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ABSTRACT: Biopharmaceuticals hold great promise for the future of
drug discovery. Nevertheless, rational drug design strategies are mainly
focused on the discovery of small synthetic molecules. Herein we
present matched peptides, an innovative analysis technique for biological
data related to peptide and protein sequences. It represents an extension
of matched molecular pair analysis toward macromolecular sequence
data and allows quantitative predictions of the effect of single amino acid
substitutions on the basis of statistical data on known transformations.
We demonstrate the application of matched peptides to a data set of
major histocompatibility complex class II peptide ligands and discuss the
trends captured with respect to classical quantitative structure−activity relationship approaches as well as structural aspects of the
investigated protein−peptide interface. We expect our novel readily interpretable tool at the interface of cheminformatics and
bioinformatics to support the rational design of biopharmaceuticals and give directions for further development of the presented
methodology.

■ INTRODUCTION

Biopharmaceuticals are defined as pharmaceutical products
consisting of (glyco)proteins and/or nucleic acids.1 Therefore,
this class of drugs mainly comprises peptide hormones,
recombinant proteins, monoclonal antibodies, and therapeutic
antibodies. Biopharmaceuticals allow access to new target
classes and are therefore considered more innovative than
small-molecule drugs.2 Accordingly, a record number of 11 new
biopharmaceuticals were approved by the FDA in 2014.3

Therefore, biopharmaceuticals hold promise to claim a larger
share of the drug market in the future.4 Additionally, biosimilars
are increasingly entering the market after patent expiry of
original biopharmaceutical products.5

Biopharmaceuticals generally pose new challenges for the
drug discovery process, which has historically been focused on
small molecules. This includes their analytical characterization,6

delivery and formulation7,8 after optimization of the biotechno-
logical production process,9,10 and their molecular properties.11

Computational modeling techniques hold great promise to
handle the complexity of the generated data and, for example,
to guide affinity optimization of therapeutic proteins12 or
peptides.13,14 Peptide drugs are often considered as the border
between small-molecule drugs and biopharmaceuticals, as their
synthesis is mainly chemistry-driven.15

Traditionally, quantitative structure−activity relationship
(QSAR) and quantitative structure−property relationship
(QSPR) modeling approaches neglect the three-dimensional
(3D) structure of the peptides and proteins and are thus 2D-
based. Nevertheless, approaches using 3D interaction fields16 or

comparative modeling techniques have been described.17 These
3D techniques have to cover the bioactive conformation of the
usually highly flexible peptide ligands, which poses additional
challenges for modeling.18 In a pioneering study, Sneath
derived the first molecular descriptors for the 20 natural amino
acids and applied them in QSAR modeling.19 Later, these 2D
descriptors were refined to capture chemically intuitive
information via the Z-scale model20 or the isotropic surface
area/electronic charge index (ISA/ECI) model.21 In contrast to
substitution matrices frequently applied in bioinformatics (e.g.,
PAM,22 BLOSUM23), these descriptors are designed to reflect
chemical in contrast to evolutionary similarity. Amino acid
descriptors have typically been used to derive QSAR equations
by linear regression techniques.24

Over the past decade, the innovative cheminformatic concept
of “matched molecular pair analysis”25 has been gaining
increasing attention. Herein, pairs of molecules with a single
difference in chemical structure are analyzed with respect to
changes in a physicochemical or biological property.26 Data
mining in large databases (e.g., bioactivities stored in
ChEMBL27 or in-house data sets28) allows trends from
matched molecular pairs or matched molecular series to be
applied subsequently for prediction of substitution effects in
new molecules.29 A key advantage of matched molecular pair
analysis is the direct chemical interpretability of predictions
(“white box”) based on local SAR rules.30 Recently, efforts have
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been made to put purely ligand-based matched molecular pairs
into structural context and thereby identify the structural
background of observed bioactivity trends.31,32

