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Multi-platform omics analysis reveals molecular signature for
COVID-19 pathogenesis, prognosis and drug target discovery
Yuming Li1, Guixue Hou2, Haibo Zhou3, Yanqun Wang1, Hein Min Tun 4, Airu Zhu1, Jingxian Zhao1, Fei Xiao5, Shanwen Lin6,
Dongdong Liu1, Dunrong Zhou6, Lang Mai7, Lu Zhang8,9, Zhaoyong Zhang1, Lijun Kuang1, Jiao Guan2, Qiushi Chen2, Liyan Wen1,
Yanjun Zhang1, Jianfen Zhuo1, Fang Li1, Zhen Zhuang1, Zhao Chen1, Ling Luo1, Donglan Liu1, Chunke Chen1, Mian Gan1,
Nanshan Zhong1, Jincun Zhao 1,8, Yan Ren 2 and Yonghao Xu1

Disease progression prediction and therapeutic drug target discovery for Coronavirus disease 2019 (COVID-19) are particularly
important, as there is still no effective strategy for severe COVID-19 patient treatment. Herein, we performed multi-platform omics
analysis of serial plasma and urine samples collected from patients during the course of COVID-19. Integrative analyses of these
omics data revealed several potential therapeutic targets, such as ANXA1 and CLEC3B. Molecular changes in plasma indicated
dysregulation of macrophage and suppression of T cell functions in severe patients compared to those in non-severe patients.
Further, we chose 25 important molecular signatures as potential biomarkers for the prediction of disease severity. The prediction
power was validated using corresponding urine samples and plasma samples from new COVID-19 patient cohort, with AUC reached
to 0.904 and 0.988, respectively. In conclusion, our omics data proposed not only potential therapeutic targets, but also biomarkers
for understanding the pathogenesis of severe COVID-19.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19) is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January
19, 2021, over 93,805,612 confirmed cases with 2,026,093 deaths
(mortality rate 2.16%) worldwide were reported to World Health
Organization (WHO).1 Its most frequent clinical symptoms are
pneumonia with fever cough and dyspnea. The severity rate of
COVID-19 varies slightly worldwide ranged from 5 to 20%. As in
New York (USA), 1151 patients (20%) required mechanical
ventilation (severe case).2 In Italy, the proportion of intensive care
unit (ICU) admissions were between 5 and 12% of the total COVID-
19 cases.3 Based on the largest cohort study from China CDC,
among 44,415 COVID-19 patients in China, 14% (6188 cases) were
severe and 5% (2087) were critical.4 The mortality rate in patients
who required mechanical ventilation (severe) reaches up to 88.1%,
which is much higher compared with patients who did not receive
mechanical ventilation (non-severe, mortality rate 11.7%).2

Compared with the non-severe cases, significantly higher
concentrations of inflammatory cytokines (IL-6, IL-7, IL-10, IL-18,
G-CSF, M-CSF, and MCP-1) were observed in the plasma of severe
cases.5 In addition, total lymphocyte count, including CD4+ T cells,
CD8+ T cells, B cells, and NK cells were significantly decreased in
severe COVID-19 cases compared to non-severe cases, indicating

dysregulation of immune responses.6 Autopsy studies of fatal
cases revealed severe interstitial pneumonia of patients’ lungs
with diffuse alveolar damage, as determined by the presence of
hyaline membranes, interstitial thickening, vascular congestion,
and inflammatory cell infiltration and polarized pulmonary
macrophages.7,8

So far, there are no approved drugs available for COVID-19
treatment, although some drugs exhibiting antiviral activities
in vitro were used to treat patients, including remdesivir and
chloroquine.9 Most of the standard treatments for severe cases are
supportive measures, such as mechanical ventilation and preven-
tion of secondary infections.10 Therefore, it is critical to gain
insights into molecular and metabolic changes in body fluids of
COVID-19 patients, which will benefit drug discovery, patient
treatment, as well as prognosis.
Omics analysis has been proved to efficiently identify drug

targets or biomarkers for predicting the severity and progression
of infectious diseases. In dengue hemorrhagic fever, eight
candidate drugs targeting five proteins (ACTG1, CALR, ERC1,
HSPA5, and SYNE2) were identified by multiple omics analysis, and
five of these drugs (containing valparoic acid, sirolimus, resvera-
trol, vorinostat, and Y-27632) had been reported as effective
treatments for flavivirus infection-induced diseases.11 Recently,
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proteome and metabolome techniques were used to explore
molecular signatures of severe COVID-19 patients in plasma.12

