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Background
Natural product (NP)s, are defined as substances produced by living organisms. The 
term NP is often used broadly, covering both natural compound (NC)s and mixtures of 
NCs derived from natural sources [1]. The diverse biological activities of NPs are due to 
the activity of their constituent NCs. In order to fully understand and utilize NPs, it is 
important to identify and investigate the mode of action of active NCs.

Abstract 

Background:  Due to their diverse bioactivity, natural product (NP)s have been 
developed as commercial products in the pharmaceutical, food and cosmetic sectors 
as natural compound (NC)s and in the form of extracts. Following administration, NCs 
typically interact with multiple target proteins to elicit their effects. Various machine 
learning models have been developed to predict multi-target modulating NCs with 
desired physiological effects. However, due to deficiencies with existing chemical-
protein interaction datasets, which are mostly single-labeled and limited, the existing 
models struggle to predict new chemical-protein interactions. New techniques are 
needed to overcome these limitations.

Results:  We propose a novel NC discovery model called OptNCMiner that offers vari-
ous advantages. The model is trained via end-to-end learning with a feature extraction 
step implemented, and it predicts multi-target modulating NCs through multi-label 
learning. In addition, it offers a few-shot learning approach to predict NC-protein inter-
actions using a small training dataset. OptNCMiner achieved better prediction perfor-
mance in terms of recall than conventional classification models. It was tested for the 
prediction of NC-protein interactions using small datasets and for a use case scenario 
to identify multi-target modulating NCs for type 2 diabetes mellitus complications.

Conclusions:  OptNCMiner identifies NCs that modulate multiple target proteins, 
which facilitates the discovery and the understanding of biological activity of novel 
NCs with desirable health benefits.
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Subject to selective pressure over millions of years, NCs now have diverse bioactive 
chemotypes, some of which are optimized for particular biological functions, such as 
endogenous growth and the defense of living organisms [2]. Due to their wide range 
of target space and bioactivity, NCs have been an important foundation for traditional 
medicines and modern pharmacology. The World Health Organization has reported 
that approximately 20,000 plants are used for herbal remedies in 91 countries worldwide 
[3]. Diverse bioactive scaffolds of NCs have been examined as drug candidates for the 
treatment of various diseases, including cancer, cardiovascular diseases, and infectious 
diseases [2]. From 1981 to 2014, more than a half of all approved novel drugs were 
derived from NCs [4]. In addition to pharmaceutical sources, NC applications are also 
expanding in the functional food, cosmetics and agricultural industries [5–8].

Another interesting characteristic of NCs is their propensity to modulate multiple 
protein targets. The unique scaffolds and structural motifs of NCs enable interactions 
with multiple target proteins to elicit diverse biological activities [9]. In the past few 
decades, the paradigm of drug discovery has shifted from ’one target, one disease’ to 
‘multi-target’ or ‘multimodal’ drug discovery, especially for diseases with complex 
etiologies or drug resistance issues [10]. Such multi-target modulating drugs have been 
expected to improve safety issues and enhance clinical efficacy compared to single-
target drugs [11–13]. For example, resveratrol, a well-known stilbenoid found in red 
wine and various foods, has been associated with 21 direct molecular targets including 
SIRT1 [14]. Resveratrol has been shown in clinical studies to have beneficial effects on 
pathways implicated in a variety of diseases, such as diabetes, obesity, various types of 
cancer, Alzheimer’s disease and cardiovascular disease [15]. However, due to the NCs 
targeting multiple proteins, it has been challenging to discover optimal NCs, which 
regulate desired targets and avoid any off-targets.

Various experimental methods have been developed over the past few decades to 
identify NCs that regulate target proteins [2]. However, the discovery process for multi-
target modulating NCs is tedious and cost-intensive. For translation of discoveries 
into drug development, a pre-approval process of lead identification, compound 
optimization, in vitro and animal experiments is required before the first clinical trial 
can be conducted. Developing a new drug through this process typically costs in excess 
of 800 million US dollars [16]. In recent years, computational methods have provided 
substantial assistance in the discovery of new NCs. Molecular descriptors and fingerprint 
methods have made it possible to describe NCs in mathematical expressions [17], 
while 3D modeling and docking methods have been developed to simulate a complex 
molecular structure and conformational space of NCs, as well as their interactions 
with target proteins [18]. These cheminformatics tools, along with chemical-protein 
interaction databases, have shed light on the development of machine learning models 
that predict novel NCs and streamline the NC discovery process.