Herein we expand the scope of matched molecular pairs to
the analysis of macromolecular data from proteins and peptides
and introduce matched peptides, a concept we expect to hold
great promise for the development of biopharmaceuticals. As an
example application, we investigate peptide binding to the
major histocompatibility complex class II (MHC II), a surface
receptor crucial for T-cell activation in immune response.33,34 A
crystal structure of the receptor shows that the peptide is bound
to a hydrophobic surface groove that is flanked by two α-
helices.35 Through the availability of structural information,
most modeling approaches aiming at the prediction of peptide
binding to MHC molecules employ machine learning
techniques,36 e.g., MULTIPRED.37 Large peptide data sets
have been compiled and used for the optimization of consensus
approaches based on machine learning methods.38 Application
of these techniques allows for the optimization of peptides with
desired immunological properties.39 Quantitative modeling
techniques are rarely applied toward MHC binding but include
classical amino acid-descriptor-based QSAR methods40 as well
as molecular dynamics simulation approaches.41 Here we apply
the novel matched peptides strategy to the prediction of MHC
II binding affinities and demonstrate the direct interpretability
of the predictions in a structural context.

■ METHODS

Matched Molecular Pairs and Matched Peptides.
Identification of matched molecular pairs involves an exhaustive
pairwise matching of molecular graphs. To simplify this task,
molecules are usually fragmented to aid the search for
corresponding substructures.42 Older implementations addi-
tionally required a definition of the allowed transformations
within matched pairs,43 thus prohibiting the identification of
unknown chemical modifications associated with a change in
the molecular property under investigation.
In the context of peptide and protein data, a molecular

transformation corresponds to a point mutation. Therefore,
sequences differing by a single character correspond to matched

peptides. For identification of these single substitutions, a
pairwise sequence alignment that can be performed by standard
bioinformatics methodologies is required. Sequence alignment
for matched peptides is trivial since they consistently differ by a
single amino acid. This sequence alignment step simplifies the
graph matching problem for small molecules described above,
since linear peptides have the advantage of having defined C-
and N-termini as well as identical chemical backbones (see
Figure 1). Furthermore, insertions and deletions between
sequence pairs can be considered as trivial additions to the
exchange of single amino acids and thus may also be involved as
additional transformations in matched peptides. Matched
peptides therefore represent a special case of matched
molecular pairs that are easy to detect on the sequence level.
Code implementation was performed using standard Python

tools in combination with a custom node in KNIME44 aiming
to identify all sequence pairs differing in a single sequence
position and thus forming matched peptide pairs. Since all of
the sequences analyzed in the current study were point
mutations relative to a consensus sequence and had a constant
length, no gaps occurred, and the presented analysis is therefore
independent of gap penalties in the alignment step.
Affinity differences observed for matched peptides were

aggregated over all peptide positions, assuming that the effects
of amino acid exchanges are independent of their position and
thus reflect an average of all binding-site environments. We will
demonstrate in the Results and Discussion section that this
assumption is in general valid for MHC II binders and also
discuss ways to cover position-specific aspects in matched
peptide analysis.

Analyzed Data Set. We analyzed experimental binding
affinities for a panel of 198 peptides toward MHC II molecules
from Marshall et al.45 Fluorescence-based assays were applied
to obtain IC50 values in the nano- and subnanomolar range for
all of the peptides using a 12-point inhibition curve for binding
with three replicates each. Peptide sequence were grouped
around the template peptide sequence AAYAAAAAAAAAA,
where the central 11 amino acids of the peptide with length 13
were varied. For positions 2 and 4 to 12, all 20 natural amino
acids were tested, while only seven apolar amino acids (F, I, L,

