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Abstract

The serine protease inhibitor, elafin, is a critical component of the epithelial barrier against 

neutrophil elastase (NE). Elafin is downregulated in the majority of breast cancer cell lines 

compared to normal human mammary epithelial cells (HMECs). Here, we evaluated the role of 

elafin and NE on proliferation and tumorigenesis. Elafin is induced in growth factor deprived 

HMECs as they enter a quiescent (G0) state, suggesting that elafin is a counterbalance against the 

mitogenic effects of NE in G0 HMECs. Stable knockdown of elafin compromises the ability of 

HMECs to maintain G0-arrest during long-term growth factor deprivation; this effect can be 

reversed by re-expression of wild-type elafin, but not elafin-M25G lacking protease inhibitory 

function. These results suggest that NE, which is largely contributed by activated neutrophils in 

the tumor microenvironment, may be negatively regulating the ability of elafin to arrest cells in 

G0. In fact when purified NE was added to elafin knockdown HMECs, these cells demonstrated 

greater sensitivity to the growth promoting effects of purified NE. Activation of ERK signaling, 

downstream of toll-like receptor 4, was essential to the mitogenic effect of NE on HMECs. These 

findings were next translated to patient samples, and immunohistochemical analysis of normal 

breast tissue revealed robust elafin expression in the mammary epithelium; however, elafin 

expression was dramatically downregulated in a significant proportion of human breast tumor 

specimens. The loss of elafin expression during breast cancer progression may promote tumor 

growth as a consequence of increased NE-activity. To address the role of NE in mammary 
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tumorigenesis, we next examined if deregulated NE-activity enhances mammary tumor growth. 

NE knockout in the C3(1)TAg mouse model of mammary tumorigenesis suppressed proliferation 

and reduced the kinetics of tumor growth. Overall, the imbalance between NE and its inhibitors, 

such as elafin, presents an important therapeutic target in breast cancer.
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Introduction

Elafin, an endogenous serine protease inhibitor, is an important component of the epithelial 

shield against excessive neutrophil elastase (NE) activity (1). NE, a potent serine protease, is 

normally synthesized in the bone marrow and sequestered within the azurophilic granules of 

neutrophils. The major physiological function of NE is the intracellular destruction of 

pathogens following phagocytosis at sites of infection (2). Activated neutrophils also secrete 

NE into the extracellular environment. In this context, NE has important roles in the 

antimicrobial, inflammatory, and wound healing responses. Under normal physiological 

conditions, serine protease inhibitors, including elafin, rapidly quench NE activity, 

contributing to the resolution of inflammation and preserving tissue integrity (3). Imbalance 

between NE and its inhibitors is implicated in the pathogenesis of a wide range of diseases 

characterized by excessive or chronic inflammation (4).

Elafin downregulation was observed in several inflammatory diseases, including acute 

respiratory distress syndrome (5), inflammatory bowel disease (6), and acute lung injury (7). 

In these studies, elafin downregulation correlates with increased NE activity and disease 

progression. In mouse models, constitutive elafin overexpression protected against acute 

lung injury (8), reduced pulmonary hypertension following chronic hypoxia (9), diminished 

tissue destruction associated with experimental colitis (6), and improved heart function after 

viral myocarditis (10) or myocardial infarction (11). The available evidence supports an 

important role for elafin in suppressing NE-activity and mitigating the pathogenesis of 

inflammatory disease.

Several studies suggest that loss of elafin-mediated control of NE activity is a feature of 

malignant growth. Elafin downregulation was observed in poorly-differentiated compared to 

well-differentiated squamous cell carcinomas (12, 13). Elafin expression is lost in melanoma 

and breast cancer cell lines compared to normal melanocytes and human mammary 

epithelial cells (HMECs) (14, 15). The transcription factor C/EBPβ is required for elafin 

expression in HMECs. Accumulation of a truncated, dominant-negative isoform of C/EBPβ 

accounts for elafin downregulation in breast cancer cell lines (16). We previously reported 

that ectopic expression of elafin induced apoptosis in Rb negative and growth arrest in Rb-

positive breast cancer cell lines (17), suggesting that elafin has tumor suppressive properties 

in the context of breast cancer.

In the present study, we initially sought to understand the normal regulation and role of 

endogenously expressed elafin in HMECs, as well as the consequence of elafin 
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downregulation on critical aspects of tumorigenesis. We observed dramatic upregulation of 

elafin in quiescence (G0) HMECs, leading us to hypothesize that elafin is a critical 

counterbalance against the mitogenic effects of NE. Using HMECs as a model system, the 

results support a role for elafin in opposing the NE-induced proliferation. We observed 

dramatic downregulation of elafin expression in patient-derived breast tumor specimens 

compared to elafin expression in the normal mammary epithelium, suggesting compromised 

control of NE-activity is indeed a feature of breast tumorigenesis. Finally, we investigated 

the implications of deregulated NE-activity on tumor growth in the C3(1)TAg mouse model 

of mammary tumorigenesis. In this model, NE knockout significantly reduced tumor growth 

and proliferation. A therapeutic approach designed to restore appropriate control of NE-

activity may lead to the inhibition of tumor growth in breast cancer patients.