A variety of machine learning methods have been trained on chemical-protein 
interaction databases to predict compounds with novel target modulating activities 
[19–21]. Of particular note, deep neural networks (DNN)s have been widely applied 
in the field of active compound discovery, as they enable the automation of the feature 
engineering process that often becomes a bottleneck in conventional machine learning 
methods. DNN’s capabilities with end-to-end learning—a process of training parameters 
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jointly—enables the automation of complicated predictive procedures ranging from data 
pre-processing to the prediction of processed data. Thus, DNN efficiently generates or 
extracts important hidden features from the input vectors of the compounds responsible 
for their activities, circumventing the need for manually engineering the input features 
[22]. However, conventional machine learning models including DNN still carry 
limitation: their performance greatly relies on the data quantity and quality [23, 24]. 
Unfortunately, established chemical-protein interaction databases are biased towards 
the most well-studied proteins and compounds. Thus, not all proteins have sufficient 
data to reliably train machine learning models. In addition, most existing databases are 
optimized for binary classification methods as they only provide single or limited target 
protein data for each compound. Datasets from such databases treat unknown chemical-
protein interactions as negative data. Consequently, predictive models trained on single-
label data run the risk of predicting false-negative interactions when the interactions 
can be experimentally tested positive. Thus, the prediction of such interactions should 
be treated as a multi-label classification task. Considering that the interaction data 
provided by the existing databases is single-labeled and limited in size, a model capable 
of learning multi-classification from single labeled data is required to overcome the 
current limitations of NC discovery.

Siamese neural network (SNN), first suggested in the early 1990s by Bromley and 
LeCun, is comprised of two identical networks, with one called ‘heads’, that accepts 
distinct input pairs and is an activation function called ’body’, that concatenates the two 
heads [25]. SNN is a powerful tool for two reasons: it enables similarity comparisons of 
complex data and can be applied to one-shot and few-shot learning. When comparing 
the similarity between two high-dimensional data points, the SNN learns the hidden 
representations of the two input vectors in a parallel fashion and compares the outputs 
at the end using a similarity metric such as cosine distance. Unlike models that use 
classification loss functions to classify between classes, SNNs use contrastive loss 
functions to learn to distinguish between inputs. The procedure of SNN to generate 
pairs of similar and dissimilar data points from the original data for training allows SNN 
to train on larger data compared to the original dataset. In addition, SNN is a model 
capable of few-shot learning, a learning method that can make predictions using a 
single or a very small number of samples [26]. Also, since the model is trained to predict 
similarity between input pairs, the performance of the model is not impacted by the 
class imbalance in positive and negative data. Due to these characteristics of SNN, it is 
a significantly compatible model, especially for learning protein-interacting compound 
data. SNN has been applied to various fields including image analysis, audio and speech 
processing, and sensor-based activity recognition [27–30]. Furthermore, SNN has also 
been recently applied in the field of pharmacology. ReSimNet, a model for drug discovery 
and repositioning was developed by Jeon et al. in 2019 [31]. Jeon and colleagues used 
SNN to predict transcriptional response similarities between two compounds using 
gene expression data from the CMap database. However, there has not yet been a case 
where an SNN has been applied to predict NCs that modulate multiple disease-specific 
target proteins.

Here, we describe ‘OptNCMiner’, a machine learning model suitable for predicting 
‘optimal NCs’ that modulate disease-specific multi-targets. Built on a structure of 
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SNN, OptNCMiner preserves the advantages of DNN to effectively extract essential 
features of NCs related to chemical-protein interactions. OptNCMiner is validated 
on its ability with multi-label learning from single positive data on chemical-
protein interactions, and is also capable of few-shot learning, enabling multi-class 
classification on NCs using small datasets. We tested OptNCMiner with the discovery 
of natural sources containing NCs that regulate target proteins associated with type 2 
diabetes mellitus (T2DM)-related complications.

Methods
OptNCMiner learns structural similarities between compound pairs and is trained 
to grant high similarity scores to chemical pairs where both compounds are active 
against a single target protein. Upon successful training, OptNCMiner calculates the 
activity score of NCs with each target protein in of the context of a similarity score 
between NCs and known active compounds of target proteins (Fig. 1). OptNCMiner 
was trained with three datasets of different sizes in order to test its learning capabil-
ity regardless of dataset size. Comparisons with traditional classification models and 
validation of false positives using in silico docking simulation revealed that OptNC-
Miner successfully predicts both known and unknown chemical-protein interactions.

Fig. 1  OptNCMiner model flowchart
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Data collection and preparation

Chemical-protein interaction data was gathered from ExCAPE-DB and LIT-PCBA. 
ExCAPE-DB is a database of chemogenomics data curated from two major public 
databases: PubChem and ChEMBL [32]. Compound data curated from ExCAPE-DB 
were labeled according to the activity flag provided by ExCAPE-DB: ‘A’ for active and 
‘N’ for inactive. LIT-PCBA is a dataset designed for virtual screening and machine 
learning based on PubChem bioassay data [33]. Similarly, compound data curated from 
LIT-PCBA were labeled as active or inactive based on the given activity class for each 
compound.

