is essential for the migration of DP thymocytes
to the medulla (42). Moreover, CCR7 is involved in thymocyte
egress, which is also controlled by sphingosine-1-phosphate
receptor 1 signaling (43). The absence of such molecules in the
thymus not only abrogates thymocyte development but also
induces changes in the histological organization of the organ (44).

Thymic architecture and organization are essential for proper
T-cell development and depend on both the lymphoid and non-
lymphoid compartments. Alterations in one compartment can
affect the other and consequently modify T-cell development and
the repertoire of exported mature T cells to peripheral lymphoid
organs. For example, Rag mutations substantially impair thymo-
cyte development and consequently affect the distribution and
maturation of TECs, diminishing the proportion of mTECs and
inducing a lack of AIRE protein expression (45, 46). Lack of
AIRE expression can in turn directly affect negative selection and
break central tolerance. Interestingly, Aire deficiency can modu-
late the intrathymic expression of chemokines as a control mech-
anism of thymocyte development (47). In this context, one can
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FIGURE 1 | (A) Thymocyte development and interactions with
microenvironmental cells. T cell development occurs while cells migrate and
interact with thymic microenvironmental components, including thymic
epithelial cells, dendritic cells, and macrophages. These interactions are
responsible for the selective processes, which lead to the formation of a
self-restricted T-cell repertoire. In this context, medullary thymic epithelial
cells (mTECs) play an essential role by expressing AIRE, which control the
expression of a set of peripheral tissue antigens (PTAs) that are presented to
developing thymocytes. High avidity of MHC-PTAs presented by mTECs
with TCRs lead to thymocyte death by apoptosis and consequently avoid

self-reactive T cell maturation. DN, double-negative CD4−CD8−

thymocytes; DP, doublepositive CD4+CD8+; CD4, single-positive
CD4+CD8−; CD8, single-positive CD8+CD4− thymocytes; cTEC, cortical
thymic epithelial cell; mTEC, medullary thymic epithelial cell. CMJ,
cortico-medullary junction. (B) The transcriptional and posttranscriptional
control pathway of promiscuous gene expression. The peripheral tissue
antigens (PTAs) expressed in medullary thymic epithelial cells (mTECs) are
transcriptionally controlled by Aire within the nuclear compartment, which
also controls the expression of miRNAs. Within the cytoplasm, the miRNAs
control Aire and PTAs.

argue that chemokines and othermolecules controlling thymocyte
migration (such as ECM molecules) could also modulate Aire
expression.

The Role of Aire in the Ectopic Expression
of PTAs in the Thymus

During the induction of central tolerance in the thymus, self-
reactive regulatory T cells (Treg) are negatively selected, even if
these cells play a role in the periphery. In fact, all sets of antigen-
presenting cells, including cTECs, mTECs, and thymic DCs, act
as self-antigen peptide presenting cells (6–9, 48–53). Thymic DCs
present only the PTA peptides that were expressed and processed
by mTECs (38).

The expression of PTAs by mTECs is a key process of
(auto)immune representation. Due to the wide-ranging diversity
of PTAs expressed by these cells, this phenomenon has been
termed PGE (5, 9, 12, 48, 54–62).

The primary implication of this type of gene expression, which
is heterogeneous and ectopic, is associated with the maintenance
of immune homeostasis and controlling the reactivity and self-
aggressive autoimmune diseases.

Notably, cTECs and mTECs are essential but not sufficient for
these selection events (55). The cTEC-derived signals may regu-
late the positive selection of thymocytes that recognize the MHC-
peptide complexes themselves; however, mTECs that express
AIRE help ensure tolerance to self-antigens (63).

A subset of mTECs express the Aire gene (chromosome 10C1
in mice and 21q22.3 in humans) (64) and the claudin proteins

(Cld3 or Cld4) on their surface. In these cells, AIRE and the
claudin proteins act as adhesion molecules and represent the
major proteins that contribute to the molecular architecture of
cell junctions. All Cld3+, Cld4+, and Aire+ adult TEC cells
strongly express MHC class II and CD80 molecules on their
surface (51).

