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Pancreatic ductal adenocarcinoma (PDAC) is an extremely malignant tumor. The immune profile of PDAC and the immunologic
milieu of its tumor microenvironment (TME) are unique; however, the mechanism of how the TME engineers the carcinogenesis of
PDAC is not fully understood. This study is aimed at better understanding the relationship between the immune infiltration of the
TME and gene expression and identifying potential prognostic and immunotherapeutic biomarkers for PDAC. Analysis of data
from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases identified differentially expressed
genes (DEGs), including 159 upregulated and 53 downregulated genes. Gene Ontology analysis and Kyoto Encyclopedia of
Genes and Genomes enrichment were performed and showed that the DEGs were mainly enriched for the PI3K-Akt signaling
pathway and extracellular matrix organization. We used the cytoHubba plugin of Cytoscape to screen out the most significant
ten hub genes by four different models (Degree, MCC, DMNC, and MNC). The expression and clinical relevance of these ten
hub genes were validated using Gene Expression Profiling Interactive Analysis (GEPIA) and the Human Protein Atlas,
respectively. High expression of nine of the hub genes was positively correlated with poor prognosis. Finally, the relationship
between these hub genes and tumor immunity was analyzed using the Tumor Immune Estimation Resource. We found that the
expression of SPARC, COL6A3, and FBN1 correlated positively with infiltration levels of six immune cells in the tumors. In
addition, these three genes had a strong coexpression relationship with the immune checkpoints. In conclusion, our results
suggest that nine upregulated biomarkers are related to poor prognosis in PDAC and may serve as potential prognostic
biomarkers for PDAC therapy. Furthermore, SPARC, COL6A3, and FBN1 play an important role in tumor-related immune
infiltration and may be ideal targets for immune therapy against PDAC.

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an extremely
malignant tumor of the digestive system, with a 5-year sur-
vival rate of only 8% [1]. GLOBOCAN 2018 estimated that
pancreatic cancer ranked as the seventh leading cause of
cancer death worldwide, with approximately 458,918 new

incidence cases and 432,242 deaths [2]. Because of its poor
prognosis, newly diagnosed cases and deaths from pancreatic
cancer have significantly increased at the same pace over the
last few decades [2]. Currently, surgical resection is still the
most effective treatment, which significantly improves the
5-year survival rate to 20–30%. However, less than 20% of
all patients are eligible for resection because the majority of
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patients have locally advanced or metastatic disease at the
time of diagnosis [3]. Therefore, there is an urgent need for
more effective therapeutic strategies.

In recent years, cancer immunotherapy has become an
active area of cancer research. This approach is designed to
improve the immunogenicity of tumor cells, stimulate and
enhance the antitumor immune response, and inhibit tumor
growth and progression. Since the FDA approval of the first
targeted drug ipilimumab (humanized anti-CTLA-4 IgG1
monoclonal antibody) in 2011, six more immune checkpoint
inhibitors have been approved for cancer therapy [4, 5]. At
present, immune checkpoint inhibitors have achieved signif-
icant therapeutic effects in melanoma [6], squamous non-
small-cell lung cancer [7], renal cell carcinoma [8, 9], and
urothelial cancer [10, 11]. However, the immune profile of
PDAC and the immunologic milieu of its tumor microenvi-
ronment (TME) are unique relative to other malignant
tumors, and the mechanism of how the TME engineers the
carcinogenesis of PDAC is not entirely clear. Therefore, it is
necessary to find new possible prognostic and immunothera-
peutic biomarkers for this disease.