Results

Elafin is Highly Expressed in Quiescent HMECs

Primary (i.e mortal) 81N, 70N, and 76N HMECs were cultured under growth factor-

deficient conditions and harvested at 6-hour intervals for 48 hours to examine the expression 

of endogenous elafin during growth arrest. DNA content analysis revealed that HMECs 

were progressively arrested in G0/G1 phase. Complete arrest was observed between 24 and 

36 hours of continuous culture (Figure 1A). Western blot analysis showed dramatic 

upregulation of elafin over the growth factor deprivation time course (Figure 1B), 

corresponding to the accumulation of HMECs in G0/G1 phase. Immunofluorescence 

analysis of Ki67, which is specifically downregulated in quiescent (G0) cells (18), confirms 

that growth factor deprivation induces G0 (and not G1) arrest in HMECs (Figure 1C). Elafin 

immunofluorescence demonstrates increased cytoplasmic staining intensity following 

growth factor deprivation (Figure 1D).

Elafin has primarily been characterized as a secreted protein; therefore we next examined 

elafin levels in conditioned media by ELISA. The concentration of elafin in the conditioned 

media of 81N, 70N, and 76N HMECs cultured in the presence of growth factors for 24 

hours was 2.6–2.9 ng/mL. Significantly higher concentrations of elafin were observed in 

HMECs cultured in growth factor-deprived medium: 4.0–6.3 ng/mL at 24 hours and 7.1–

11.5 ng/mL at 48 hours (Figure 1E).

Quantitative RT-PCR (qPCR) analysis revealed that elafin is highly induced at the mRNA 

level under growth factor deprivation conditions, increasing 12- to 178-fold at 24 hours and 

165- to 240-fold at 48 hours compared to the level of elafin mRNA in HMECs cultured in 

growth factor-containing medium (Figure 1F).

Previously, we reported that accumulation of a truncated, dominant negative isoform of C/

EBPβ represses elafin expression in breast cancer cell lines (16). We next interrogated if C/

EBPβ elements in the elafin promoter are necessary for elafin upregulation in G0 HMECs by 

luciferase reporter analysis of the elafin promoter. The results revealed that elafin 

upregulation in HMECs was dependent on C/EBPβ sites 4 and 5, which we previously 

identified (16) (Figure S1A). Lastly, in the immortalized HMECs 76NF2V, knockdown of 
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C/EBPβ (Figure S1B) prevented elafin upregulation following growth factor deprivation 

(Figure S1C).

Rb-Deficient HMECs are Incapable of G0 Arrest and Fail to Upregulate Elafin

To determine if Rb-dependent G0-arrest is required for elafin expression, we examined a 

panel of immortalized HMECs (19) that express both p53 and Rb (76NF2V), lack p53 

(76NE6), or lack Rb and related pocket proteins (76NE7). Growth factor deprivation (GFD) 

for 48 hours resulted in the downregulation of Ki67 in 76NE6 and 76NF2V cells but not 

76NE7 cells (Figure 2A). Maintenance of Ki67 expression in growth factor-deprived 76NE7 

cells confirmed that loss of the Rb checkpoint eliminates the ability of HMECs to arrest in 

G0. 76NE6 and 76NF2V progressively arrested in G0/G1 over the 48-hour GFD time course 

and upregulated elafin (Figure S2, A and B), similar to primary HMECs (Figure 1, A and 

B). 76NE7 cells were incapable of elafin upregulation compared to 76NE6 and 76NF2V 

cells (Figure 2B) and they arrested in the G2-phase (not G1 phase) of the cell cycle over the 

48-hour GFD time-course (Figure S2A). Furthermore, immortalized HMECs 

asynchronously proliferating or arrested in the G1-phase following treatment with lovastatin, 

S-phase following treatment with aphidicolin, or G2/M phase following treatment with 

nocodazole were unable to upregulate elafin compared to growth factor deprived, G0-

arrested 76NE6 and 76NF2V; Rb-deficient 76NE7 cells were unable to upregulate elafin in 

response to any of the conditions examined (Figure 2C).

Similar results were obtained using the immortalized 81N HMEC system; Rb-deficient 

81NE7 HMECs accumulated in the G2 phase of the cell cycle (Figure S2C) and cannot 

upregulate elafin (Figure S2D) following GFD, compared to Rb-expressing 81NE6 and 

parental 81N HMECs. Furthermore, Rb knockdown renders 76NF2V and 76NE6 incapable 

of arrest in G0/G1 phase (Figure 2D) and elafin upregulation (Figure 2E) following GFD.