However, in this study, most of thebiomarkers (22 proteins and 7
metabolites) identified in severe COVID-19 patients were proteins
with limited clinical application due to the complicated and low-
throughput protein quantification technology using liquid
chromatography–mass spectrometry (LC–MS) platform. In addi-
tion, the metabolome analysis of this study primarily identified
polar metabolites and the coverage of lipid classes was limited,
which might lead to miss of important information as lipids play
important roles during virus infection.13 Considering these
limitations, further intensive studies are required for under-
standing the pathogenesis of SARS-CoV-2 infection, revealing
molecular signatures to predict non-severe to severe transition in
patients’ plasma or urine, and exploring potential drug targets for
COVID-19 therapy.
In this study, we quantified proteins, amino acids, and lipids in

plasma and urine samples from severe and non-severe COVID-19
patients, using healthy donors as controls using LC–MS technol-
ogies. For plasma proteins, small proteins were selectivity enriched
and quantified by data independent acquisition (DIA) technology,
which provided relatively deeper and complementary proteome
data compared to previous study.12 Based on this strategy, unique
protein signatures were discovered, such as tetranectin (TETN,
CLEC3B) and cathelicidin antimicrobial peptide (CAMP), which
could be used as new potential drug targets or biomarkers for
COVID-19. As lipidomes technique was proved to have the
potential to identify severe cases, lipid classes were further
quantified by high-coverage and selectivity technology. Finally, 25
molecular signatures consist of 4 proteins and 21 lipids were
defined as biomarker panel for disease prognosis, which could be
a more feasible solution for prognosis and identification of severe
patients, since sample preparation for lipid quantification is easier
that will provide faster quantification for clinical application.

RESULTS
Study design and patient cohorts
Serial blood and urine samples were collected from RT-PCR
confirmed COVID-19 patients from four different hospitals
(Supplementary Table 1 and Supplementary Dataset 1). In total,
27 blood samples and 19 urine samples from 15 severe patients,
and 19 blood samples and 16 urine samples from 15 non-severe
patients were obtained. According to the Chinese Government
Diagnosis and Treatment Guideline (Trial seventh version), COVID-
19 patients were classified into four subgroups based on their
different clinical manifestations: (1) mild: mild clinical feature and
no pneumonia symptoms; (2) common: fever, respiratory tract
symptoms, and imaging features of pneumonia; (3) severe:
respiratory distress and respiratory rate ≥30 times/min OR means
oxygen saturation ≤93% in resting state OR arterial blood oxygen
partial pressure (PaO2)/oxygen concentration (FiO2) ≤300mmHg
(1mmHg= 0.133 kPa); and (4) critical illness: respiratory failure
and require mechanical ventilation OR shock incidence OR require
ICU care. In this study, all patients were divided into two
subgroups, non-severe (mild and common) and severe (severe
and critical illness) cohorts.
Ten non-severe patients, ten severe patients, and ten healthy

volunteers were included in plasma analysis as the training
dataset. Proteins, amino acids, and lipids were extracted from
plasma samples, and quantified, using untargeted profiling
strategies by LC–MS platform. Signature molecules were selected
for validation in the validation cohorts 1 and 2 by random forest
algorithm. The validation cohort 1 contained ten new plasma
samples acquired from an independent cohort of ten patients
(containing five non-severe and five severe patients), and the
corresponding urine samples acquired from patients of the
training cohort were defined as the validation cohort 2, containing

35 serial samples acquired from six non-severe and ten severe
patients. Potential biomarkers discovered in the training cohort
were targeted, quantified, and used to evaluate the accuracy of
predication in the validation cohorts. The whole design of these
three cohorts was depicted in Fig. 1a. The detailed sampling
information for proteome, amino acids, and lipidome in plasma
and urines were illustrated in Supplementary Fig. 1.
Time points (days) of sample collection for the training dataset

from onset of disease to admission and from admission to discharge
was summarized in Fig. 1b. Ten blood samples from ten healthy
donors were also collected as control. Detailed demographics and
baseline characteristics were provided in Supplementary Table 1 and
Supplementary Dataset 1. Compared to non-severe patients, severe
patients showed significantly decreased lymphocyte count and
frequency, as well as increased neutrophil and monocyte counts and
frequencies (Supplementary Fig. 2), indicating dysregulation of
immune response in severe COVID-19 patients.