In the current study, we analyzed pancreatic cancer gene
expression data from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) databases to identify
differentially expressed genes (DEGs). Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment and protein-protein interaction (PPI)
network analyses were performed to reveal the interactive
relationships between the DEGs to explore the underlying
molecular mechanisms involved in the carcinogenesis and
progression of PDAC. Subsequently, we used the cyto-
Hubba plugin of Cytoscape to search for hub genes and
identify the most significant hub genes using four different
models (Degree, Maximal Clique Centrality (MCC), Den-
sity of Maximum Neighborhood Component (DMNC),
and Maximum Neighborhood Component (MNC)). We
further validated the expression levels of the hub genes
and their clinical relevance using Gene Expression Profiling
Interactive Analysis (GEPIA) and the Human Protein Atlas,
respectively. Finally, we evaluated the associations between
the prognosis-related genes and several immune cell types
based on the Tumor Immune Estimation Resource
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Figure 1: Identification of DEGs in pancreatic cancer using three databases. (a) The differentially expressed genes from the TCGA database
were determined by GEPIA. (b) The volcano map for the GSE15471 dataset. (c) A Venn diagram showing 159 upregulated genes in PDAC.
(d) A Venn diagram showing 53 downregulated genes in PDAC.
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(TIMER). In summary, our study identified potential
prognostic biomarkers and immunotherapeutic targets
for PDAC.

2. Materials and Methods

2.1. Data Collection and Processing. The mRNA expression
profiles of PDAC and adjacent normal tissues were obtained
from GEPIA (TCGA Data Online Analysis Tool; http://
gepia2.cancer-pku.cn/#index). PDAC microarray profiles
were retrieved from the GEO database (http://www.ncbi
.nlm.nih.gov/geo/) using the keywords “pancreatic cancer”
OR “PDAC”OR “pancreatic adenocarcinoma.” “Homo sapi-

ens” and “Expression profiling by array” were included in the
next round of screening. Inclusion criteria consisted of (1)
human pancreatic tissue samples, (2) tumor and adjacent
noncancerous tissue samples, and (3) more than 30 samples
in the tumor and adjacent noncancerous groups. Based on
these criteria, the gene expression microarray datasets
GSE15471 [12] and GSE62452 [13] were downloaded for
analysis. GSE15471 is comprised of 39 tumors and paired
adjacent normal tissues, and GSE62452 contains 69 tumors
and 61 adjacent normal tissue samples. We used the GEO2R
analysis tool (http://www.ncbi.nlm.nih.gov/geo/geo2r/) to
screen for differentially expressed mRNAs between the
normal tissue and tumor samples from the GSE15471 and
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Figure 2: Functional enrichment analysis of DEGs. (a) Top ten enriched biological processes for the DEGs. (b) Top ten enriched KEGG
pathways for the DEGs. (c) Hierarchical clustering of gene expression profiles in each KEGG pathway. (d) Chord plots showing the
relationship between the hub genes and the KEGG pathway.
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GSE62452 datasets. P < 0:05 and ∣log 2FC ∣ >1 were set as the
cut-off criteria for identifying DEGs.

2.2. Functional Enrichment Analysis. Gene Ontology (GO)
analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment were performed on the DEGs, and the
results were visualized using the R package. A P value <
0.05 was set as the cut-off criterion.

2.3. PPI Network Construction and Module Analysis. The
STRING database (https://string-db.org/) was used to draw
the PPI network diagram of the DEGs. The hub genes were
identified and visualized using Cytoscape [14]. Specifically,
the hub genes were identified using the Degree, MCC,

DMNC, and MNC models with the Cytoscape plugin
cytoHubba [15].

2.4. Validation of Hub Genes. We analyzed the expression of
the hub gene using GEPIA (http://gepia.cancer-pku.cn/index
.html) [16]. Because there were few normal pancreatic tissue
samples in the TCGA database, the expression level of spe-
cific DEGs was validated using the TCGA PDAC tumor data
and matched data for normal tissue in the TCGA and
Genotype-Tissue Expression (GTEx) databases. ∣log 2FC ∣ >
1 and P < 0:05 were considered statistically significant. Pro-
tein expression of the DEGs was evaluated in the pancreatic
tumor and nontumor tissues using the Human Protein Atlas
tool (https://www.proteinatlas.org/) [17]. Mutation data were
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Figure 3: Identification of hub genes. (a–d) The hub genes were identified using four models (Degree, MCC, DMNC, and MNC) with the
Cytoscape plugin cytoHubba. (e) A Venn diagram was used to identify the ten hub genes in PDAC.
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obtained from the cBioPortal for Cancer Genomics (https://
www.cbioportal.org/) [18].