Three datasets of different sizes were prepared and named as the ’base dataset’, 
’transfer learning dataset’, and ’few-shot learning dataset’ in accordance with their 
decreasing size (Table 1). All datasets were composed of active and inactive compounds. 
The base dataset was constructed with chemical-protein interaction data for 11 proteins 
and data for more than 5,000 active compounds, randomly selected from ExCAPE-DB. 
The transfer learning dataset was constructed with chemical-protein interaction data 
for 7 proteins with the number of actives between 500 and 1,000. The transfer learning 
dataset was used for transfer learning of OptNCMiner and five baseline models capable 
of multi-class classification: Cosine similarity, Naïve Bayes (NB), Logistic Regression 
(LR), Random Forest (RF), and Multi-layer Perceptron (MLP). Data for the transfer 
learning dataset were collected from ExCAPE-DB and LIT-PCBA. The performance 
of OptNCMiner was compared to that of the baseline models. The few-shot learning 
dataset was constructed with chemical-protein interaction data for 7 proteins with data 
for less than 100 active compounds. The few-shot learning dataset was used for the few-
shot learning of OptNCMiner and was collected from LIT-PCBA data. This set consists 
of 296 compounds in total.

Input generation

For each compound, a standard fingerprint of 1024 bits was generated from the canonical 
SMILES representation using Chemistry Development Kit (CDK) in R software [34]. For 
each of the base dataset and transfer dataset, 10% of the data were set aside for the test 
set. Of the remaining 90%, 10% were set aside for use as the validation sets. As a result, 
81% of the total data were used for training, 9% for validation, and 10% for testing.

We have generated pairs of compounds and their labels, since OptNCMiner is a net-
work that accepts inputs in the form of pairs and computes the similarity between the 
two. Compound pairs were labeled as ‘positive’ if both were classified as active for the 
same target protein. Those pairs that did not satisfy the criteria were labeled as ‘negative’. 
In order to prevent proteins with large interaction data sizes from dominating the train-
ing dataset, proteins were randomly sampled from a uniform distribution. For generat-
ing positive pairs, active compounds to the protein, which is shown as Cp in Fig. 1, were 
randomly sampled. On the other hand, compounds interacting with different proteins 
or negative compounds to the target protein ( CN in Fig.  1) were randomly chosen to 
generate negative pairs. 7,000 positive and negative pairs each were generated for the 
training dataset, in the form of fingerprint vectors of compound pairs concatenated with 
the binary labels of either 1 or 0. This add up to 14,000 pairs generated from base dataset 
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for pre-training the model. Previous studies by others have successfully predicted the 
properties of chemicals using pre-training data with about 20,000 chemicals or less [35, 
36]. So, we decided that our pre-training data was a reasonable size to train the model 
without undue computational cost.

Model building

OptNCMiner is built in an SNN structure, where pairs of inputs are fed to identical 
multi-layer perceptrons called ‘head function’ to generate pairs of embedding vectors. 

Table 1  Data used to construct the base dataset, transfer learning dataset, and few-shot learning 
dataset

Dataset Target gene Target protein Data source Active 
compounds

Inactive 
compounds

Base dataset (actives > 
5000)

ADORA2A Adenosine receptor A2a ExCAPE-DB 5077 591

BRCA1 Breast cancer type 1 
susceptibility protein

ExCAPE-DB 8619 43,095

CNR1 Cannabinoid receptor 1 ExCAPE-DB 5125 397

DRD2 D(2) dopamine receptor ExCAPE-DB 8037 40,185

HTR1A 5-hydroxytryptamine 
receptor 1A

ExCAPE-DB 6339 31,695

KCNH2 Potassium voltage-gated 
channel subfamily H 
member 2

ExCAPE-DB 5327 26,635

LMNA Prelamin-A/C ExCAPE-DB 14,533 72,665

OPRM1 Mu-type opioid receptor ExCAPE-DB 5665 2872

SLC6A4 Sodium-dependent 
serotonin transporter

ExCAPE-DB 6912 370

TARDBP TAR DNA-binding protein 
43

ExCAPE-DB 12,193 60,965

TDP1 Tyrosyl-DNA 
phosphodiesterase 1

ExCAPE-DB 23,129 115,645

Transfer learning dataset 
(1000 > actives > 500)

ADRA2A Alpha-2A adrenergic 
receptor

ExCAPE-DB 816 39

GRIN1 Glutamate receptor 
ionotropic

ExCAPE-DB 553 92

HTR3A 5-hydroxytryptamine 
receptor 3A

ExCAPE-DB 565 65

MINK1 Misshapen-like kinase 1 ExCAPE-DB 929 8

PKM2 Pyruvate kinase PKM ExCAPE-DB 546 2730

POLK DNA polymerase kappa LIT-PCBA 772 3860

VDR Vitamin D3 receptor LIT-PCBA 884 4420

Few-shot learning 
dataset (100 > actives)