Plasma proteome, amino acids, and lipidome profiles of COVID-19
patients
Differential expressed proteins between COVID-19 vs healthy,
non-severe vs healthy, severe vs healthy, and severe vs non-severe
groups were explored. There were 1254 proteins quantified in
total samples. Volcano plots in Fig. 2a revealed that 118
dysregulated proteins (86 upregulated and 32 downregulated)
between the COVID-19 (non-severe and severe) and healthy group
(pathway annotated in Supplementary Fig. 3a); 104 dysregulated
proteins (76 upregulated and 28 downregulated) between the
non-severe and healthy group (pathway annotated in Supple-
mentary Fig. 3b); 143 dysregulated proteins (80 upregulated and
63 downregulated) between the severe and healthy group
(pathway annotated in Supplementary Fig. 3c); and 105 dysregu-
lated proteins (34 upregulated and 71 downregulated) between
the severe and non-severe group (pathway annotated in
Supplementary Fig. 3d) were identified. Pathway annotation for
these differential proteins showed that they were enriched in
immune and infectious pathways. The overlapped differential
proteins defined in above comparisons were shown in Supple-
mentary Fig. 4a. Furthermore, time-clustering analysis was used to
further explore the protein expression patterns in health, non-
severe to severe groups, which provided more indicators for
understanding the infection of SARS-CoV-2. As shown in
Supplementary Fig. 5, all quantified proteins could be clustered
into 11 clusters according to their expression patterns. Proteins in
cluster 3 (126 proteins), cluster 4 (117 proteins), and cluster 11
(119 proteins) were upregulated during infection (from non-severe
to severe). Proteins in cluster 5 (116 proteins), cluster 7 (123
proteins), and cluster 10 (140 proteins) were downregulated
during infection. To clarify these proteins selected by differential
and time-cluster analysis, functional analysis was applied by
searching their annotation in Human Protein Atlas (HPA)14,15 and
uniprot.16 As shown in Fig. 2b, proteins related with SARS-CoV-2
infection were enriched in complement activation, inflammatory
response, host–virus interaction, and lipid metabolism, such as
chemokine C–C motif ligand 18 (CCL18), C-reactive protein (CRP),
and cholesteryl ester transfer protein (CETP). CCL18 is highly
expressed in lung tissues and has multiple functions in immune
modulation.16 The increased expression of CCL18 in severe of
COVID-19 patients compared with non-severe groups revealed
that the activation of immune response during infection. The CRP
is an acute inflammatory protein and plays important roles in host
responses against viral infection,17 which was upregulated during
SARS-CoV-2 infection. CETP is a plasma protein that facilitates the
transportation of cholesteryl esters,18 which was decreased during
SARS-CoV-2 infection compared with healthy controls. Transfer-
ring cholesterol to triglyceride-rich lipoproteins is an important
step for the delivery of cholesterol to the liver. Therefore,
decreased expression level of CETP could limit this transfer events
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and retard the RCT (reverse cholesterol transport) pathway, and
lead to the accumulation of cholesterol in cells.19

Alterations in various plasma lipids were proved to be
associated with inflammatory responses, such as those observed
in sepsis and EBOV infection.20 Considering the aberrant protein
profile related with lipids was identified in proteome analysis
(Supplementary Fig. 3a–d), and the inhibition of lipid synthesis
were proposed to affect COVID-19 disease pathogenesis. There-
fore, lipid signatures related with SARS-CoV-2 infection were
further explored. There were 664 lipid molecules quantified in all
of the samples. Differential lipid analyses (Supplementary Fig. 4b
and Supplementary Fig. 6) revealed the aberrant expression of
lipid subclasses in non-severe and severe groups, as shown in
Supplementary Fig. 6b–d. General signatures of SARS-CoV-2
infection primarily included increased lipids in phosphatidylinosi-
tols (PI), phosphoserine (PS), diacylglycerides, and triacylglycerides
(TG), decreased lipids in phosphocholine (PC) and phosphogly-
cerol (PG), as illustrated in Supplementary Fig. 6a. Compared with
the healthy group, the non-severe and severe groups shown
increased PS and decreased PG, as shown in Supplementary Fig.
6b and Supplementary Fig. 6c. PS is a major component of
procoagulant platelet microparticles,21 which is secreted by
activated platelets. Increased PS levels in plasma in SARS-CoV-2
infection indicated increased platelet activation in these patients.
Compared with healthy and non-severe groups, the abundance of
glycosylceramide (CerG1) was decreased in severe group. CerG1
contains glucosylceramide (GlcCer), galactosylceramide (GalCer),

and lactosylceramide in animals. GlcCer could activate protein C
which can downregulate thrombin generation.22 Previous studies
indicated that low plasma GlcCer levels were associated with the
occurrence of venous thrombosis risk,22 which is common in
severe patients infected with SARS-CoV-2. Besides, GalCer can be
produced by bacteroides (a member of the human gut micro-
biome),23 which is known to downregulate ACE2 expression in
murine gut, and bacteroides showed significant inverse correla-
tion with fecal SARS-CoV-2 viral load in patients with COVID-19.24