2.5. Association of Hub Gene Expression with the Survival of
Patients with PDAC. We analyzed the association of patient
prognosis with the hub genes using the human protein atlas
website. Based on the fragments per kilobase million (FPKM)
value of each gene, pancreatic cancer patients were classified
into two expression groups (high expression and low expres-
sion), and the correlation between the expression level and
patient survival was examined. The prognosis of each group
of patients was examined using Kaplan-Meier survival
estimators, and the survival outcomes of the two groups were
compared by the log-rank test. P < 0:05 was considered
statistically significant.

2.6. Associations between Hub Genes and Immune Cell
Infiltration and Immune Checkpoints. TIMER is an online
website that uses RNA-Seq expression profiling data to detect
immune cell infiltration in more than 30 cancer types [19].
We used this approach to analyze the correlation between
the expression levels of the hub genes and the abundance of
immune infiltrates (B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells) and four

immunological checkpoints (CTLA4, CD274, PDCD1, and
PDCD1LG2).

3. Results

3.1. Screening for DEGs in PDAC.We identified the differen-
tially expressed genes in PDAC in the TCGA database
using GEPIA (Figure 1(a)). Based on the thresholds of P
< 0:05 and |log 2FC ∣ >1, a total of 9202 DEGs (8724
upregulated and 478 downregulated) were identified.
DEGs between normal and cancer tissues in the GEO
datasets GSE15471 and GSE62452 were screened using
GEO2R. A total of 295 DEGs (189 upregulated and 106
downregulated genes) were identified in profile
GSE62452, and 1794 DEGs (1561 upregulated and 233
downregulated genes) were found in profile GSE15471
(Figure 1(b)). The overlapping DEGs within the three datasets
consisted of 159 upregulated genes (Figure 1(c)) and 53 down-
regulated genes (Figure 1(d)).

3.2. Functional Analysis of the DEGs. To analyze the underly-
ing interplay of the DEGs, GO analysis and KEGG pathway
enrichment were performed using the R package. Based on
the GO analysis, the upregulated DEGs mainly participated
in the extracellular matrix organization, extracellular
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Figure 4: Expression analysis of ten hub genes in PDAC based on GEPIA. The mRNA expression levels in TCGA pancreatic tumors (n = 179)
and matching normal tissue (n = 171) from the TCGA and GTEx databases. P < 0:05 was considered statistically significant.
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structure organization, positive regulation of cell migra-
tion, skeletal system development, and cell-substrate adhe-
sion (Figure 2(a)). KEGG pathway analysis revealed that
the DEGs were mainly enriched in the PI3K-Akt signaling
pathway, focal adhesion, and ECM-receptor interaction

(Figure 2(b)). Genes specifically enriched in each KEGG
term were visualized (Figures 2(c) and 2(d)).

3.3. PPI Network Analysis and Screening of Hub Genes. To
explore the potential interactions between the DEGs, we used
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Figure 6: Continued.
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the STRING database to study the relationship between the
various DEGs. We identified ten hub genes based on the
Degree (Figure 3(a)), MCC (Figure 3(b)), DMNC
(Figure 3(c)), and MNC (Figure 3(d)) Cytoscape models.
The ten hub genes were BGN, COL5A2, COL6A3, COL11A1,
COL12A1, FBN1, POSTN, SPARC, THBS2, and VCAN
(Figure 3(e)).

3.4. Validation of Expression and Alteration of Hub Genes in
PDAC. To verify the differential expression of the hub genes
between PDAC and normal pancreatic tissue, we analyzed
the ten hub genes using the GEPIA-based TCGA database.
We found that the mRNA expression levels of the hub genes
were significantly increased in PDAC compared to normal
pancreatic tissue (Figure 4). Protein expression levels were
similarly compared using the Human Protein Atlas database.