Figure 1.Matched molecular pairs and matched peptides. The correspondence of matched molecular pairs to matched peptides is exemplified by the
chemical transformation of benzene to toluene by exchange of a hydrogen for a methyl group (orange). The same transformation is involved when
an alanine-glycine-alanine tripeptide is exchanged with alanine-alanine-alanine. The latter transformation may be easily encoded when using standard
one-letter amino acid codes. This representation allows for fast processing of large databases connecting sequences with respective molecular
properties.
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M, V, W, Y) were tested for position 3. All of the sequences
represent single-point mutations around the template sequence.
Additionally, the length of the peptide (13 amino acids) was
kept constant, and thus, no insertions or deletions were present
among the matched peptide sequences. All of the presented
analyses are based on negative decadic logarithms of reported
IC50 values and their ratios based on molar units.
Statistical Framework. On the basis of statistical analysis

of bioactivity data from ChEMBL, the expected standard
deviation of the IC50 data from a homogeneous source is 0.2 log
units.46 Therefore, an average effect size of at least 0.20 log
units establishes statistical significance versus the null
hypothesis (no change in activity) at the p = 0.05 level with
at least 10 matched molecular pairs or matched peptides.47

Therefore, the term “significant transformations” used later on
explicitly refers to those amino acid substitutions associated
with an effect on the binding affinity that is statistically
significantly different to zero.
Correlation to Amino Acid Descriptors. We correlated

trends in bioactivities (affinity shifts) observed from analysis of
matched peptides to differences in amino acid properties.
Therefore, we employed three descriptors from the Z-scale
approach describing hydrophilicity (z1), steric bulk (z2), and
electronic properties (z3).

20 Furthermore, we analyzed
correlations to differences in the isotropic surface area (ISA)
and the electronic charge index (ECI).21 Correlations between
activity differences and property differences were assessed via
calculation of Pearson’s linear correlation coefficient r and
Spearman’s rank correlation coefficient ρ to capture both
quantitative and qualitative dependences. Statistical analyses
were performed using R.48

Structural Interpretation and Correlation to Peptide
Specificity. To interpret the bioactivity data in structural
context, we compared the observed trends to a cocrystal
structure of an MHC II in complex with an antigenic peptide
(PDB entry 1AQD49). We visualized the structure in Pymol50

and extracted polar contacts as well as electrostatic properties of
the binding-site region using default settings.
The specificities of respective MHC II binding-site regions

were assessed on the basis of binding affinity distributions for
single amino acids. Therefore, we converted the affinity ratios
to decadic log units and analyzed the distribution of binding
affinities for each single site. In the case of a highly specific
region, major differences in binding affinity are expected,
corresponding to a narrow peak in the distribution. On the
contrary, a completely nonspecific position shows an equal
distribution of binding affinities. Such experimental distribu-
tions can be converted to single values depicting local
specificity via an information-entropy-based approach, as
demonstrated earlier for amino acid distributions in protease
substrates.51 Thereby, an entropy of 0 corresponds to the
highest specificity, whereas a value of 1 corresponds to
maximum binding promiscuity with constant binding affinities.
All of the peptide residues except for position 3, where only
seven of the 20 amino acids were tested, were examined
individually.

■ RESULTS AND DISCUSSION
Trends in Binding Affinity from Matched Peptide

Analysis. Applying matched peptides, we extracted informa-
tion on quantitative changes in MHC II binding affinity
induced by single-point mutations. On the basis of 198 peptide
sequences and their respective experimental binding affinities,

we extracted trends on how amino acid substitutions increase
and decrease molecular interactions via matched peptide
analysis. In total we extracted 2117 matched peptides that
formed the basis of the statistical evaluation. The order of
identified matched pairs was normalized to consistently reflect
gains in affinity.
The amino acid substitutions with the strongest effects on

the observed binding affinities are summarized in Table 1.