Taken together, these results demonstrated that Rb-dependent G0 arrest is required for elafin 

upregulation in growth factor deprived HMECs, suggesting a role for elafin in growth 

control.

Elafin Knockdown HMECs Circumvent G0 Arrest and Proliferate in the Absence of Growth 
Factors

To examine the role of elafin in maintenance of G0 arrest, elafin was knocked-down in 

76NE6 (Figure 3A) and 81NE6 (Figure S3A) HMECs and the kinetics of cell proliferation 

were assessed under growth factor-deficient conditions (Figure 3B). Since FBS contains an 

abundance of serine protease inhibitors, cells were cultured in media lacking supplemental 

FBS. Both 76NE6 and 81NE6 elafin-knockdown cell lines exhibited modest but significant 

growth factor-independent proliferation with doubling times between 66 and 81 hours, while 

control cells exhibited complete growth cessation after only 24 hours in growth factor-

depleted medium (Figure 3C).

To verify the specificity of elafin knockdown and examine the importance of elafin-

mediated protease inhibition in this system, we complemented 76NE6 elafin-knockdown 

cells with wild-type elafin (sensitive to shRNA downregulation), shRNA-resistant-elafin, 

and shRNA-resistant-M25G-elafin (the M25G mutation inactivates the protease inhibitor 
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domain) (20) (Figures 3D and S3B). Elafin-knockdown 76NE6 cells demonstrated an 

approximate doubling in cell number compared to controls following 144 hours of growth 

factor deprivation (Figure 3E). Complementation of elafin-knockdown 76NE6 cells with 

wild-type elafin, but not M25G-elafin, reduced cell number to the level of controls (Figure 

3E). These experiments revealed a critical role of elafin-mediated protease inhibition in the 

maintenance of G0 arrest.

Elafin Knockdown HMECs Demonstrate Enhanced Sensitivity to the Growth-Promoting 
Effect of Exogenous NE

The inability of elafin-M25G to inhibit the growth factor independent proliferation of elafin 

knockdown HMECs (Figure 3E) suggests a critical role for its deregulated protease activity. 

Notably, the level of growth factor independent proliferation observed in elafin knockdown 

HMECs was modest (Figure 3C) consistent with the relatively low levels of NE activity in 

these cells (21). Since in the tumor microenvironment the majority of NE is contributed by 

activated neutrophils (22, 23), we next interrogated the ability of exogenous NE to induce 

the proliferation of elafin knockdown HMECs (Figure 4). In this experiment, elafin-

knockdown and control 76NE6 cells were growth factor deprived for 24 hours, and purified 

NE was added directly to the media as described (24). Cell density was measured using the 

MTT assay 48 hours after addition of NE (Figure 4A). Compared to controls, the elafin-

knockdown 76NE6 cells stimulated with NE at concentrations of 1–8 nM demonstrated 

significantly greater sensitivity to the growth promoting effect of exogenous NE (Figure 

4B).

The ability of NE to induce proliferation was dose-dependent. Elafin-knockdown 76NE6 

cells were sensitive to the growth-promoting effect of 2 nM NE, whereas elafin-expressing 

controls were not (Figure 4C). Complementation of elafin-knockdown 76NE6 cells with 

shRNA-resistant-elafin, but not shRNA-resistant-M25G-elafin, attenuated proliferation 

induced by 2 nM NE (Figure 4C). No differences were observed in this experiment between 

groups not treated with NE because cell number was assessed following only 72 hours of 

growth factor deprivation. [Significant differences in cell number were not seen in elafin-

knockdown HMECs until 120 hours of growth factor deprivation (Figure 3C).] 

Pharmacological inhibitors of NE activity sivelestat and GW311616 inhibited NE-induced 

proliferation in 76NE6 cells (Figure S4, A and B); further evidencing that the mitogenic-

effect of NE is dependent on NE-activity and not contaminants in the NE preparation.

These findings provided evidence that elafin is an important component of the epithelial 

shield against deregulated NE activity.