Therefore, the decreased expression of CerG1 might reflect the
reduction of bacteroides, which was correlated with the severity of
COVID-19.
Time series cluster analysis using the expression patterns of

lipids across healthy, non-severe, and severe groups could cluster
these lipids into 11 clusters (Supplementary Fig. 7). Lipids showed
continuously decreased levels of expression in cluster 1 (69 lipids),
cluster 2 (91 lipids), and cluster 3 (69 lipids), while lipids in cluster 7
(59 lipids) and cluster 8 (87 lipids) were increased during infection,
from healthy to non-severe, and from non-severe to severe
syndrome. Heatmap in Fig. 3a for differential expressed lipids
revealed the unique regulation pattern of lipids in plasma during
SARS-CoV-2 infection.
Furthermore, 16 amino acids in plasma were quantified,

because amino acids are vigorously interacted with lipids, such
as serine with PS, which play important roles in infectious and
inflammatory diseases.25 Herein, the concentrations of amino
acids in healthy, non-severe, and severe groups with SARS-CoV-2

Fig. 1 Overview of samples for multi-omics study. a Multi-omics analysis design with three datasets. The training dataset combined with
severe, non-severe, and healthy controls, proteins, lipids, and amino acids were quantified in plasma and used for biomarker discovery, using
random forest. The validation cohort 1 contained ten plasma samples from from non-severe and five severe patients, 25 molecules were
targeted quantified for prediction evaluation. The validation cohort 2 contained urine samples corresponding to plasma samples in the
training dataset, and prediction precision was further evaluated using targeted quantification. b Sample information of COVID-19 patients in
the training dataset with time annotation from onset of disease to admission or from admission to discharge
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infection were compared. A prominent and acute reduction in
plasma amino acids were observed in SARS-CoV-2-infected groups
(Fig. 3b). Amino acids (e.g., glutamine) are consumed in
inflammatory states to fuel immune cell proliferation and
phagocytosis in plasma.26 A significant reduction in amino acid
levels after SARS-CoV-2 infection indicated strong immune
activation in these patients.

Combined biomarker signatures to predict COVID-19 disease
severity in patients
Proteome, amino acids, and lipidome levels were differentially
regulated during SARS-CoV-2 infection. We further used these
omics’ signatures to investigate the possibility for prognosis of
disease severity. There were three cohorts for biomarker discovery
and validation as described in Fig. 1a. For the training cohort, we
built a random forest machine learning model based on

proteome, amino acids, and lipidome data, 25 important variables
including 4 proteins and 21 lipids were preferentially selected (Fig.
4a). This model reached an AUC of 0.993 with 95% CI at 0.957–1 in
the training set (Fig. 4a) and all samples could be classified into
right group (Fig. 4a). Principle component analysis based on these
25 molecule panels could divide samples into right groups, as
shown in Fig. 4b. These molecular signatures for classification
included four ceramides (Cer (d18:1/24:0), Cer (d18:2/22:0), Cer
(d22:0/O-18:0), and Cer (d24:0/O-18:0)), three glycosylceramides
(CerG1 (d18:2/24:0), CerG2 (d18:2/16:0), and CerG2GNAc1 (d36:1)),
one cholesterol ester (ChE (18:1)), four phosphocholines (PC (18:0/
22:6), PC (18:2/22:6), PC (40:6), and PC (42:5)), four phosphatidy-
lethanolamines (PE (16:0p/20:4)), PE (18:0p/20:4), PE (18:0p/22:6),
and PE (20:0p/18:2)), one phosphatidylinositol (PI (18:0/20:4)), four
triacylglycerides (TG (18:1/18:1/22:1), TG (18:1/18:2/22:1), TG (24:0/
18:2/18:2), and TG (26:1/18:1/18:2)), and four proteins (CLEC3B,

Fig. 2 Proteome profiling of COVID-19 patients. a Volcano plot of quantified proteins in COVID-19 vs healthy group, non-severe vs healthy
group, severe vs healthy group, and severe vs non-severe group. b Heatmap of selected differential proteins expression levels and associated
P values for COVID-19 patients annotated with functions and drug targets information. FC fold change

Omics analysis of plasma and urine from COVID-19 patients
Li et al.

4

Signal Transduction and Targeted Therapy           (2021) 6:155 



GELS, CAMP, and GGH). Among these molecular signatures,
CLEC3B is a lung tissue-enriched protein, and a potential
diagnostic and prognostic biomarker in lung cancer and associa-
tion with pulmonary immune microenvironment.27 The corre-
sponding expression pattern of each molecule in healthy controls,
non-severe, and severe patients was shown in Fig. 4c. There were
20 molecules downregulated in the severe group as compared
with the non-severe cohorts, and five molecules upregulated in
the severe group, including PC (18:2/22:6) and four TGs.
To validate the prediction power of these 25 molecular

signatures in plasma selected as potential indicators to distinguish
non-severe and severe patients, their abundances in new plasma
samples from an independent cohort of ten patients (containing
five non-severe and five severe patients) were explored. The
prediction was evaluated by the ROC analysis, as shown in Fig. 5a,
the AUC could reach to 0.988 with 95% CI (0.75–1), using these 25
molecules. One patient was classified into the wrong group as
highlighted in Fig. 5b. Clinical retrospective analysis showed that
this patient only required noninvasive ventilation (other severe
patients required invasive ventilation), and was not exacerbated
after ICU admission.