Overall, for 88 of 190 transformations (44%) we observed a
significant change in binding affinity. The strongest effect was
achieved by a replacement of proline by cysteine, leading to a
gain of 0.715 log units, which corresponds to 5 times stronger
binding. The standard error of the mean (SEM) observed over
10 examples for this transformation was 0.291 log units, which
is much smaller than the average effect size. This indicates that
replacement of proline by cysteine indeed leads to an increase
in binding affinity largely independent of the peptide position
where the transition occurs.
Several additional substitutions of proline among the

transformations with the strongest effects on binding affinity
indicates that this residue is in general detrimental to MHC II
binding. Replacement by smaller residues is favored, and
especially the inclusion of cysteine residues leads to major gains
in binding affinity. Additionally, replacement of charged
residues is associated with gains in binding affinity. Within
the top 10 transformations we found the substitution of
aspartate and lysine by cysteine, both of which led to an affinity
gain of approximately 0.6 log units, corresponding to a factor of
4 on a linear scale. The aspartate to cysteine transformation is
associated with a particularly small SEM of 0.147, indicating
particularly conserved effects over the whole binding-site
region.
In addition to 88 transformations with significant effects on

the binding strength, we characterized 102 transformations
associated with only minor changes in MHC II binding. Here
we observed the absence of amino acids described to be
associated with particularly weak or strong binding. Therefore,
the frequency of cysteine residues and charged residues within
these transformations was reduced or those residues were
completely missing. We found several transformations involving

Table 1. Transformations with Major Effects on the MHC II
Binding Affinitya

transformation pairs mean affinity difference [log units] SEM [log units]

P → C 10 0.715 0.291
P → Y 10 0.672 0.329
P → L 10 0.624 0.354
P → M 10 0.620 0.320
D → C 10 0.606 0.147
P → S 10 0.606 0.332
P → N 10 0.596 0.366
P → V 10 0.594 0.339
P → A 19 0.587 0.215
K → C 11 0.585 0.250

aMatched peptides were used to extract the 10 substitutions leading to
the largest changes in affinity. These transformations were normalized
to reflect affinity increases and sorted according to decreasing effect
size; the standard error of the mean (SEM) is indicated as measure of
statistical uncertainty. Removal of proline residues increases the
binding strength to MHC II molecules, as does the removal of charged
residues. On the contrary, inclusion of cysteine residues increases the
binding affinity to the receptor.
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small amino acids that appear to be readily interchangeable
within MHC II binding peptides (see Table 2). This behavior is

illustrated by the substitution of valine by isoleucine, which is
associated with a mean affinity difference smaller than 0.001 log
units as well as a small SEM of 0.059 log units over 11 peptide
pairs. This indicates that the subtle transformation involving an
addition of a methylene group in the side chain does not alter
the binding constant independent of the position of the
exchanged amino acid. On the contrary, some substitutions
involving major chemical changes do not affect the MHC II
binding affinities significantly. This includes, for example, the
substitution of a small glycine residue by an aromatic histidine
residue, which points to the minor importance of residue size in
MHC II binding. On average, this transformation is associated
with an affinity gain of less than 0.01 log units. The larger SEM
of 0.154 log units over 10 pairs indicates some dependence on
the position of the transformation in this case.
On the basis of the same matched peptide analysis, we aimed

to identify the most favored and unfavored residues in MHC II

binding peptides. Since the peptide transformations have been
arranged to reflect gains in binding affinity, we counted the
occurrence of all 20 amino acids on the left side of the
transformation (Nleft, smaller activity) and on the right side
(Nright, higher activity) among all 88 pairs showing a significant
change in binding affinity. The differences in these occurrences
(Nright − Nleft), which are given in Figure 2A, enable qualitative
identification of favorable and unfavorable amino acids. We
found six amino acids to be mainly disfavored in MHC II
binding proteins: proline, all four charged amino acids
(aspartate, glutamate, lysine, and arginine), and the polar
amino acid glutamine. Glutamine shows a smaller negative
effect (a total of five pairs with decreased affinity) than the
other five amino acids, all of which exhibit very similar
disruptive effects (a total of 14 or 15 pairs with decreased
affinity). On the other end of the amino acid ranking, tyrosine
was found to enhance the MHC II binding affinity in a total of
nine significant peptide pairs, followed by cysteine, which was
identified as a favorable replacement in a total of eight cases.
Mostly small amino acids follow in the ranking, including
alanine, methionine, asparagine, and serine. The difference in
size might also explain the marked difference observed in
comparisons of peptides containing asparagine versus gluta-
mine. The smaller asparagine appears to be favorable for MHC
II binding (+6 pairs), whereas glutamine is unfavorable (−5
pairs).