ADRB2 Beta 2 adrenergic 
receptor

LIT-PCBA 17 170

ESR Estrogen receptor alpha LIT-PCBA 13 130

IDH1 Isocitrate dehydrogenase LIT-PCBA 39 390

MTOR mammalian target of 
rapamycin complex 1

LIT-PCBA 97 970

OPRK1 Kappa opioid receptor LIT-PCBA 24 5460

PPARG​ Peroxisome proliferator-
activated receptor 
gamma

LIT-PCBA 27 270

TP53 Cellular tumor antigen 
p53

LIT-PCBA 79 790
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The similarity between two embedding vectors is computed by a distance function 
referred to as the ‘body function’. The overall structure of the model is represented as 
follows:

where X1 , X2 is a pair of chemical inputs in the form of fingerprint vectors, Y is the 
binary label of the pair, H(·) is the head function, and B(·) is the body function. The head 
function H(·) maps input vectors X1 , X2 ∈ R2048 into embedding vectors Z1 , Z2 ∈ R2048 . 
The hidden layer dimension for H(·) is set to 2048–2048–2048 with a dropout of 0.5, and 
was constructed with PyTorch. The resulting embedding vectors are created in forms 
of Z1 = W2f (W1X1 + b1 + b2) and Z2 = W2f (W1X2 + b1 + b2) , where f(·) is a ReLU 
activation function and W1 ∈ Rh×2048,W2 ∈ Re×h, b1 ∈ Rh, b2 ∈ Re are trainable weights 
and biases, respectively. Z1 and Z2 are then fed in to the body function B(·), which is a 
function of cosine distance, defined by Eq. (2). We then defined the structural similarity 
of two compounds as the cosine distance between two embedding vectors. Finally, 
sigmoid function with Eq. (3) is used to produce the output called ’similarity score’, where 
1 refers to the presence of chemical-protein interaction, and 0 refers to its absence.

Binary Cross Entropy (BCE) was used as the loss function (4). Through the 
optimization process, the model was trained to minimize BCE between the predicted 
output and the label. The model hyperparameters were optimized using the validation 
set during training. We used Adam optimizer [37] with a learning rate of 0.0001.

The training data were utilized in the support set upon completion of training. A 
support set was constructed by randomly sampling 100 active compounds per protein. 
Each query in the test set was compared to each compound in the support set. To classify 
the binding of the compound to the target protein, the highest similarity for each protein 
was compared to a threshold. Then, for each protein, the maximum similarity score of 
the query compound is used to classify whether the compound binds to the protein. A 
threshold of 0.5 is used to determine the binding of the compound to the target protein.

Training approaches for varying dataset sizes: transfer learning and few‑shot learning

For many machine learning problems, better performance can be achieved by applying a 
transfer learning method, which pre-trains the model on a larger dataset before further 
training it on the target dataset [38]. We previously constructed the transfer learning 
dataset, which is composed of chemical-protein interaction data smaller in size (500 ~ 1000 
active compounds) than the base dataset. We have adopted the idea of transfer learning 

(1)Y = B(H(X1),H(X2))

(2)cosine distance(Z1,Z2) =
Z1 • Z2

�Z1� × �Z2�
=

∑

n

i=1 Z1i × Z2i
√

∑

n
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2 ×

√

∑

n
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2

(3)σ(x) =
1
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1
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on the transfer learning dataset, by pre-training the model with the base datasets and fine-
tuning it with the transfer learning dataset.

For datasets too small to feasibly train on, few-shot learning can be used. The few-shot 
learning method uses distance metrics to compute the similarity between a data point in a 
support set and a data point in a query set [26]. In this study, we used the cosine distance to 
compute the similarity between the embedding vectors of a query data point and a support 
data point. If the distance between a query data point and at least one support data point is 
greater than 0.5, the query data point was predicted to regulate the target protein, and the 
query data point received a positive label for the target protein. We used the model trained 
for transfer learning to predict chemical-protein interactions with the few-shot learning 
dataset, taking the sparse available data and using it as a support set. 90% of the available 
data for the few-shot learning dataset was used as support and was tested on the remaining 
10%.

Multi‑label classification from single label data

Chu and colleagues have provided an updated gold standard dataset of chemical-protein 
interaction data that accounts for multiple bindings [39]. To test the viability of learning 
multi-label representation from single-label data, the performance of OptNCMiner 
learning from a filtered single-label version of this data tested on the single-label test data 
was compared to the testing performance of the full multi-label data. performance with 
both single-label and multi-label datasets is shown in Additional file  1: Table  S1 and all 
datasets used for the trial are available at the GitHub address listed in ‘Availability of data 
and materials’ section.

Model evaluation metrics

Since OptNCMiner is a classification model, typical classification metrics have been used 
to evaluate the performance of the model. A recall is a metric that measures the proportion 
of true positives, Tp , against all existing positives (5). Thus, recall is a metric that evaluates 
misclassification of actual positives. Accuracy measures the general performance of the 
model, by calculating the proportion that the model classifies correctly among the entirety 
of the predictions (6). The area under the receiver operating characteristics (AUROC) is 
an area under the curve drawn on the plot between the true positive rate (TPR) and false 
positive rate (FPR). The AUROC value represents the degree of class separability of the 
model. The final evaluation metrics are calculated as the weighted average of metric values 
of all proteins.