Typical immunohistochemistry images (https://www
.proteinatlas.org/) for the protein expression of eight of the
ten genes (COL5A2 and COL11A1 were not included in the
database) in tumor and normal pancreatic tissue are shown
in Figure 5(a). Genetic alterations found in the ten genes in
pancreatic cancer are shown in Figure 5(b). Missense
mutations were the most common type of mutation in the
upregulated genes.

3.5. Identification of the Clinical Prognostic Value of Hub
Genes in PDAC. To estimate the influence of hub gene
expression on the prognosis of PDAC, we performed
survival analysis for the hub genes using the Human
Protein Atlas online tool for differential analysis. High
expression of nine of the hub genes was positively corre-
lated with poor prognosis (COL5A2 P = 0:044; COL6A3
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Figure 6: Survival analysis of the ten hub genes in PDAC based on the Human Protein Atlas. (a) BGN; (b) COL5A2; (c) COL6A; (d)
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P = 0:013; COL11A1 P = 0:011; COL12A1 P = 0:0012;
FBN1 P = 0:028; POSTN P = 0:013; SPARC P = 0:041;
THBS2 P = 0:040; VCAN P = 0:0027) (Figure 6).

3.6. Immune Infiltration Analysis. To explore whether there
was a correlation between immune cell infiltration into the
tumors and hub gene expression, we analyzed the relation-
ships between the ten hub gene signatures and tumor purity
and six important immune cell types (CD4+ T cells, CD8+ T
cells, B cells, neutrophils, macrophages, and dendritic cells)
using TIMER. We observed that most of these prognosis-
related genes were positively correlated with the infiltrating
levels of the different immune cell types but negatively related
to tumor purity (Supplementary Figure 1, Supplementary
Table 1). In particular, SPARC, COL6A3, and FBN1
showed remarkable positive correlations with the
infiltrating levels of the six immune cell types (Figure 7).

Since immunotherapy is currently focused on immuno-
logical checkpoint inhibitors (e.g., CTLA4, PDCD1,
PDCD1LG2, and CD274), we chose SPARC, COL6A3, and
FBN1 as potential target genes and further analyzed the coex-
pression relationship of these three genes with these immune
checkpoint-related genes by TIMER. We found that all three
of these potential target genes had strong coexpression rela-
tionships with CTLA4, PDCD1, PDCD1LG2, and CD274
(Figure 8).

4. Discussion

Pancreatic cancer is one of the most malignant and aggres-
sive tumors. Traditional treatment methods (e.g., surgery,
chemotherapy, radiotherapy, and other locoregional thera-
pies) provide low survival rates. Currently, several clinical
studies have focused on immunotherapeutic strategies in
pancreatic cancer [20]. Therefore, a better understanding of
the immune infiltration into pancreatic tumors and the iden-
tification of novel PDAC immune-related biomarkers may
prove useful for immunotherapy.

In the current study, we found 212 reliable DEGs in
PDAC by the comprehensive analysis of three datasets. These
differentially expressed genes were then subjected to GO and
KEGG pathway enrichment analysis, which indicated that
these DEGs were mainly enriched in pathways involved in
the extracellular matrix (ECM) and extracellular structure
organization and the PI3K-Akt signaling pathway. The
ECM, a major component of the tumor microenvironment,
is known to undergo significant changes during angiogenesis
and tumor progression [21]. Activation of the PI3K-AKT sig-
naling pathway can enhance pancreatic cancer cell prolifera-
tion and invasion [22, 23]. Our results can help elucidate the
underlying mechanisms of TME in pancreatic cancer prolif-
eration and invasion. Furthermore, we identified ten hub
genes through PPI network analysis. According to the results
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Figure 8: The association between the expression levels of SPARC (a), COL6A3 (b), and FBN1 (c) with immune checkpoints using TIMER.
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of our prognostic analysis, high expression of COL5A2,
COL6A3, COL11A1, COL12A1, FBN1, POSTN, THBS2,
SPARC, or VCAN was associated with poor prognosis for
patients with pancreatic cancer. These results suggest that
these genes could serve as potential prognostic biomarkers
for PDAC.