Quantitative Effects of Amino Acid Exchanges. A
similar analysis can be performed on the basis of the average
effect size rather than the occurrence of amino acids on each
side of the transformation. Here, all of the transformations,
including those with insignificant effects on the binding affinity,
were analyzed to yield a quantitative ranking of amino acid
contributions to MHC II binding affinities (see Figure 2B).
Consistent with the other presented analyses, proline is
associated with a major decrease in MHC II binding affinity
representing the strongest effect observed within the data set.
On average, 0.474 log units can be gained by replacement of a
proline with any other natural amino acid. A replacement of
either charged amino acid leads to a gain of between 0.31 and
0.36 log units, thus halving the binding affinity. On the other
end of the spectrum, the introduction of cysteine and tyrosine
residues is favored and leads to a gain in affinity by 0.26 to 0.28
log unit. Several mainly small and hydrophobic residues are

Table 2. Transformations with Little Effect on Binding
Affinitya

transformation pairs mean affinity difference [log units] SEM [log units]

V → I 11 <0.001 0.059
T → H 10 0.001 0.129
V → N 10 0.002 0.107
I → W 11 0.003 0.114
L → F 11 0.003 0.173
V → W 11 0.003 0.128
G → T 10 0.008 0.124
A → V 19 0.008 0.073
G → H 10 0.009 0.154
N → S 10 0.010 0.133

aMatched peptides were used to search for amino acid substitutions
with the smallest changes in experimentally measured binding affinity
to MHC II. The top 10 transformations were sorted according to
increasing effect on the binding affinity. Statistical uncertainty is shown
by the SEM. The complete absence of proline residues and charged
amino acids indicates their major impact on the observed binding
affinities to MHC II. The smallest effect is observed for the
replacement of a valine by an isoleucine, corresponding to the
addition of a methylene group.

Figure 2. Amino acids favored and disfavored in MHC II binding. On the basis of matched peptides, we identified amino acids frequently associated
with a loss in binding affinity. (A) Differences in the number of significant matched peptides leading to a gain versus a loss of affinity in MHC II
binding. (B) Absolute average differences in bioactivity when exchanging an amino acid with any other natural amino acid. Proline residues as well as
charged amino acids are strongly disfavored in MHC II binding. On the other end of the spectrum, cysteine and tyrosine residues enhance peptide−
MHC II interactions.
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slightly favored and show affinity increases of around 0.1 log
units on average. Hydrophobic residues have been described to
drive association of protein−protein interactions in general.52

As shown by statistical analysis of crystal structure data,
aliphatic amino acids and tyrosine residues predominantly form
cores of protein−protein interaction areas.53

To allow a comparison with a conventional peptide analysis
method, we divided our data set of 198 peptides into two halves
according to higher and lower binding affinity to MHC II and
analyzed enriched amino acids among both sets. We report
residues with an enrichment factor larger than 1.5 in decreasing
order of their enrichment. We found that hydrophobic cysteine,
methionine, isoleucine, valine, and phenylalanine are enriched
among high-activity binders. Low-affinity binders on the other
hand show a disproportionately high content of aspartate,
glutamate, proline, arginine, and tryptophan. The observed
trends for favored and disfavored residues are similar to those
from the pairwise comparisons conducted for matched peptide
analysis. Nevertheless, the results from matched peptide
analysis provide deeper insights since experimental uncertainty
can be handled directly and no classification into affinity classes
via an arbitrary cutoff is required.
Correlation to Amino Acid Descriptors. As we observed

