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To reduce the incidence of tuberculosis, it is insufficient to simply understand the dynamics of tuberculosis transmission. Rather, we 
must design and rigorously evaluate interventions to halt transmission, prioritizing those interventions most likely to achieve pop-
ulation-level impact. Synergy in reducing tuberculosis transmission may be attainable by combining interventions that shrink the 
reservoir of latent Mycobacterium tuberculosis infection (preventive therapy), shorten the time between disease onset and treatment 
initiation (case finding and diagnosis), and prevent transmission in key settings, such as the built environment (infection control). 
In evaluating efficacy and estimating population-level impact, cluster-randomized trials and mechanistic models play particularly 
prominent roles. Historical and contemporary evidence suggests that effective public health interventions can halt tuberculosis 
transmission, but an evidence-based approach based on knowledge of local epidemiology is necessary for success. We provide a 
roadmap for designing, evaluating, and modeling interventions to interrupt the process of transmission that fuels a diverse array of 
tuberculosis epidemics worldwide.
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Over the past 15 years, the number of deaths due to tuberculo-
sis has fallen by 22%, but the annual number of incident cases 
of tuberculosis has remained the same (Figure 1) [1]. During 
this time, many countries have witnessed sustained declines in 
tuberculosis incidence, but in most high-burden countries, the 
estimated annual risk of Mycobacterium tuberculosis infection 
remains largely unabated [2]. To make substantial progress in 
reducing the global incidence of tuberculosis, we must better 
understand the dynamics of tuberculosis transmission and 
develop a comprehensive strategy for halting it. Such a strategy 
could include innovative interventions designed to interrupt 
tuberculosis transmission, rigorous evaluation of those inter-
ventions, and mathematical models to prioritize interventions 
with the greatest potential to achieve population-level impact.

Tuberculosis transmission can be halted. In Bethel, Alaska, a 
combination of case finding, treatment, and preventive therapy 
reduced the annual risk of M. tuberculosis infection in children 
from 24.6% to 1.1% in 10 years [3]. In Providence and Letitia Hill, 
Peru, a similar set of interventions reduced tuberculosis inci-
dence by >75% and new infections among children by 62% over 
2 years [4]. In both cases, the effects of these transmission-halting 

interventions were sustained for decades into the future. The long 
latency period associated with M. tuberculosis infection [5] pro-
vides a uniquely long window of opportunity to interrupt tuber-
culosis transmission by preventing reactivation. Interventions 
to interrupt transmission also include identifying and treating 
individuals at early disease stages [6] and engineering the built 
environment to reduce transmission in high-risk settings.

In considering possible transmission-halting interventions, 
the principles of R0, the basic reproduction number, are useful 
(Figure 2). R0 is the product of 3 components: the contact rate 
(c), the probability of transmission per contact (β), and the dura-
tion of infectiousness (d). Interventions to prevent tuberculosis 
progression diminish c (and d) by reducing the community-wide 
burden of infectiousness. Interventions to find and treat active 
cases at earlier stages of disease diminish d. Interventions on the 
built environment aim to diminish β. Since these 3 components 
multiply to produce R0, combining these corresponding 3 types 
of interventions can have a synergistic effect in halting tuber-
culosis transmission. Here we provide a roadmap for design-
ing, evaluating, and modeling interventions to halt tuberculosis 
transmission and thus interrupt the underlying process fueling 
the diverse array of tuberculosis epidemics worldwide.

POPULATION-LEVEL INTERVENTIONS TO PREVENT 
TUBERCULOSIS PROGRESSION

Isoniazid preventive therapy (IPT) reduces the risk of tubercu-
losis by 60% at the individual level [7] and has also been stud-
ied as part of a package to halt transmission at the population 
level. Cluster-randomized trials in the late 1950s in Alaska [8], 
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Figure 1. Estimated global tuberculosis incidence and mortality. Whereas mortality due to tuberculosis has been falling steadily over the past 15 years, incidence has 
remained relatively constant, pointing to the likelihood that interventions to reduce tuberculosis-associated mortality (through better passive diagnosis and treatment) have 
had less impact on transmission. Shaded areas represent uncertainty intervals. Abbreviation: HIV, human immunodeficiency virus. Reproduced from [1] with permission of the 
World Health Organization.
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Figure 2. A roadmap to halting tuberculosis transmission. Interventions to prevent progression, improve diagnosis and case finding, and reduce infection in settings such 
as the built environment operate synergistically to reduce the basic reproductive number (R0) of tuberculosis and help halt tuberculosis transmission. Rigorous evaluation of 
these interventions is critical to ensure impact.