NE Induces Proliferation through TLR4-Dependent Activation of ERK Signaling

Microarray analysis identified differentially expressed genes between elafin-knockdown and 

control 76NE6 cells following 0, 48, and 168 hours of growth factor deprivation (Figure 

S5A). Upregulation of the immediate early response gene, EGR1, at the 48-hour time point 

was of particular interest given the previously identified role of EGR1 in cell cycle re-entry 

of G0-arrested HMECs (25, 26). We validated the upregulation of EGR1 in 76NE6 elafin-

knockdown cells by qPCR (Figure S5B).
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The ERK signaling pathway is known to control EGR1 transcription (26). Addition of NE 

(10nM) to growth factor deprived 76NE6 cells resulted in activation of ERK 

phosphorylation that peaked within 15 to 30 minutes (Figure S6A). Upregulation of ERK 

target genes EGR1 and FOS were observed 3 hours after the addition of NE to growth-

arrested 76NE6 cells (Figure S6B). Addition of the MEK1/2 selective inhibitor U0126 and 

MEK1 siRNA effectively inhibited ERK phosphorylation following the addition of NE to 

growth-arrested 76NE6 cells (Figure S6C) and consistently attenuated NE-induced 

proliferation (Figure S6, D and E).

Given the rapidity of ERK activation following the addition of NE, we hypothesized that an 

extracellular receptor mediates the mitogenic effect of NE on HMECs. TLR4 (27), PAR2 

(28), and EGFR (29) have all been implicated in NE-induced ERK activation. We observed 

that knockdown of TLR4 reproducibly abrogated ERK activation in growth factor-deprived 

76NE6 and 81NE6 cells (Figure 4D) following the addition of 10 nM NE (sufficient to 

overwhelm endogenous elafin and induce maximal proliferation in both 76NE6 and 81NE6 

cells) and attenuated NE-induced proliferation (Figure 6E).

These findings suggested that the mitogenic activity of NE in quiescent HMECs is 

dependent on TLR4-induced ERK activation.

Elafin is Downregulated in Breast Tumor Specimens Compared to the Normal Mammary 
Epithelium

To examine the physiological relevance of elafin expression in human breast cancer, we 

initially measured elafin protein levels in 36 breast cancer cell lines and found that elafin 

expression was absent from all breast tumor cell lines examined as compared to 76NE6 cells 

(Figure 5A).

Next, we translated these in vitro findings to patient-derived tissue specimens, where we 

examined elafin expression by IHC in normal breast tissue from reduction mammoplasty 

(n=15) and invasive breast carcinoma (n=202) using a highly specific monoclonal antibody 

against elafin (Hycult, clone: TRAB/2F) (30). Based on the absence of elafin in breast 

cancer cell lines, we hypothesized that elafin expression is downregulated in human breast 

cancer specimens compared to the normal mammary epithelium. Supporting our hypothesis, 

elafin was expressed within the epithelial compartment of the normal mammary gland 

(Figure 5B), but was absent from the epithelial component of human breast tumors (Figure 

5C). In some cases, infiltrating leukocytes in the tumor microenvironment expressed high 

levels of elafin contrasting with the absence of elafin within the tumor epithelium (Figure 

5C). Quantification revealed a significantly lower frequency of elafin positive cells in breast 

tumors specimens compared the normal mammary epithelium (Figure 5D).

Our IHC analysis revealed that elafin was significantly downregulated in human breast 

tumors, suggesting that the epithelial shield against NE-activity is compromised during 

breast tumorigenesis.
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NE Knockout Reduces Tumor Growth and Proliferation in the C3(1)TAg Model of TNBC

Next, we set out to understand the significance of deregulated NE-activity in a mouse model 

of breast tumorigenesis. We hypothesized that deregulated NE is capable of promoting 

breast tumor growth. Given the correlation between high levels of NE and ER/PR-negative 

status (31), we chose to test this hypothesis in a mouse model of triple-receptor negative 

breast cancer (TNBC). The C3(1)TAg mouse model has been shown to give rise to TNBC 

and is molecularly similar to basal-like breast cancer in humans (32–35). C3(1)TAg mice 

were crossed with the previously established NE knockout mice (2), both were maintained 

in the FVB/N background (Figure S7).

C3(1)TAg x NE+/+ and C3(1)TAg x NE−/− cohorts were followed for tumor initiation and 

growth was followed until the tumor exceeded the maximal allowable size based on the 

requirements of the institutional review board. The doubling time of each tumor was 

calculated by application of the exponential growth model. Tumors in NE−/− mice 

demonstrated a significantly slower growth rate compared to tumors in NE+/+ mice (Figure 

6A). To determine if the difference in the tumor growth rate was due to altered proliferation, 

tumors were subjected to qPCR analysis of the proliferation markers Mki67 and Melk 

(Figure 6B) and IHC analysis of BrdU incorporation (Figure 6C). The mRNA levels of both 

Mki67 and Melk were significantly suppressed in C3(1)TAg x NE−/− genotype tumors 

compared to C3(1)TAg x NE+/+ genotype tumors (Figure 6B). Significantly less BrdU 

incorporation was observed in tumors arising in NE−/− genotype mice compared to tumors 

arising in NE+/+ genotype mice (Figure 6D). IHC analysis of BrdU incorporation was also 

performed on the contralateral mammary gland of tumor bearing mice (Figure 6E). 