“Immature” CD80−/MHC-II− mTECs express a limited set
of PTAs, whereas “mature” CD80+/MHC-II+ mTECs exhibit
greater PTA diversity, including PTAs whose expression is Aire
dependent (11). These findings have led some researchers to pro-
pose “the terminal differentiation model”; i.e., mTECs undergo a
continuous process of differentiation similar to the skin or intesti-
nal epithelium, and the full complement of PGE is contingent
upon this process (55). mTEC cells are very peculiar due to their
unique gene expression pattern. They are capable of expressing
more than 19,000 protein-coding genes, including “ectopic” genes
that correspond to PTAs. Currently, no other known cell type
expresses such a large set of genes (65).

We next sought to determine whether these cells also have
unique machinery for gene expression control.

Although the transcriptional control of PGE is partially
exerted by Aire, mutations in this gene cause severe autoim-
munity that involves various organs and tissues in both mice
and humans. In humans, this disease is a syndrome termed
APECED, and patients have mutations along the Aire sequence,
suggesting thatmutations inAire trigger aggressive autoimmunity
(22, 66).

However, the existence of APECED patients who lack Aire
mutations (67–69) suggests that other factor(s) may be involved

Frontiers in Immunology | www.frontiersin.org July 2015 | Volume 6 | Article 3523

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


Passos et al. The role of Aire and miRNAs in central tolerance

in controlling aggressive autoimmunity. These observations led
us to wonder if temporal changes and a slight deregulation of
wild-type Aire expression during development could contribute
to autoimmunity.

Variation of Aire expression might disturb Aire-dependent
PTAs in the thymus and consequently trigger aggressive autoim-
munity, a hypothesis that was previously tested by our group (58).
This hypothesis is a promising subject for further research and is
currently being studied in humans with thymic cells isolated from
Down syndrome patients, which feature trisomy of chromosome
21, providing a unique opportunity to evaluate the effect of natural
Aire gene dosage in humans (70–72).

The functional role ofAire has beendemonstrated using knock-
out (KO) mice. Aire in mice and humans encodes a protein with
affinity for DNA that functions as a positive transcription factor
regulating the expression of PTAs mTECs, but AIRE can also act
as a negative regulator of other genes (8, 10, 73–76).

The link between Aire expression and the induction of thymo-
cyte apoptosis, a biological process crucial for negative selection,
has been demonstrated (37, 77). However, according to our best
knowledge, no investigation has assessed this link considering
the possible effect of variations in Aire expression in mTECs
on adhesion with thymocytes and the induction of apoptosis.
Alternatively, Aire-deficient mTEC cells may lose their adhesion
ability. This question is still open for further research.

Interestingly, the AIRE targets low-transcribed genes. It inter-
acts with hypomethylated promoter regions in the chromatin
through its PHD1 domain (62, 78–82).

However, recent evidence has demonstrated that the AIRE acts
indirectly in regulating PTA transcription. According to Giraud
et al. (83), AIRE can be considered an unusual transcription
factor because it does not appear to function as a typical trans-
activator. These authors demonstrated that AIRE activates PTA
transcription by releasing stalled RNA Pol II from blockage at the
promoter region of its target genes. Thismodel suggests that AIRE
acts during the elongation stage of transcription rather than at
transcription initiation (83). The “promiscuity” of Aire on a large
set of downstream PTA genes might be due the unspecific mode
of action of RNA Pol II on different promoter regions, but this
remains to be determined.

A new exciting possibility for the Aire mechanism is its influ-
ence in controlling alternative splicing of PTA genes in mTECs.
Aire has been shown to increase the amount of measurable exons
per gene and enables the production of PTAs from these exons
(84); these properties might significantly increase the diversity of
PTA isoforms in mTECs and consequently increase the range of
self-representation.

It is possible that aggressive autoimmunity is associated with an
imbalance of PTAs isoforms in mTECs.

The Link Between Aire and miRNAs

In our view, not only Aire but also miRNAs may play a role
in central tolerance. This hypothesis is plausible considering the
vast range of action of miRNAs, which affect more than half of
all mRNAs originating from protein-coding genes in human or
murine cells (85).

This range of action is expected to reach mRNAs encoding
proteins involved in the central tolerance mechanism, including
PTA mRNAs and Aire mRNA itself.