clear correlations between affinity differences and chemical
properties of amino acids, we tested the performance of
classical QSAR amino acid descriptors in reproducing those.
Therefore, we calculated property differences for all of the
transformations in five different dimensions based on z-scales
(three descriptors) as well as the ISA/ECI scheme (two
descriptors). Then we correlated the property differences to the
experimentally measured affinity differences identified via
matched peptide analysis and analyzed them using Pearson’s
linear correlation coefficient and Spearman’s rank correlation
coefficient.
We observed weak correlations between individual descriptor

differences of substituted amino acids and the associated
bioactivity changes of 190 matched peptide pairs (see Figure S1
for correlation plots). The most pronounced correlation was
identified for the z2 axis representing residue size. Here we
found an inverse correlation (r = −0.33, ρ = −0.32), indicating
that a reduction in residue size is associated with an increase in

binding affinity. This index is closely followed by the ECI,
which designates both positively and negatively charged
residues with large values and therefore indicates polarity (r
= −0.31, ρ = −0.31). The observed inverse correlation indicates
that a reduction in polarity is favored in MHC II binding. The
third axis contributing to binding affinity is the z1 descriptor
that reflects hydrophobicity. We again observed an inverse
correlation (r = −0.29, ρ = −0.27) and conclude in agreement
with the ECI results that a reduction in polarity favors MHC II
binding. The other two descriptors (z3 and ISA) show
correlation coefficients smaller than or equal to r = 0.1. Thus,
electronic properties and residue surface area were found to be
less important in MHC II recognition. The lack of correlation
to the surface area appears surprising since a reduction in
residue size was identified as favorable. We attribute this
seeming contradiction to the inclusion of solvation factors in
the ISA calculation, which leads to the lowest ISA values for
asparagine and aspartate even though these amino acids have a
larger molecular weight than, for example, glycine.
As these analyses included proline residues in the data set, we

wondered whether removal of this residue with a different
backbone, and thus a refined depiction of the side-chain
properties, would increase the observed correlations. Therefore,
we repeated the correlation analysis covering only the 171 pairs
not affecting proline. We found that the magnitudes of all of the
correlation coefficients consistently increased, pointing toward
the special status of this amino acid. The correlation between
the affinity change and the difference in ECI was strengthened
from r = −0.31 to r = −0.49 upon removal of the uncharged
but still disfavored proline residue. Similarly, the correlation of
z1 differences to the binding affinity changes jumped from r =
−0.29 to r = 0.40 when proline was included. This points to the
special importance of peptide backbone hydrogen bonding in
MHC II interactions.

Structural Analysis of the MHC II Receptor−Peptide
Complex. To interpret these SAR trends in a structural
context, we investigated a cocrystal structure of the MHC II
receptor with a cognate peptide of length 15 amino acids.49 The
peptide is bound in an extended conformation and is tightly
bound to the receptor via 14 hydrogen bonds of the backbone
carbonyls and amides (see Figure 3A). This large number of