(5)Recall =
Tp

TP + FN

(6)Accuracy =
Tp + FP

TP + TN + FP + FN
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Results and discussion
Dataset analysis

The chemical-protein interaction data from three differently-sized datasets are 
aggregated into a total of 106,317 positive interactions with 25 different target proteins. 
Since all proteins have different instances of interactions, 1,000 active compounds were 
randomly selected for each protein in the base dataset, and all active compound data 
from the transfer learning data and few-shot learning data were used to investigate the 
target protein-interacting compound space.

To explore the physicochemical properties of the sampled compounds, principle com-
ponent analysis (PCA) was used. The following ten physicochemical properties were 
calculated using OPERA 2.6 [40] to generate the PCA plot: Octanol–water partition 
coefficient (LogP), melting point (MP), boiling point (BP), vapor pressure (VP), water 
solubility (WS), Henry’s Law constant (HL), Octanol–air partition coefficient (KOA), 
retention time (RT), acid dissociation constant (pKa), and pH-dependent lipid-aque-
ous partition coefficient (LogD). The scattered compounds are represented (in Fig. 2a) 
as a 2D diagram of PCA, where the compounds are assigned with different color codes 
according to the proteins they interact with.

Fig. 2  The distribution of a physicochemical properties; and b chemical structures in the base dataset, 
transfer learning dataset, and few-shot learning dataset
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Additionally, the structural similarity distribution of the sampled compounds 
was investigated using a pairwise Tanimoto similarity matrix. Sampled compounds 
were represented in a high dimensional space with a 1,024-bit standard fingerprint, 
containing information for the chemical substructures. All possible pairs of compounds 
were generated from those sampled and Tanimoto similarity values between 1,024-bit 
standard fingerprint vectors of chemical pairs were calculated. The resultant similarity 
matrix was rendered in the form of a heat map (Fig. 2b), where the sampled compounds 
were positioned in an order of base dataset, a transfer learning dataset, and a few-shot 
learning dataset.

The PCA plot in Fig. 2a reveals that compounds interacting with 25 different proteins 
share similar physicochemical properties and cannot easily diverge. However, the 
Tanimoto similarity values calculated from the fingerprint vectors of the compound 
pairs are distributed mostly between 0.1 to 0.3, which means almost all of the sampled 
compounds are structurally different from each other. From Fig. 2a, b, we can conclude 
that our compounds share similar physicochemical properties but are structurally 
diverse. Thus, there was no predetermined structures or physicochemical properties that 
facilitated the prediction of the different target proteins. Using such compound data, 
OptNCMiner was trained to learn these hidden features to discern the binding natures 
of the compounds with different target proteins.

Performance evaluation

To evaluate whether OptNCMiner is sufficiently specialized for NC multi-target 
prediction, we examined its ability to learn multi-label classification by comparing the 
performance of the model after training with single-label and multi-label data. The 
single-label data were generated by deleting classes—in this case, target proteins of 
compounds from the original multi-label data. In a manner similar to how Cole validated 
multi-label learning with single-label data, we show that OptNCMiner has the ability 
to identify multiple targets for compounds from single-label data [41]. OptNCMiner 
achieved similar recall and AUROC values when trained on single-label and multi-label 
data and then tested with the multi-label test dataset (Additional file 1: Table S1).

The performance of OptNCMiner was also evaluated with the compounds not used in 
the training pair generation from the base dataset and transfer dataset. Our framework 
allows for the prediction of multiple binding targets of NCs not included in the original 
binding data; since the test data is labeled in a single-positive manner, the predicted 
output contains a high number of false positives. Therefore, recall (the ratio of predicted 
positives among the entire positives) is considered to be the most relevant evaluation 
metric.

The performance of OptNCMiner was compared with five baseline models capable of 
multi-label classification, which are cosine similarity, NB, LR, RF, and MLP. The baseline 
models were trained with the same training set and were evaluated using the same test 
set to that of OptNCMiner, generated from the base and transfer  learning datasets. 
For the cosine similarity method, we calculated the cosine similarity of two standard 
fingerprint vectors. If the cosine similarity value of a pair exceeded 0.5, two compounds 
were considered structurally similar and the test compound is predicted to bind to the 
target protein, and vice versa. The remaining baseline models were trained to classify 
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pairs of compounds with binary labels of 1 or 0. Binary label of 1 indicates that the 
test chemical is expected to bind to the same target protein because it is similar to its 
pair. The performance of the baseline models was evaluated with the base dataset and 
transfer learning dataset. All baseline models were first trained and evaluated with the 
base dataset, while MLP was further trained in the manner of the transfer learning with 
the transfer learning dataset. As transfer learning is not applicable to cosine similarity, 
NB, LR, and RF, the performance of these models was simply evaluated after training on 
the transfer learning dataset.