Immune cell infiltration in the tumor microenvironment
has received much attention and has become a promising
therapeutic target. To further investigate the relationship
between these prognosis-related genes and different immune
cell types, we predicted gene-immune cell interactions using
TIMER. We found that the expression levels of SPARC,
COL6A3, and FBN1 were significantly correlated with six
infiltrating immune cell types (CD4+ T cells, CD8+ T cells,
B cells, neutrophils, macrophages, and dendritic cells).

SPARC is a multifunctional calcium-binding glycopro-
tein that is usually secreted into the extracellular matrix and
plays a key role in proliferation, migration, adhesion, and dif-
ferentiation [24, 25]. Previous studies have shown that
SPARC is localized in the tumor stroma and overexpressed
in various cancers, such as breast [26], lung [27, 28],
and melanoma [29]. Moreover, SPARC expression is dra-
matically increased in gastric tumors and associated with
poor outcome [30]. Stromal SPARC expression is observed
in almost 40% of pancreatic adenocarcinoma patients who
have undergone curative resection, and this expression is
an independent prognostic factor [31]. Consistent with
our research, high SPARC expression in PDAC is associ-
ated with poor prognosis.

COL6A3 is an extracellular matrix protein that is typi-
cally found in most connective tissues, including muscle,
skin, tendon, and vessels. Many recent studies have demon-
strated the important role of COL6A3 in the diagnosis and
prognosis of colorectal, lung, and prostate cancer [32, 33].
A high level of expression of COL6A3 has been observed in
pancreatic tumors, where it was correlated with negative
prognostic factors [34]. This finding is consistent with the
results obtained in our study.

FBN1 encodes fibrillin, which is the primary component
of microfibrils in the extracellular matrix. A previous study
reported that FBN1 overexpression plays a key role in the
development of germ cell tumors [35]. FBN1 is also a target
gene for microRNA- (miR-) 133b. miR-133b inhibits the
proliferation, migration, and invasion of gastric cancer cells
by increasing FBN1 expression [36]. Moreover, hypermethy-
lated FBN1 is found in tissue samples from colorectal cancer
patients but not in healthy controls, suggesting that hyper-
methylated FBN1 may be a sensitive biomarker for this dis-
ease [37]. The role of FBN1 in the development of
pancreatic cancer and its correlation with the prognosis of
patients has not been reported previously. In summary, we
speculate that SPARC, COL6A3, and FBN1 might be
involved in the development of PDAC by regulating the
functions of the TME.

Previous studies have suggested that the tumor microen-
vironment is one of the significant factors determining the
prognosis of PDAC and may even play a role in the resistance
to treatment [38, 39]. However, the tumor microenviron-
ment is complex and determined by many factors. We com-

prehensively analyzed the correlation between immune
checkpoints and identified three potential prognosis-related
genes (SPARC, COL6A3, and FBN1). We were surprised to
find that these genes had a significant coexpression relation-
ship with CTLA4, PDCD1, PDCD1LG2, and CD274. These
results suggest that the three prognosis-related genes may
affect the development of pancreatic cancer by affecting
immune checkpoints. Future studies should identify the spe-
cific roles of these genes in the regulation of PDAC develop-
ment and progression.

5. Conclusion

Taken together, our results suggest that the nine high expres-
sion hub genes (COL5A2, COL6A3, COL11A1, COL12A1,
FBN1, POSTN, THBS2, SPARC, and VCAN) may be associ-
ated with the development and prognosis of PDAC. All these
genes may be potential prognostic biomarkers for PDAC. In
addition, three hub genes (SPARC, COL6A3, and FBN1)
may also play a vital role in the microenvironment of pancre-
atic cancer through the regulation of tumor-infiltrating
immune cells, suggesting they could serve as potential thera-
peutic targets for the modulation of the antitumor immune
response. Nevertheless, further investigation is needed to
confirm the mechanisms underlying the potential roles of
these biomarkers in the immune microenvironment.
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