Quantification revealed significantly lower levels of proliferation in the mammary glands of 

C3(1)TAg x NE−/− genotype mice compared to C3(1)TAg x NE+/+ genotype mice (Figure 

6F). The results presented here are consistent with decreased proliferation in C3(1)TAg x 

NE−/− genotype tumors compared to C3(1)TAg x NE+/+ genotype tumors. Overall, the data 

presented here provides direct in vivo evidence that NE enhances tumor growth in a mouse 

model of TNBC.

Discussion

In this study, we examined the regulation/role of endogenously expressed elafin and the 

consequence of deregulated NE-activity on proliferation and tumor growth. Initially, we 

observed that elafin is upregulated at the transcription level in G0 HMECs (Figure 1F), 

which resulted in its intracellular accumulation (Figure 1B) and increased secretion into 

conditioned media (Figure 1E). Elafin transactivation required the transcription factor C/

EBPβ (Figure S1) and Rb-dependent cell cycle checkpoint control (Figure 2). Rb and C/

EBPβ are essential to the control of proliferation and differentiation within the mammary 

gland (36, 37). Physical interaction with Rb was previously shown to be critical for C/EBPβ 

DNA binding (38) and may play a role in the regulation of elafin expression in HMECs. The 

Rb and C/EBPβ pathways are commonly deregulated in human cancers, likely accounting 

for elafin downregulation during breast tumorigenesis (16, 39)

The upregulation of elafin in G0 HMECs (Figure 1) suggested a role for elafin in normal 

growth control. Elafin is an important component of the epithelial shield against excessive 
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NE activity (1). The conventionally understood role of deregulated NE activity in tumor 

progression is promotion of cell invasion and metastasis through extracellular matrix 

degradation and the cleavage of adhesion molecules (40). However, several NE-specific 

substrates have recently been identified with important roles in cell proliferation. For 

example, NE-mediated degradation of insulin receptor substrate-1 (IRS-1) increased 

phosphoinositide 3-kinase (PI3K) activity such that NE knockout reduced downstream Akt 

activation and tumor cell proliferation in the loxP-Stop-loxP K-rasG12D mouse model of 

lung cancer, (22). NE was also been implicated in cleavage of cyclin E into low-molecular 

weight isoforms capable of hyperactivating cyclin-dependent kinase 2, enhancing cell 

proliferation and inducing tumor formation in mouse models (41, 42).

We hypothesized that elafin is an important counterbalance against the mitogenic effects of 

NE-activity. Elafin knockdown HMECs proliferated in the absence of growth factors 

(Figure 3C). This effect could be ameliorated by reconstitution of wild type but not protease 

inhibitor domain mutant elafin, suggesting that deregulated serine protease activity underlies 

growth factor independent proliferation in elafin knockdown HMECs (Figure 3E). The level 

of proliferation observed in elafin knockdown HMECs was relatively modest and only 

evident following prolonged growth factor deprivation, consistent with the relatively low 

levels of NE activity in this HMEC system (21). In the tumor microenvironment, the 

majority of NE is contributed by activated neutrophils (23). To model this, we added 

purified NE to the growth factor deficient culture medium of HMECs, resulting in a robust, 

dose-dependent increase in cell proliferation. In this system, elafin knockdown HMECs 

demonstrated increased sensitivity to the mitogenic effect of NE compared to elafin 

expressing controls (Figures 4B).

In models of inflammatory disease, the addition of exogenous NE enhanced cell 

proliferation both in vitro and in vivo (24, 43, 44). The concentrations of NE resulting in a 

physiological response in vitro varies between studies; proliferation was induced in airway 

smooth muscle cell by addition of 0.35–1.7 nM NE (44), in keratinocytes by addition of 0.1–

33 nM NE (24), and in lung fibroblasts by addition of 3.5–862 nM NE (29). In the present 

study, the concentrations of NE utilized to induce proliferation in HMECs ranged from 1–10 

nM, which is comparable to previously published studies. Possible explanations for the 

variability in NE-concentration required to induce cell proliferation in vitro include: 

differences in the source/activity of the NE, the sensitivity of the cell lines, and the 

concentration of exogenous serine protease inhibitors in the culture medium.

In our HMEC system, we found that activation of the ERK signaling pathway (Figure S6A) 

was required for the mitogenic effect of NE on HMECs (Figure S6D). This observation was 

consistent with previous reports demonstrating the activation of ERK signaling following 

addition of exogenous NE (29). NE-induced activation of TLR4 was previously reported 

(27). In our HMEC model system, knockdown of TLR4 completely inhibited NE-induced 

ERK activation (Figure 4D) and proliferation (Figure 4E). Breast tumor cell lines are known 

to express TLR4 (45), suggesting that deregulated NE activity may be an important 

endogenous activator of TLR4, downstream ERK signaling, and proliferation throughout 

breast tumorigenesis. We have also examined the ERK signaling pathway is breast cancer 

patients and find that NE positive tumor associated neutrophils correlate with the 
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phosphorylation of ERK effector p90RSK and Rb (not shown), recapitulating our cell line 

data presented here.