In order to further evaluate the performance of the biomarker
panels identified in this study, we further explored available public
datasets. In this study, we adapted relative complemented
techniques enriching more small proteins and preferring to more
lipid classes compared with previous publications.12,28 We were
able to identify several novel molecular signatures for COVID-19,
which have never been reported before. Therefore, we only found
one dataset which is suitable for validation.29 Using this dataset,
we were able to quantify 19 molecules among the 25 molecular
signatures, the AUC could reach to 0.901 (95% CI at 0.807–0.973)
for classifying non-severe (n= 54) to severe group (n= 21;
Supplemental Fig. 8). These results indicated that the performance
appeared well accepted in the independent cohort study.
In addition to plasma validation, potential prediction power of

these molecules in urine was also investigated, as urine samples
were acquired noninvasively and also reflected dynamic
changes of disease.30 At last, eight molecules were able to be
quantified in urine samples, because some lipids were not
secreted in urine, or the abundance was lower than technique
detection threshold. The prediction was evaluated by the ROC
analysis. As shown in Fig. 5c, the AUC could reach to 0.904 with

Fig. 3 Heatmap of lipids and amino acids related with COVID-19. a Heatmap of lipids expression levels and associated P values for COVID-19
patients. FC fold change. b Heatmap of amino acids expression levels and associated P values for COVID-19 patients. FC fold change
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95% CI (0.7–1). Samples classified into the wrong group were
highlighted in Fig. 5d. Three severe samples classified into the
non-severe group were acquired from one patient with three
serial samplings across the whole admission. Three non-severe
samples classified into the severe group were acquired from two
patients with two serial samplings across the whole admission.
Overall, the precise prediction in urine proved the feasibility of
dynamic monitoring of patients.

A working model of multi-omics changes in SARS-CoV-2 infection
We summarized the differential expression factors in the plasma
of COVID-19 patients, as illustrated in Supplementary Fig. 9a.
Critical proteins in viral infection and inflammatory response,
include host defense peptides like DEFA1, apoliproteins (APOs),
and interferon-stimulated genes like SAA1 as uncharacterized
antiviral gene,31 accurate phase proteins like complement C6, and
the corresponding lipids or amino acids also play functions in the

Fig. 4 Biomarker analysis based on multi-omics signatures. a ROC curve analysis for the predictive power of combined multiple omics
signatures selected by random forest for distinguishing non-severe from severe group. b Principle component analysis for the non-severe and
severe groups based on selected 25 signatures. c Normalized selected signatures expression values for each sample from individual non-
severe patients or severe COVID-19 patients
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regulation, such as PCs, TGs, PS, and amino acids, as shown in
Supplementary Fig. 9b. APOs, such as Apo E, acts as inducible
inhibitor of viral production and infectivity in macrophages. The
decreased abundance of PCs in plasma of COVID-19 patients
revealed the aberration of macrophage choline cytidylyltransfer-
ase α, which used PC to generate CDP-choline.32 The interaction
between PS-expressing cells and immune cells triggers immuno-
suppressive pathways,33 so the upregulated PSs in plasma
revealed the presence of immunosuppression during infection.
We further speculated the possible pathogenesis of COVID-19 in
the following discussion section.

Potential therapeutic drug target discovery against SARS-CoV-2
infection
Proteome, amino acids, and lipidome profiling could also provide
potential therapeutic drug targets, because the abundance change
of molecular signatures in plasma reflected the virus–host
interaction during SARS-CoV-2 infection. Herein, we analyzed
potential drug targets based on proteins enriched in lung tissue
and targets of Food and Drug Administration (FDA)-approved
drugs as annotated in HPA.14 We identified five lung-enhanced
proteins, including MRC1, histone H4, CCL18, SG3A1, and CLEC3B,
annotated as “drug targets” in Fig. 2b. Interestingly, MRC1 (CD206)
is a key C-type lectin receptor expressed on the surface of M2
macrophages and used as a surface marker for M2 macrophages.
MRC1 also has an anti-inflammatory function and induces

immunotolerance.34 CCL18 (AMAC1, MIP4) is a chemokine that
attracts lymphocytes, including CD4+ and CD8+ T cells, which
might play a role in both humoral andcellular immune responses.35