First, researchers evaluated the role of the endoribonuclease
Dicer, a key enzyme implicated in miRNA maturation, on thymic
function. They found that Dicer-KO mice exhibit progressive
degeneration in thymic architecture and function, provoking
alterations in T cell differentiation and peripheral tolerance, pin-
pointing miRNA-29a as a specific miRNA participating in this
process (29).

Then, mice lacking Dicer expression in the thymic epithelia
were found to exhibit a set of abnormalities, including alter-
ations in the expression profiling of cTEC and mTEC mRNAs.
T cells obtained from a Dicer-deficient thymus were pathogenic
and produced aggressive autoimmunity (86). These finding were
instrumental for further research on the role of miRNAs in central
tolerance induction.

Moreover, thymic epithelial cells isolated from murine or
human thymuses feature overlapping of miRNA signatures, sug-
gesting evolutionary conservation of miRNA expression profiles
(87). These authors also demonstrated that Aire expression is
associated with maturation-dependent expression of miRNAs.

However, a direct demonstration that Dicer and consequently
miRNAs play a role in TEC-thymocyte adhesion, which is crucial
for positive and negative selection, is still lacking. This question is
open for further investigation.

As discussed above, the AIRE acts in close association with
RNA Pol II (83). Because this polymerase transcribes miRNAs in
addition to mRNAs (88–92), Aire may affect miRNA expression.

Our group was the first to directly demonstrate this possibil-
ity (28). We showed that in murine mTECs, Aire controls the
transcription of miRNAs located within a genomic region that
encompasses an open-reading frame (ORF of Gm2922 mRNA).

This finding enabled further evaluation of the role played by
Aire-dependent miRNAs in the posttranscriptional control of
PTAs. Thus, we reconstructed miRNA–mRNA interaction net-
works from mTECs isolated from BALB/c (non-autoimmune)
or non-obese diabetic (NOD) (autoimmune) mice. As expected,
dozens of PTA mRNAs interacted with miRNAs. Interestingly,
none of the classical Aire-dependent PTAs (e.g., Ins2) interacted
with miRNAs, strongly suggesting that they are somewhat resis-
tant to posttranscriptional control (30).

What would be the consequences of a lack of miRNA action
on these PTAs? Could this lack of action aid autoantigen syn-
thesis by mTECs, consequently inducing tolerance? What causes
these Aire-dependent PTAs to be “resistant” to miRNA action?
Could changes in their 3′UTRs (length or mutations) or imbal-
ance in miRNAs expression levels (or both) cause this resistance?
We have suggested that there may be changes in length of the
3′UTR sequence of Aire-dependent PTAs expressed in mTECs
(30). Researchers including our group and the group of Mathieu
Giraud in Paris are now challenged to evaluate the structure of
mRNAs in general and/or the 3′UTRofmRNAsof PTAs expressed
in mTECs compared with other cell types.

Based on these recent results, is possible to drawn a pathway
for the transcriptional and posttranscriptional control of PGE in
mTECs (Figure 1B). Within the nuclear compartment, the AIRE
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controls PTA and miRNA transcription (Aire-dependent PTAs
and miRNAs). Once in the cytoplasm, miRNAs play a role in
the posttranscriptional control of Aire and PTA mRNAs. Would
PTA mRNAs with altered 3′UTRs be refractory to the action of
miRNAs?

Although these aspects have only recently begun to be explored,
they represent new, exciting questions for present and future
research on the molecular genetic basis of immune tolerance.

Concluding Remarks

The molecular genetic control of central tolerance remains an
open question in immunology. The identification and cloning of
the Aire gene was instrumental in studying themolecular genetics
of this process. As the primary controller of PTA expression in
mTECs, Aire is the master pillar of central tolerance. Aire expres-
sion is common in the thymus; and this observation led to the idea
of PGE.However, Aire did not fit well as a classic transcription fac-
tor. The AIRE operates in conjunction with various other partner
proteins in the release of RNA Pol II shortly after the initiation of

PTA gene transcription. This property enabled better understand-
ing of the vast range of AIRE activity. Recently, miRNAs have been
found to be the modulators of post-transcriptional controllers in
the thymus. Researchers are now challenged with deciphering the
transcriptional and post-transcriptional control pathway of PGE
involving Aire and miRNAs.
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