Figure 3. Structural interpretation of MHC II−peptide interactions. On the basis of the cocrystal structure of MHC II and a high-affinity peptide
ligand,49 we analyzed molecular interactions. (A) The peptide ligand (sticks in elemental colors with carbon in gray) is bound to a broad surface
groove of the MHC II (green cartoon and lines with semitransparent surface). Hydrogen bonding (yellow dots) is mainly observed via the peptide
backbone. (B) An electrostatic map of the MHC II binding site is shown (blue, positively charged; white, neutral; red, negatively charged). The
peptide is bound to a predominantly neutral region of the binding site. Additionally, most of the amino acid side chains are bound to solvent-exposed
regions on the surface. These binding-site properties explain the promiscuity of MHC II, which is crucial for its immunological function.
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interactions indicates the importance of backbone hydrogen
bonding in receptor binding and therefore explains the
observed trend that removal of prolines, which lack the
backbone NH capable of hydrogen-bond formation, leads to
stronger binding. In contrast, amino acid side chains are
involved in fewer interactions with the receptor then the
peptide backbone. Most of the side chains of the bound peptide
are bound to shallow pockets rather than to pronounced
cavities and show limited contact area. This explains the lack of
particular amino acids being favored as a result of the absence
of polar interactions with the receptor. This is further
underlined by the absence of charged regions in the binding
site (see Figure 3B). The binding-site region for side chains is
mostly a flat solvent-exposed surface patch that therefore can
bind several amino acids. The hydrophobicity of a large part of
the binding site additionally leads to a preference for apolar
amino acids due to energy gains by desolvation.54 Since such
hydrophobic and solvent-exposed interfaces are expected to be
multispecific,55 the MHC II may perform its key function in
immunology to recognize and present diverse peptides from
pathogens.56

Promiscuity in MHC II Receptor−Peptide Interactions.
This promiscuous binding of peptides is also reflected in our
data set, where the range of measured binding affinities is
approximately 3 log units from the most tightly bound peptide
to the weakest binder (see Figure S2 for affinity distributions).
Many amino acid exchanges show negligible effects on the
observed binding constant, in agreement with promiscuous
binding. With the assumption of a conserved position of the
peptide termini, which might be provided via the central
binding register of approximately nine residues in MHC II,57

the specificity for each of the respective peptide positions can
be quantified as information entropy from the distribution of
binding affinities for single-point mutants. An entropy of 0
depicts the highest specificity and thus affinity for only a single
amino acid, while an entropy of 1 corresponds to completely
unspecific binding with constant affinities for all binding
partners.51

We found all of the peptide positions to be predominantly
unspecific, with information entropies ranging from 0.83 for
position 11 to 0.97 for position 10. At the most specific peptide
position 11, seven amino acids (D, E, F, I, K, R, and Y) show
binding affinities differing from the most favorable amino acid,
cysteine, by at least 1 log unit. On the contrary, for the almost
completely unspecific position 10 all of the binding affinities lie
within 0.8 log units, with tyrosine as the most favored residue.
This latter situation reflects the typical situation in MHC II
peptide recognition, where seven of the 10 investigated pockets
show an information entropy larger than 0.9. On the other
hand, more specific positions coincide with classical MHC II
specificity sites 4, 6, and 9,58 which show information entropies
of 0.90, 0.88, and 0.91, respectively. The overall promiscuity is
also reflected by a comparison of activity rankings in respective
binding pockets, an approach similar to a matched series. We
found only weak correlations between subpocket profiles, with
Spearman rank correlation coefficients between −0.32 and
+0.57. In fact, 32% of the affinity profiles appear anticorrelated
the inherent experimental error is neglected, which we expect
to limit the applicability of this approach given the narrow
affinity ranges within the data set.
The overall promiscuity shows the applicability of the

matched pair approach, which treats all amino acid exchanges
equally and does not include the specific position. This inherent

limitation of the approach could be overcome by the use of
context-specific matched peptides in analogy to context-specific
matched pairs, where the chemical environment of the
transformation is included.59 In the standard implementation
of matched pairs and peptides, transformations showing
context-specific effects are attributed with higher standard
errors. This can be seen in our data set for the proline to
arginine transformation, which shows a weak average gain in
binding affinity of 0.158 log units in 10 pairs. The standard
error of the mean for this transformation is 0.400 log units,
showing that the same transformation is favorable for binding
in four cases and unfavorable in six. Here the position of the
transformation and therefore the chemical context are crucial
for the observed effect, although MHC II is overall highly
unspecific. The strongest effect for the proline to arginine
transformation is observed at position 4, where the binding
affinity is increased by more than 3 orders of magnitude. This
represents the most dramatic effect of a single substitution and
occurs at position 4, where proline appears to be especially
disfavored compared with all other amino acids (see Figure 4).