A previous study showed that all COVID-19 patients with severe
respiratory failure displayed either immune dysregulation or
macrophage activation syndrome.36 Modulating macrophage
activation might be a potential therapeutic strategy for severe
COVID-19 patients. MRC1, the target of metformin which has been
approved to suppress M2-like polarization of macrophages, was
also proposed as potential drug candidate for COVID-19 treatment.
In addition to MRC1, other targets of FDA-approved drugs were

also identified, including S100A8, S100A9, FGB, C5, ITGB3, KLKB1
(plasma kallikrein; PK), and ANXA1. As blockade of S100A8/S100A9
reduces pro-inflammatory cytokine production and ameliorates
excessive inflammation responses.37 Resveratrol, one of FDA-
approved drugs targeting ITGB3, was reported to be a combina-
tion medicine for COVID-19 treatment.38 In addition, resveratrol
also has antiviral effects for MERS-CoV.39 Inhibiting PK might
prevent acute respiratory distress syndrome of COVID-19
patients.40 ANXA1 targeted drug dexamethasone, hydrocortisone,
and prednisolone have been used to treat severely ill COVID-19
patients.41 FGB targeted drug, dipyridamole, which has antic-
oagulant effect and also had been proved to be a potential
therapeutic drug for COVID-19 patients.
For these 12 proteins identified as therapeutic drug targets,

we further explored their network relationships with other

Fig. 5 Validation performance in validation cohort 1 and validation cohort 2. a ROC curve analysis for the predictive power of validated lipid
signatures in new plasma samples. b Performance of the model in new plasma cohort of ten COVID-19 patients. Samples classified into wrong
group were labeled. c ROC curve analysis for the predictive power of validated lipid signatures in urine samples. d Performance of the model
in urine cohort of ten COVID-19 patients. Samples classified into wrong group were labeled
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molecular signatures in plasma, including proteins, lipids, and
amino acids. The basis for the network-based drug repurposing
methodologies rests on that the key proteins localized in the
corresponding subnetwork could interact with significantly
dysregulated molecules and used as drug targets.42 As
illustrated in Fig. 6a, for ANXA1, it could interact with
complement molecules (C2, C3, and C5) and lipids (TGs), which
played important roles in SARS-CoV-2 infection, especially in

severe patients. In addition to ANXA1, which has been used to
treat severely ill COVID-19 patients, another novel drug target
like CLEC3B was also identified. As shown in Fig. 6b, CLEC3B
could interact with host defense proteins (CAMP), Apo families
(Apo A2, and Apo D), and lipids, such as CerG1 classes. CLEC3B
could bind HMGB1 (the high-mobility group box-1) and
reciprocally enhance macrophage endocytosis, thereby induce
macrophage pyroptosis, which was proposed as a drug target

Fig. 6 Drug target analysis by interaction among molecules. a Interaction between target protein-ANXA1 and other molecules include
proteins, lipids, and amino acids. b Interaction between target protein-CLEC3B and other molecules include proteins, lipids, and amino acids
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for sepsis.42 As our data revealed, it could also be a potential
drug target for COVID-19 therapy.

DISCUSSION
COVID-19 has led to the global pandemic, and represents a major
threat to public health and global economy. So far, there is no
effective treatment strategy to prevent death of severe patients.
The diagnosis and prognosis of COVID-19 are important for proper
healthcare resource allocation and selective treatment of severe
patients.
Here, we comprehensively profiled molecular changes in

plasma and urine of COVID-19 patients using quantitative
proteome, amino acids, and lipids based on LC–MS platform,
and we found a series of biomarkers. Random forest algorithm
was applied to select representative molecular signatures, using
proteins and lipids quantified from a training cohort with ten
non-severe and ten severe patients. The model combined with 25
molecules, including 21 lipids and 4 proteins, could accurately
classify severe patients with AUC reached to 0.993, and was
further validated using 10 new plasma samples acquired from
independent patients, 9 of which were correctly classified. In
addition to plasma, these molecules were further validated in
patients’ urine for diagnosis and prognosis. The accuracy was
lower than plasma, as some molecule abundances were incon-
sistent with corresponding plasma. In addition to previous
reported molecules detected by proteomics and metabolomics,12

more lipid signatures were identified. Detection of multiple
proteins in plasma by mass spectrometry faces some difficulties,
including relatively complicated sample preparation and inter-
ference from high-abundance proteins. The quantification of
lipids in plasma could be suitable for the diagnosis and prognosis
of the COVID-19 patients due to its simple sample preparation
and detection procedures. In addition, we performed our
proteome preparation by C18 enrichment method which could
collect more small molecular proteins, and provided another
insight for exploring infection-related small proteins, such as
lung-enriched protein, CLEC3B.
In this study, there were no significant age difference between