Table  2 shows that OptNCMiner outperformed the baseline models. The recall val-
ues of OptNCMiner were 0.833 and 0.871 for the base and transfer learning datasets, 
respectively. These results indicate more than 80% of the known positives were correctly 
predicted. The second best recall values were found with RF of 0.677 for the base data 
set and MLP of 0.824 for the transfer learning data set. Some baseline models achieved 
recall values lower than 0.5, which means the models predicted less than half of the posi-
tive interactions accurately: NB, LR, and MLP for the base dataset and NB and RF for 
the transfer learning dataset. The values of AUROC for OptNCMiner on both the base 
dataset and transfer learning dataset were above 50%, demonstrating that the model’s 
discriminant power is better than random chance. The relatively low accuracy and 
AUROC values may be due to newly predicted compound targets, which result in high 
false positive rates. Cosine similarity, NB, LR, and MLP generated accuracy values above 
0.7, but AUROC values were relatively low, suggesting that the methods are vulnerable 
to data imbalances. All evaluation metric values have been improved in the transfer 
learning dataset compared to the base dataset for OptNCMiner. Considering that both 

Table 2  The performance of OptNCMiner and baseline models with the base dataset and transfer 
learning dataset

1 All performance metrics are weighted averages of the results of all proteins comprising the dataset

Model Performance metric1 Base dataset Transfer 
learning 
dataset

OptNCMiner Recall 0.833 0.871

AUROC 0.632 0.787

Accuracy 0.440 0.713

Cosine similarity Recall 0.573 0.696

AUROC 0.643 0.761

Accuracy 0.708 0.818

Naïve bayes classifier Recall 0.322 0.483

AUROC 0.623 0.696

Accuracy 0.909 0.887

Logistic regression Recall 0.212 0.581

AUROC 0.606 0.785

Accuracy 0.978 0.969

Random forest Recall 0.677 0.479

AUROC 0.343 0.241

Accuracy 0.028 0.027

Multi-layer perceptron Recall 0.361 0.824

AUROC 0.676 0.818

Accuracy 0.972 0.899
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the base dataset and the transfer learning dataset held diverse compound structures, the 
improved evaluation metrics denote that the performance of the model was improved by 
the transfer learning method, regardless of the data characteristics. MLP, a model capa-
ble of transfer learning in addition to OptNCMiner, also showed improved recall and 
AUROC values after transfer learning. However, in recall, the most important perfor-
mance metric, OptNCMiner was superior for both the base dataset trained model and 
the transfer learning dataset trained model.

Another strong advantage of OptNCMiner is its ability to predict chemical-protein 
interactions for proteins with limited training data. The trained and transfer-learned 
OptNCMiner using the base dataset and transfer learning dataset was used to predict 
chemical-protein interactions in the few-shot learning dataset using a few-shot learning 
method. The few-shot learning performance of OptNCMiner was evaluated with 
7 proteins with data for less than 100 interacting compounds and is demonstrated in 
Table 3. OptNCMiner achieved 0.829 for the weighted average of recall and 0.665 for 
the weighted AUROC average. Although Beta 2 adrenergic receptor and Isocitrate 
dehydrogenase show relatively poor performance, the model’s predictions are 
remarkably accurate for most proteins. The performance is not necessarily correlated 
to the number of available data points, which is shown in the last column of Table 3, 
indicating that either the presence of some interactions were not identified by the 
network, or is indicative of a lack of representation present in the small data. Thus, it 
is confirmed that OptNCMiner possesses the ability to identify structural properties of 
compounds that enable specific chemical-protein interactions from a small number of 
samples.

Output validation

OptNCMiner is a model capable of predicting multiple target proteins for NCs through 
multi-label learning. OptNCMiner predicts not only the known protein targets of NCs, 
but also unknown target proteins, which results in high false positive rates. To confirm 
OptNCMiner’s ability to predict unknown chemical-protein interactions, we sought to 
validate OptNCMiner’s false positive outputs in few-shot learning.

OptNCMiner went through few-shot learning using the few-shot learning dataset, 
where chemical-protein interactions were predicted among 7 proteins and 23 com-
pounds in the test set. To examine whether the false positives were real negatives 

Table 3  Performance of OptNCMiner with the few-shot learning dataset

Target protein Recall AUROC Accuracy Count

Beta 2 adrenergic receptor 0.488 0.400 0.450 5

Estrogen receptor a 0.585 1.000 0.764 5

Isocitrate dehydrogenase 0.488 0.600 0.536 5

Mammalian target of rapamycin complex 1 0.537 0.889 0.663 9

Kappa opioid receptor 0.659 1.000 0.806 5

Peroxisome proliferator-activated receptor gamma 0.610 1.000 0.778 5

Cellular tumor antigen p53 0.537 0.857 0.664 7

Weighted average 0.555 0.829 0.665 41
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or newly discovered target proteins, literature searches and in silico docking using 
GalaxyDockWEB [42] were undertaken. Among the 115 false positives, 4 chemical-
protein interactions were validated in the literature (Additional file 1: Table S2). All 
115 compounds went through in silico docking. As shown in Fig. 3a, 114 of the 115 
chemical-protein interactions generated a negative binding affinity score (see Addi-
tional file 2), suggesting that binding of the ligand to the active site exists in a favora-
ble energy state [43]. The result of in silico docking indicates that the false positives 
predicted by OptNCMiner are real unknown positives with a high probability. Two 
examples of successful docking of compounds and target proteins, where chemical-
protein interactions were previously unknown, are illustrated in Fig. 3b. The examples 
were selected based on the two lowest binding affinities among the 115 false positives, 
which were −  29.307 and −  28.121 respectively. In both examples, the compounds 
DIPPDP and ACPPTN (dark grey), are stably docked in the pre-assigned binding 
pockets with interacting amino acid side chains of the target proteins, estrogen recep-
tor alpha and beta 2 androgenic receptor (light green).