Position 6 is the second peptide position where the presence of
proline is strongly disfavored. Here replacement by asparagine
yields a gain in affinity of 2.6 log units. In terms of context-
specific matched peptides, positions 4 and 6 show the strongest
affinity differences in the analyzed data set. We expect that
context-specific matched pairs are especially required in order
to reliably predict changes in binding affinities to specific
receptors. Physico-chemical properties like solubility, on the
contrary, are expected to be more independent of the chemical
surroundings and thus easier to capture using standard matched
peptides.

Future Potential of Matched Peptide Analysis. In
summary, we have introduced a new quantitative modeling tool
at the interface of cheminformatics and bioinformatics:
matched peptides. By means of this extension of matched

Figure 4. Context specificity of matched peptides: Negative decadic
logarithms of MHC-II binding affinity ratios vs the template peptide
AAYAAAAAAAAAA are shown as a heat map, where blue boxes
represent a gain in affinity, white boxes indicate no change, and red
boxes indicate affinity losses. Black boxes represent missing data at
position 3, where only seven amino acids were tested experimentally.
Substitutions at positions 4 and 6 lead to major differences in binding
affinity, and proline is particularly disfavored at these positions.
Context-specific analysis of affinity data rather than averaging over all
peptide positions is expected to capture these effects in more detail.
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molecular pair analysis, protein, peptide, and nucleic acid
sequence-related properties such as bioactivity, solubility,
aggregation, pI, bioavailability, stability, and expression yield
may be predicted. The inclusion of nonstandard residues and
modified amino acids or nucleotides and cross-links is
straightforward given sufficient training data. The coverage of
cyclic sequences, which are of high interest because of the
additional stability of cyclic peptides and proteins,60 requires
the use of special software tailored for alignment of cyclic
sequences because of undefined terminal residues.61 When
matched peptide analysis is extended beyond the analysis of
single-point mutations, cooperative effects in structure−activity
relationships may be identified using nonadditivity cycles, as
recently demonstrated for small molecules via matched
molecular pair analysis.62

In comparison with the wealth of bioactivity data readily
available for small-molecule ligands (e.g., via ChEMBL27), the
data basis for peptide binding data is much sparser. To date
there exist only a few databases listing peptide affinities to
general targets (e.g., JenPep63) that could be used for matched
peptide analysis using public domain data. Most of the open
data are centered around immunology and MHC binding (e.g.,
IEDB64), hindering broad application of the technique in the
academic environment. As a result of recent biotechnological
advances in the development of protein, peptide, and nucleic
acid microarrays, a plethora of qualitative and quantitative
binding data are available.65 Similar data can be obtained, e.g.,
from proteomics techniques,66 protein-fragment complementa-
tion assays,67 or phage display.68 Additionally, synthetic access
to peptides can be automated using solid-phase synthesis.69

The decision of which peptide to synthesize next may be
supported by using the presented matched peptide approach,
which allows existing bioactivity data to be captured in an
intuitive way and provides a qualitative and quantitative ranking
of favored residues. Therefore, the matched peptide strategy
shows synergy and complementarity with classical QSAR
techniques.

■ CONCLUSION

We have presented matched peptides as an extension of
standard matched molecular pair analysis that pushes the
technology to the interface of cheminformatics and bio-
informatics. Matched peptides correspond to single-point
mutants, which are easily identified via pairwise sequence
alignments, simplifying the data analysis. Differences in
molecular properties may be identified via the matched peptide
strategy and can subsequently be applied to identify SAR trends
and predict properties of new sequences. Herein we have
presented a statistical analysis of MHC II peptide binding data
and discussed observed trends with respect to classical QSAR as
well as structural data of the complex. We expect our presented
methodology, which is readily applicable to peptides, proteins,
and nucleic acids, to be of high relevance for the rational design
of novel biopharmaceuticals.
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