In this study, we demonstrate for the first time that elafin is indeed downregulated during 

breast tumorigenesis through IHC-analysis of patient-derived normal and malignant breast 

tissue (Figure 5D). Our in vitro results suggest that loss of elafin eliminates a critical 

counterbalance against the mitogenic effect of deregulated NE-activity. However, in vitro 

studies fail to completely recapitulate the complex interactions between the tumor epithelial 

and stromal compartments. We used the C3 (1) TAG mouse model to directly investigate the 

role of NE in proliferation and found that, NE knockout in the C3(1)TAg mouse model of 

mammary tumorigenesis suppressed proliferation (Figure 6D) and reduced the kinetics of 

tumor growth (Figure 6A) compared to NE expressing controls.

Extensive experimental evidence has demonstrated that the ability of tumor cells to recruit 

and manipulate non-malignant cell types, including leukocytes, governs their malignant 

growth potential. The cellular constituents of the tumor stroma are not susceptible to many 

of the selective pressures driving therapeutic resistance in tumor cells. Therefore therapeutic 

modalities targeting critical microenvironmental mediators of tumor progression may yield 

durable anti-tumor responses alone or in combination with existing therapies. 

Pharmacological inhibitors of NE have been developed for the treatment of inflammatory 

lung disease (46) and could be evaluated as a therapeutic approach to reduce breast tumor 

growth.

Materials and Methods

Cell Lines and Culture Conditions

Primary HMECs 70N, 76N, and 81N isolated from reduction mammoplasty samples and 

immortalized derivatives were obtained from Dr. V. Band and culture conditions are as 

described. (19).

Lentiviral shRNA

Target-specific shRNA was obtained in the pGIPZ lentiviral vector system 

(OpenBiosystems) from the MD Anderson shRNA and ORFeome Core Facility. Lentiviral 

packaging was performed in HEK-293T cells using the pCMV deltaR8.2 and pMD2.G 

vectors produced by the Didier Trono laboratory and made available through the Addgene 

repository. Target cells were infected with the virus-containing medium in the presence of 8 

μg/mL polybrene.

Complementation of Elafin-Knockdown Cells

Elafin cDNA was cloned into the pDONR201 vector via the gateway BP clonase 

(Invitrogen). To create shRNA-resistant elafin, three consecutive codons along the shRNA 

targeting region were mutated at the wobble position using the Quikchange Lightning site-

directed mutagenesis kit (Stratagene). The M25G mutation to the protease inhibitor domain 

(20) was created via the same method. All primer sequences are available in supplemental 

information. Following sequence validation, elafin pENTR vectors were cloned into the 
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plenti CMV Blast DEST vector (Eric Campeau lab, obtained from the Addgene repository) 

using LR clonase (Invitrogen). Viral packaging was performed as described for lentiviral 

shRNA vectors. Elafin shRNA cells were infected with elafin containing plenti CMV 

vectors and selected in 20 μg/ml blasticidin and 1 μg/ml puromycin.

Antibodies for Western Blot Analysis

Mouse monoclonal antibodies to elafin (clone: TRAB/2F, HyCult), total Rb (BD 

Biosciences), p53 (Calbiochem), ERK (clone: L34F12; Cell Signaling Technology), and 

actin (Chemicon); rabbit polyclonal antibody to phospho-Rb site Ser780 (Cell Signaling 

Technology) and TLR4 (H-80; Santa Cruz Biotechnology); and the rabbit monoclonal 

antibody to phospho-ERK (clone: D13.14.4E; Cell Signaling Technology).

ELISA

Immuno MaxiSorp U96 plates (Nunc) were coated with elafin polyclonal antibody (Hycult) 

at a concentration of 10 μg/mL diluted in 0.1 M sodium bicarbonate overnight at 4°C. The 

plate was blocked in 1 μg/mL BSA (Sigma) in PBS (4 hours) prior to incubation with 200 

μL of conditioned medium or serially diluted recombinant elafin (Calbiochem) as a control. 

The antibody used to detect elafin was clone TRAF/2O (Hycult) diluted to a concentration 

of 50 ng/mL. The secondary antibody used was 50 ng/mL goat anti–mouse IgG HRP 

conjugated (Thermo). The ELISA was developed using 1-Step Ultra TMB (Thermo), the 

reaction was quenched with 2 M phosphoric acid, and absorbance was measured at 450 nM.