Fig. 3  In silico docking score for false positives from the a few-shot learning dataset; and b two molecular 
docking results for compound-protein interactions with lowest in silico docking score (highest binding 
affinity)



Page 14 of 20Shin et al. BMC Bioinformatics          (2022) 23:218 

Use case scenario: NCs present in natural sources that modulate target proteins associated 

with T2DM complications

To investigate the practical application of OptNCMiner in novel NC discovery, the 
program was trained using the base dataset to identify NCs present in natural sources that 
modulate target proteins associated with T2DM complications. Diabetic nephropathy, 
diabetic keratopathy, and cardiomyopathy were chosen as T2DM complications and 
target proteins for each complication were identified based on previous reports [44]. 
Among the identified target proteins, 8 proteins with interacting compound data 
were selected and used as target protein candidates: Peroxisome proliferator activated 
receptor α (PPARα), Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K), 
Protein kinase C β (PKCβ), Toll-like receptor 4 (TLR4), Sodium/glucose cotransporter 
2 (SGLT2), G protein-coupled receptor 120 (GPR120), and Nuclear factor erythroid 
2-related factor 2 (Nrf-2) (Additional file 1: Table S3). The interacting compound data 
was gathered from BindingDB, a chemical-protein interaction database [45]. The sizes of 
interacting compound data varied among the target proteins. Transfer learning or few-
shot learning was applied according to the two different ranges of data size. Five target 
proteins with more than 100 interacting compound data points were assigned to transfer 
learning and three target proteins with less data were assigned to few-shot learning. 
In order to predict NCs in natural sources, data including NCs and natural resources 
containing NCs were obtained from FooDB, a database of food constituents [46]. 
First, the pre-trained OptNCMiner using the base dataset was transfer-learned based 
on chemical-protein interaction data for the target proteins assigned. Second, 65,038 
NCs from FooDB were then provided as input to the transfer-learned OptNCMiner to 
predict protein targets. Third, the transfer-learned OptNCMiner was used for few-shot 
learning of three target proteins assigned for few-shot learning. In the same manner, 
NCs from FooDB were provided as input to predict chemical-protein interactions for 
the three proteins. OptNCMiner achieved a high recall value for all proteins (Additional 
file 1: Table S4).

To visualize the network of relationships between T2DM complications and NCs of 
food origin (Fig. 4), a standardized process was followed. First, chemical-protein pairs 
with a score above 0.5 were selected. Of these pairs, NCs with the highest number of 
target proteins were selected. Here, 102 NCs modulating 5 different target proteins were 
chosen. The 102 NCs were matched with their food sources, which added up to 680, as 
most NCs are found in multiple food sources (see Additional file 3). For ease of visu-
alization, a food source that contains the highest number of selected NCs is shown in 
Fig. 4. The relationships between T2DM complications, target proteins, NCs, and foods 
were visualized using connected edges. In identifying food sources to fight T2DM com-
plications, the figure shows that ginger contains 31 NCs that modulates 8 different target 
proteins associated with T2DM complications.

Ginger is a herbaceous plant that has a long history of use in traditional medicines 
and foods. The root of the plant contains a vast array of NCs which are responsible 
for a wide range of biological activities, including anti-diabetic effects, gastrointestinal 
protection, anti-cancer effects, cardiovascular protection, and the prevention of obesity 
[47, 48]. Among the 160 identified NCs present within ginger, phenolic and terpene 
compounds, such as gingerols and shogaols, have been widely investigated for their 
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pungent stringency, abundance, and multiple health benefits [47, 49, 50]. Derivatives of 
gingerols and shogaols represented a large proportion of ginger-derived NCs identified 
by OptNCMiner. Interestingly, OptNCMiner predicted 6-gingerol as an NC that 
ameliorates T2DM complications, by modulating 5 different proteins: TLR4, PI3K, YAP, 
PPARα, and GPR120.

TLR4 is a receptor protein with multiple physiological functions, and has been 
implicated in the weakening of ocular surface and corneal nerves, leading to diabetic 
keratopathy. TLR4 binds to high-mobility group box 1 protein that activates the NF-κB 
pathway, leading to inflammation in the cornea [51]. Interestingly, it has been reported 
that gingerols including 6-gingerol and 6-shogaol, inhibit activation of the TLR4 
signaling pathway, a finding similar to our predictions [52]. Activation of PI3K signaling 
protects against cardiomyopathy, which is characterized by adverse remodeling of the 
heart, diastolic dysfunction, fibrosis, and apoptosis [53]. YAP, a transcriptional regulator 
protein, is involved in a key pathway in diabetic cardiomyopathy pathogenesis [54]. 