health donors (mean of ages is 42.0) and non-severe (mean of
ages is 43.3) patients, while the severe patients were older (mean
of ages is 62.1). To determine the effect of age on the results, we
analyzed the 25 biomarkers in different groups (health donors,
non-severe, and severe patients), using two-way ANOVA to
explore the two-factor impact on these biomarkers. The results
showed that these signatures were mainly effected by COVID-19
infection as the P value for ages was not significant (P value >0.05;
Supplementary Dataset 1).
After the virus invades lung tissue, innate immune response is

activated and inflammatory cytokines are produced, such as IL-6
and TNF. Liver functions changes and further produces SAA1 and
CRP, which have been identified as biomarkers for the severity in
COVID-19 patients.12 SAA1 and CRP further activate the comple-
ment system to recruit inflammatory cells, increase vascular
permeability, and contributing to cytokine storm. On the other
hand, hyper-inflammatory response leads to lung damage, then
activates M2 macrophage to promote fibers and collagen
production and tissue remodeling.43 As showed in Supplementary
Fig. 9, excessive activation of M2 macrophages consumed more
glutamine and amino acid, and resulted in decreased concentra-
tion of glutamine in plasma. CCL18 served as a marker for
enhanced risk of pulmonary fibrosis development.44 In addition,
LL37, the unique cathelicidin in humans, was also downregulated
in severe patients. LL37 was produced by epithelial tissues, as well
as the innate immune system, such as human neutrophils,
monocytes/macrophages, lymphocytes, mast cells, etc.,45 and it
was identified as a broad-spectrum antimicrobial factor and used
to inhibit respiratory syncytial virus infection.46

S100A8 and S100A9 are Ca2+-binding proteins that generally
expressed in neutrophils and monocytes as a Ca2+ sensor in form
of heterodimer and were upregulated in severe patients. S100A8/
S100A9 can induce the secretion of multiple inflammatory
cytokines, such as TNF, IL-6, and IL-1 via different signaling
pathways.37 As blockade of IL-6 receptor by tocilizumab was
reported as a therapeutic strategy for COVID-19 patients,
inhibition of IL-6 secretion by blocking S100A8/S100A9 provides
alternative treatment. Kallikrein/kinin system consists of two
different proteolytic pathways: PK pathway and tissue kallikrein
pathway. PK is primarily produced in liver, and complexed with
high molecular weight kininogen in the plasma. PK is activated
within the vasculature and releases bradykinin, the latter binds to
bradykinin B2 receptors to enhance vascular permeability,
triggering pain and pulmonary edema.47 Therefore, inhibition of
PK might be a potential strategy to prevent acute respiratory
distress syndrome.40

In summary, this study combined analysis of proteins, amino
acids, and lipids in plasma and urine from COVID-19 patients, and
revealed the molecular signatures related with SARS-CoV-2
infection, especially for the dysregulation of macrophage, proteins,
and metabolites. A panel combined with 25 molecules proposed
feasibly biomarkers for the prediction of the non-severe and severe
COVID-19 patients. Several therapeutic drug targets were also
identified according to the molecular signatures in plasma, such as
metformin, resveratrol dexamethasone, and dipyridamole, which
had potential to treat severely ill COVID-19 patients.

MATERIALS AND METHODS
Proteome analysis
Plasma samples were inactivated using UV for 1 h followed by
processing with SPE columns (Agela, China) following to the
manufacturer’s instructions, which removes high-abundance
proteins and enriched low-abundance small protein with some
modifications.48 Protein concentration was determined by the
Bradford protein assay kit (Bio-Rad, USA), and subsequently
reduced by dithiothreitol at 37 °C water bath for 30min and
alkylated by iodoacetamide at room temperature for 30 min in the
darkroom. Proteins were digested by trypsin (Promega, USA)
following FASP (filter-aided sample preparation) protocol.49

Samples were quantified using DIA mode by QExactive HF-X
mass spectrometer (Thermo Scientific, San Jose, USA) coupled
with an Ultimate 3000 UHPLC liquid chromatography (Thermo
Scientific, San Jose, USA). Peptides were separated by self-packed
analytical column (150 μm internal diameter, 1.7 μm particle size,
and 35 cm column length) at the flow rate of 500 nL/min. The
mobile phase A consists 0.1% formic acid in water; and the mobile
phase B consists 0.1% formic acid in acetonitrile with 120min
elution gradient following settings as: 0–5min, 5% B; 5–95min,
5–25% B; 95–105 min, 25–35% B. For HF-X settings, the mass
range of MS1 was set as 400–1250m/z at the resolution of 120,000
with 50 ms max injection time. For the DIA setting, mass range of
400–1250m/z was equally divided into 45 continuous windows
MS2 scans at 30,000 resolution with the automatic max injection
time and automatic gain control (AGC) of 1E6. Normalized collision
energy of MS2 was distributed to 22.5, 25, and 27.5.
The raw data were analyzed by Spectronaut software (v12.0,

Biognosys, Switzerland) with the default settings against the self-
built plasma spectral library. The FDR cutoff was set as 1% at both
peptide and protein levels. For differential analyses, the R package
MSstats50 was used for log2 transformation, normalization, and P
value calculation.