Patient Samples

IHC examination of NE was performed on specimens from 220 breast cancer patients with 

stage I–III disease. These patients were enrolled in a prospective study between January 

2000 and June 2010 (MD Anderson lab protocol 00222). The MD Anderson Institutional 

Review Board approved the use of all patient derived tissues and data.

Immunohistochemistry

Deparaffinized slides were subjected to heat-induced antigen retrieval using citrate buffer 

(Vector). Endogenous peroxidases were quenched in 3% H2O2, and the sections were 

blocked with 1.5% normal goat serum and incubated overnight at 4°C with primary 

antibody: mouse monoclonal antibody to elafin (clone TRAB/2F; Hycult) diluted 1:200, rat 

monoclonal antibody to BrdU (clone BU1/75 [ICR1]; AbD Serotec) diluted 1:1000, and rat 

monoclonal antibody to Ly6G ([Gr-1] clone 1A8; BD Biosciences) diluted 1:1000. Slides 

were developed using the VECTASTAIN Elite ABC Kit (mouse or rabbit IgG) followed by 

DAB substrate (Vector) and counterstained with hematoxylin (DAKO). For BrdU and Ly6G 

primary antibodies, biotin-conjugated rabbit-anti-rat secondary antibody (Abcam) was 

substituted for the secondary goat anti-mouse antibody included in the VECTASTAIN kit at 

a concentration of 1:2000. Evaluation was performed with a Leica DM light microscope 

using the 40x optical lens. Image acquisition was performed using a SPOT Imaging 

Solutions camera and SPOT Advanced software.
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Mice

The generation of C3(1)TAg (32) and NE knockout (2) mice were previously described. The 

NE knockout mice, originally in C57BL/6 were backcrossed to FVB/N strain of mice (same 

as the C3(1)Tag) for 12 generations. Tumors arising in the C3(1)TAg x NE−/− and 

C3(1)TAg x NE+/+ virgin female mice were measured bi-weekly using Vernier caliper. 

Mice were sacrificed, according to institutional guidelines, when tumor reached the 

maximum allowable size. Two hours prior to sacrifice the mice were injected 

intraperitoneally with 100 mg BrdU/kg body weight. The tumor was excised, half was fixed 

in formalin and paraffin embedding for IHC analysis and the other half was snap frozen in 

liquid nitrogen for mRNA extraction. The contralateral mammary gland was fixed in 

formalin and paraffin embedding for IHC analysis.

Statistical Considerations

All experiments were performed at least in triplicate. The results of each experiment are 

reported as the mean of experimental replicates. Error bars represent the standard deviation 

from the mean. If not otherwise indicated, pairwise comparisons were analyzed using the 

unpaired 2-sided t-test (GraphPad Prism). For all tests, p<0.05 was considered significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Elafin is Highly Expressed in Quiescent HMECs
(A, B) 81N, 70N, and 76N HMECs were cultured in growth factor (GF)-deficient medium 

and harvested every 6 hours for 48 hours (n=3 for each time point). (A) Cell cycle 

distribution determined by DNA content analysis. (B) Representative western blots of elafin 

expression. Actin, loading control. Elafin western blots were analyzed densitometrically; 

values were normalized and are displayed as a percentage of maximum expression. (C, D) 

81N, 70N, and 76N HMECs were cultured with GFs (+GFs) for 24 hours or without GFs 

(−GFs) for 24 and 48 hours and examined by immunofluorescence staining for Ki67 (C) and 

elafin (D). Scale bars are 50 μm. (E) HMECs were cultured as described in C, conditioned 

media were collected and examined for elafin levels by ELISA. Concentrations are reported 

as ng of elafin per mL of medium. (F) HMECs were cultured as described in C and 

examined by qPCR for elafin expression; values were normalized to GAPDH and 

represented as a ratio to the control (+GFs condition).
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Figure 2. Rb-Deficient HMECs are Incapable of G0 Arrest and Fail to Upregulate Elafin
(A) 76NE6, 76NF2V, and 76NE7 immortalized HMECs were cultured with GFs (+GFs) or 

without GFs (−GFs) for 48 hours and examined by immunofluorescence staining for Ki67 

expression. Scale bars are 50 μm. (B) Western blot of pRb S807/811, total Rb, p53, and 

elafin in HMECs cultured with GFs (+GFs) for 24 hours or without GFs (−GFs) for 24 and 