S656 • JID 2017:216 (Suppl 6) Dowdy et al

Greenland [9], and Tunisia [10] investigated the effect of popu-
lation-wide IPT in settings where active disease was so common 
that everyone could be considered a contact [11]. The aim of 
these trials was not explicitly to interrupt transmission but to 
reduce the reservoir of latent M. tuberculosis infection [11]. To 
avoid giving preventive therapy to those with tuberculosis, each 
trial was preceded by population-based radiological screening, 
with coverage of “most” individuals school aged and older in 
Alaska, 90% of adults in Greenland, and 95% of the population 
in Tunisia [8, 9, 11]. Pretreatment loss to follow-up among indi-
viduals with tuberculosis was not quantified but was likely low; 
in Alaska and Greenland, treatment delivery in sanatoria likely 
resulted in high completion.

In Alaska, households were randomized to IPT or placebo 
groups for 1 year, with all household members receiving the 
same study drug, to allay concerns about pill sharing [8]. 
Cumulative tuberculosis incidence was lower in interven-
tion households, compared with control households, over 
a 6-year period (1.90% vs 4.67%). The highest tuberculosis 
incidence rates and greatest reduction with IPT were among 
individuals with “inactive” (and not previously treated) 
M. tuberculosis infection detected on chest radiography [8], 
suggesting that an important mechanism of the intervention 
may have been to reduce reactivation of “inactive” M. tuber-
culosis infection. In Greenland, trial clusters were villages (to 
simplify delivery) [9] and in Tunisia were city blocks [10]. 
In contrast to Alaska, these 2 trials reported no benefit of 
IPT, a finding that was attributed to an inadequate isonia-
zid dose or poor treatment adherence (although a reanalysis 
of Greenland trial data [12] suggested that use of IPT was 

associated with a one-third reduction in incidence during 
the first 6 years of follow-up).

In practice, these trials evaluated the effect of population-wide 
IPT following high-coverage active case finding. In Alaska and 
Greenland, tuberculosis incidence fell dramatically in both 
arms during the trial period (Figure 3), reflecting the impact of 
this active case finding and perhaps other unmeasured contem-
porary changes [11]. An indirect effect of the IPT intervention 
on transmission in control clusters could have contributed to 
this reduction in Alaska, where transmission between house-
holds seems likely; a similar effect seems less likely in isolated 
villages in Greenland.

In the Thibela TB trial (2006–2011), South African mining 
workforces were randomized to receive mass IPT or standard 
of care [13]. Here the aim was to interrupt tuberculosis trans-
mission by mass screening linked to treatment either of tuber-
culosis or latent M.  tuberculosis infection. The intervention 
did not reduce tuberculosis incidence or prevalence. The lack 
of observed effect was probably multifactorial. In some mines, 
the intervention did not achieve high coverage. The study had 
to be separated from the mine health service and management 
systems because of historical employee mistrust, preventing the 
intervention from being systematically offered to all employees. 
Linked to this, in some large mines intervention uptake was too 
slow to achieve the simultaneous coverage intended to interrupt 
transmission. Even in mines with near-complete coverage, the 
intervention effect was small and short lived. In addition, isoni-
azid monotherapy may have been insufficient to sterilize latent 
M. tuberculosis infection in miners (who have a high burden of 
M. tuberculosis infection and human immunodeficiency virus 