Fig. 4  OptNCMiner predicts that ginger contains 33 NCs that regulate 8 different target proteins associated 
with T2DM complications
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6-gingerol is known to protect against hypoxia-induced myocardial injury by activating 
the PI3K/Akt pathway [55, 56]. Furthermore, it has been reported that 6-gingerol 
treatment inhibits YAP activation by increasing its phosphorylation and preventing 
translocation into the nucleus [57]. Although it remains to be determined whether 
PPARα is a direct molecular target of 6-gingerol, it is known that 6-gingerol activates 
the glucagon-like peptide-1 mediated insulin secretion pathway [55], which inhibits 
PPARα-mediated lipid accumulation and toxicity in cardiomyopathy [58]. Additionally, 
the association between GPR120 and 6-gingerol is also unknown. However, a previous 
study has reported that in silico docking of gingerol to GPR120 yields negative binding 
energy, suggesting there is a high likelihood of the compound directly binding to 
GPR120 [59]. Activation of GPR120 inhibits TAK1 phosphorylation, which is associated 
with the induction of proinflammatory responses including TNF-α, IL-6, and COX-2 
via NF-κB and IKKβ activation. These proinflammatory and fibrosis signaling cascades 
lead to the development of diabetic nephropathy. Li and colleagues have reported that 
6-gingerol suppresses NF-κB and IKKβ activation as well as the production of NF-κB-
dependent inflammatory cytokines in  vivo [60]. Thus, it is reasonable to hypothesize 
that GPR120 is a direct molecular target of 6-gingerol for protective effects against 
diabetic nephropathy. From the results of previous studies mentioned, 6-gingerol is a 
potent NC that ameliorates T2DM complications. OptNCMiner has correctly predicted 
the previously known targets of 6-gingerol as well as potential targets that are not yet 
known, exemplifying its capacity to predict NCs relevant for specific diseases.

An important recommendation for users of OptNCMiner and room for improvement 

for better performance of OptNCMiner

OptNCMiner was developed to overcome the limitations faced by existing NC 
identification methods and to support the effective discovery of novel NCs based on the 
consideration of multi-target interactions. OptNCMiner was built in an SNN structure 
to enable learning of hidden structural characteristics that determine chemical-protein 
interactions. The pair-wise input generation and few-shot learning characteristics of 
OptNCMiner enable this learning even with small datasets. OptNCMiner generates 
embedding vectors that place compounds with similar target protein interaction closely 
in a vector space. Thus, OptNCMiner can be used along with other NC discovery 
methods such as chemical-chemical interaction prediction [61], toxicity prediction 
[62], and transcription response prediction [31], to better examine functional NCs 
from different angles. Furthermore, the structure of OptNCMiner, which compares 
the similarity of properties of known interactions to predict novel interactions, can be 
applied to other fields, such as protein-RNA interactions, disease-gene interactions, 
protein–protein interactions, etc. [63–66].

However, there remains room for improvement for better performance of 
OptNCMiner. One factor limiting the performance of the program is the complexity 
of NC biological activity in the human body. Slight differences in physicochemical 
properties can affect the absorption and distribution of NCs, which alters the interaction 
between NCs and target proteins. For further development, the physicochemical 
properties of NCs as well as the cellular location of target proteins should be considered 
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in model input and model training. Although in silico docking has validated predicted 
false positives as true positives, further validation with in vitro and in vivo studies will 
verify the accuracy of OptNCMiner. This effort of further validation would also clarify 
the synergistic or unexpected side-effects of multi-target modulating NCs discovered by 
OptNCMiner.

One important recommendation for users of our model is the careful selection of 
target proteins for NC discovery. In the example of T2DM complications, only proteins 
ameliorating the three complications were considered target proteins. However, to 
identify NCs that only regulate the desired target protein, in practice, possible off-
target proteins may be affected based on background knowledge. OptNCMiner can also 
be used in conjunction with other programs to support holistic NC discovery, such as 
programs that predict the absorption and distribution of NCs after ingestion.

Conclusion
In this study, a novel SNN model called OptNCMiner was built to predict multiple 
target proteins of NCs. Trained to understand similarities between paired fingerprint 
vectors, OptNCMiner can predict chemical-protein interactions even for proteins 
with limited and unbalanced training data. We have demonstrated that OptNCMiner 
can successfully adapt to training data of various sizes and can predict novel chemical-
protein interactions. Furthermore, as a use-case scenario, OptNCMiner was used to 
predict a natural source and its NCs for the potential treatment of T2DM complications. 
With a careful selection of target protein candidates, OptNCMiner is a powerful tool to 
predict novel NCs that modulate specific target proteins to elicit the desired bioactivity.
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