48 hours. Actin, loading control. (C) HMECS were cultured in growth factor containing 

medium (asynchronous; Asy), in the absence of growth factors (arrested in G0), with 10 μM 

lovastatin (arrested in G1), with 10 μM aphidicolin (arrested in S phase), and with 5 μM 

nocodazole (arrested in M phase). Western blot of pRb S807/811, total Rb, and elafin 

expression. Actin, loading control. (D,E) 76NF2V and 76NE6 cells stably infected with 

pGIPZ lentiviral vectors containing control and two unique, RB-specific shRNAs were 

cultured with GFs (+GFs) or without GFs (−GFs) for 24 hours. (D) Cell cycle distribution 

was determined DNA content analysis. (C) Western blot of phosphorylated Rb (S807/811) 

and elafin in 76NE6, 76NF2V, AND 76NE7
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Figure 3. Elafin Knockdown HMECs Circumvent G0 Arrest and Proliferate in the Absence of 
Growth Factors (GFs)
(A) Western blot of elafin expression in parental, empty vector, non-targeting shRNA 

control, and elafin knockdown (shElafin 1 and shElafin 2) 76NE6 cells cultured with GF (0 

hours) and without GFs for 48 and 96 hours. Actin, loading control. (B) Schematic of 

experimental design. 76NE6 cell lines from A were plated at an initial density of 2000 cells/

well in 24-well plates and counted at the indicated times after growth factor removal. (C) 

Cell counts over time as described in B. Asterisks denote significant differences (p<0.05) 

between control and elafin-knockdown groups. (D) 76NE6 cells expressing elafin shRNA 

(shRNA1 [S1] and shRNA2 [S2]) were stably transduced with wild-type elafin (wt), 

shRNA-resistant elafin (R1, shRNA1-resistant elafin; R2, shRNA2-resistant elafin), or 

shRNA-resistant elafin with a M25G mutation (results for shRNA1 shown). Cell lysates 

were subjected to western blot analysis for elafin. Actin, loading control. (E) 76NE6 cells as 

described in D were cultured in the absence of GFs for 144 hours and counted.
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Figure 4. The Growth-Promoting Effect of Exogenous NE on G0 HMECs is Mediated by TLR4
(A) Schematic of experimental design. Cells were growth factor-deprived for 24 hours, and 

then exogenous NE (purified from human sputum) was added. Cell number was determined 

48 hours after the addition of NE by either MTT assay or counting cells. (B) Elafin-

knockdown and control 76NE6 cells were cultured in the presence of NE at the indicated 

concentrations, relative cell number was quantified by MTT assay 48 hours after the 

addition of NE. Asterisks denote significant differences (p<0.05) between control and elafin-

knockdown cells. (C) 76NE6 cells described in Figure 3D were stimulated with 2 nM NE, 

and relative cell number was assessed 48 hours after the addition of NE. (D) Western blot 

analysis of TLR4 (actin as a loading control), pERK, and total ERK in 76NE6 and 81NE6 

TLR4-knockdown cells GF deprived for 24 hours followed by stimulation with 10 nM NE. 

Par., parental. Cont, control. pERK/ERK ratio reported as in A. (E) 76NE6 and 81NE6 

TLR4-knockdown cells were counted 48 hours after the addition of 10 nM NE as shown 

schematically in Figure 4A.
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Figure 5. Elafin is Downregulated in the Majority of Breast Tumors
(A) Western blot analysis of elafin expression in 36 breast cancer cell lines compared to the 

immortalized HMECs, 76NE6. (B,C) Representative photomicrographs of elafin IHC 

staining in (B) normal breast tissue from reduction mammoplasty and (C) invasive breast 

carcinoma. Scale bar, 50μm. (D) Quantification of elafin expression in the normal mammary 

breast and invasive breast carcinoma tissue specimens. The frequency of elafin positive cells 

was estimated as a percentage of total cell number in representative tumor areas. These 

scores were categorized into four groups:0%, <10%, 10–33%, and >33%. Significance was 

determined by Fisher’s Exact Test.
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Figure 6. NE Knockout Reduces Tumor Growth and Proliferation in the C3(1)TAg Model of 
TNBC
(A) Doubling time was calculated for all C3(1)TAg NE+/+ and C3(1)TAg NE−/− tumors by 

fitting an exponential growth model. (B) qPCR was used to evaluated the levels of Melk and 

Mki67 in NE+/+ and NE−/− C3(1)TAg tumors. Twelve tumors were examined per group. 

(C) Tumors were subjected to IHC analysis of BrdU incorporation. Scale bar, 50μm. (D) 

BrdU positive cells were quantified as a percentage of total cells in three representative high 

magnification fields (40x) per tumor, a total of six tumors were examined per group. (E, F) 

NE knockout reduces proliferation in the contralateral mammary gland of C3(1)TAg tumor 

bearing mice. (E) Contralateral mammary glands of tumor bearing mice were subjected to 

IHC analysis of BrdU incorporation. Scale bar, 50μm. (F) BrdU positive cells were 

quantified as a percentage of total cells in three representative high magnification fields 

(40x) per tumor, a total of six mammary glands were examined per group.
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