Lipidome and amino acids analysis in plasma
Lipids extraction was primarily performed according to previously
reported methods.51 In short, 100 µL plasma samples were
extracted by directly adding 300 µL of precooled isopropanol,
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and internal standards (SPLASH® LIPIDOMIX® Mass Spec Standard,
Avanti, USA) were added for the quality control (QC) of sample
preparation. After vortex for 1 min and incubate at −20 °C for
overnight, samples were centrifuged for 20 min at 14,000 r.p.m.,
and the supernatants were transferred to autosampler vials for
LC–MS analysis. A QC sample was prepared by pooling the same
volume of each sample to evaluate the reproducibility of the
whole LC–MS analysis.
The samples were analyzed on a Waters 2D UPLC (Waters, USA),

coupled to a QExactive mass spectrometer (Thermo Fisher
Scientific, USA) with a heated electrospray ionization source and
controlled by the Xcalibur 2.3 software program (Thermo Fisher
Scientific, Waltham, MA, USA). Chromatographic separation was
performed on a Waters ACQUITY UPLC CSH C18 column (1.7 μm,
2.1 mm× 100mm, Waters, USA), and the column temperature was
maintained at 55 °C. The mobile phase consisted of acetonitrile/
water (60:40, v/v), mixed with 10 mM ammonium formate and
0.1% formic acid (A) and isopropanol/acetonitrile (90:10, v/v),
mixed with 10mM ammonium formate and 0.1% formic acid (B) in
the positive mode, and in the negative mode, acetonitrile/water
(60:40, v/v), mixed with 10 mM ammonium formate (A) and
isopropanol/acetonitrile (90:10, v/v), mixed with 10 mM ammo-
nium formate (B). The gradient conditions were as follows:
0–5min, 40–43% B; 5–5.1 min, 43–50% B; 5.1–18min, 50–54% B;
18–18.1 min, 54–70% B; 18.1–27min, 70–99% B; 27–27.1 min,
99–40% B; and 27.1–30min, 40% B. The flow rate was 0.4 mL/min
and the injection volume was 5 μL.
The mass spectrometric settings for positive/negative ionization

modes were as follows: spray voltage, 3.8/–3.2 kV; sheath gas flow
rate, 40 arbitrary units (arb); aux gas flow rate, 10 arb; aux gas
heater temperature, 350 °C; capillary temperature, 320 °C. The full
scan range was 200–2000m/z with a resolution of 70,000, and the
AGC target for MS acquisitions was set to 3e6 with a maximum ion
injection time of 100ms. Top three precursors were selected for
subsequent MSMS fragmentation with a maximum ion injection
time of 50 ms and resolution of 17,500, the AGC was 1e5. The
stepped normalized collision energy was set to 15, 30, and 45 eV.
LipidSearch 4.1 SP2 software (Thermo Fisher, USA) was used for
lipid identification and quantitation. The quantified result was
further processed using metaX package.

Lipids validated in urine by MRM quantification
For semiquantitative assay of the 21 potential lipid markers in the
urine of COVID-19 patients, lipids in urine were extracted using
precooled isopropanol similar with plasma, as described above. The
21 lipid markers were quantified with multiple reaction monitoring
(MRM) mode by QTRAP 5500 (SCIEX, USA) coupled with UPLC
(Waters, USA) using same LC condition, as described in discovery
stage. Data were processed using MultiQuant software (SCIEX, USA).

Combined biomarkers validated in new plasma cohort by PRM
quantification
Plasma samples were prepared for protein and lipid extraction
following the above description, and analyzed by targeted
quantification, parallel reaction monitoring (PRM). For protein
quantification, PRM was acquired on the same UPLC–MS system
(Ultimate 3000 UPLC coupled with QE HF-X) with the previous
proteome profiling. All PRM data were processed using skyline
(v20.1).

Statistical analysis
The time series analysis for proteins and lipids were applied based
on fuzzy c-means algorithm implemented in the R package
(version 2.48.0) Mfuzz. Optimized number of clusters was
estimated by calculating minimum centroid distance. Metaboa-
nalyst was used for biomarker analysis using the multivariate ROC
curve analyses based on random forests algorithms. All figures
were drawn using corresponding R packages.
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