Figure 3. Reductions in tuberculosis incidence after trials of preventive therapy. In both Alaska (left) and Greenland (right), the tuberculosis incidence fell dramatically 
in both the isoniazid and placebo arms following the implementation of active case finding, linkage to effective treatment, and (in the isoniazid arms) preventive therapy. 
Reproduced from [11]. Permission to reprint this figure has been received from S. Karger AG, Medical and Scientific Publishers.
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[HIV] infection) [14], and pretreatment loss to follow-up from 
the mine health service was substantial (although not atypical 
[15]). The epidemiological context of the Thibela TB study dif-
fered from that of the earlier trials, notably because of the very 
high HIV prevalence and substantial migration in Thibela; it 
was logistically impossible for the intervention to include other 
contacts (eg, households), which could be distant from the 
mine. Mathematical modeling based on Thibela TB data sug-
gests that a preventive therapy intervention with high coverage, 
using a regimen with better sterilizing ability, and reduced pre-
treatment loss to follow-up, along with optimized antiretrovi-
ral therapy for HIV-positive employees, could substantially 
reduce tuberculosis incidence in South African gold mines [16]. 
However, it is sobering that, even with the considerable human 
and financial resources used in this rigorously conducted trial, a 
measurable transmission effect could not be detected.

In conclusion, when planning interventions to interrupt 
transmission through preventive therapy, the epidemiological 
and health system context must be considered. Although iso-
niazid has proven efficacy to reduce tuberculosis incidence at 
the individual level [17, 18], population-level impact may not 
follow unless other interventions (including active case finding 
linked to effective treatment) are used in combination [19], high 
levels of coverage are achieved, and the intervention is tailored 
to the local context.

DIAGNOSTIC AND CASE FINDING INTERVENTIONS

In 2014, among all individuals with incident tuberculosis, 
disease an estimated 37% (>3.5 million) went unreported or, 
more commonly, undiagnosed [1]. This diagnostic gap varies 
widely by setting: for example, >80% of all estimated tuberculo-
sis cases are detected in the Philippines, whereas in Indonesia, 
only one third of tuberculosis cases are notified to public health 
authorities.

While faster diagnosis should intuitively result in rapider 
treatment initiation and, hence, reduction in disease transmis-
sion, the current paradigm of passive case finding (self-refer-
ral of patients to healthcare providers) constrains the potential 
transmission impact of improved diagnostic tools. Patients 
with tuberculosis are generally symptomatic for weeks to 
months prior to presentation to healthcare providers [20], and 
they may have detectable bacilli in their sputum for many addi-
tional months before developing symptoms [21]. In the con-
text of passive case finding and a randomized controlled trial, 
more-sensitive diagnostic tests (ie, the Xpert MTB/RIF assay, 
compared with smear microscopy and empirical treatment) 
shortens the time to diagnosis and effective treatment by only 
a few days [22].

By contrast, active case finding can detect infectious cases 
much earlier and, hence, potentially interrupt disease transmis-
sion. In designing active case finding interventions, it is critical 
to focus first in areas where more tuberculosis cases are likely 

to be found, including households, congregate settings (eg, 
prisons and mines), and healthcare facilities [23]. In both com-
munity-based active case finding studies and prevalence sur-
veys, 20%–50% of detected cases, many of whom do not report 
typical tuberculosis symptoms, are smear positive[24–26]. In 
low-burden settings where culture for detection of M. tubercu-
losis is routinely used for diagnosis, only 10%–25% of the trans-
mission burden is estimated to arise from smear-negative cases 
[27]; however, this proportion may be substantially greater in 
high-burden settings, where smear-negative (or intermittently 
smear-positive) cases may remain infectious without seeking 
care for very long periods. Chest radiography is a sensitive test 
capable of identifying these individuals [28]. Ultimately, new 
diagnostic tools capable of detecting tuberculosis at earlier 
stages will likely only have transformative impact on transmis-
sion when used in the context of broader screening and active 
case finding [29].

A recent randomized trial (XACT I) evaluated the feasibility 
and impact of the Xpert MTB/RIF assay for active case find-
ing in South Africa and Zimbabwe, using mobile vans with 
on-board Xpert MTB/RIF test capacity and staffed by 3 health-
care workers each [24]. Relative to sputum smear microscopy, 
Xpert MTB/RIF testing was associated with a 53% increase in 
the number of patients initiating antituberculosis therapy. This 
trial demonstrates that active case finding using newer molec-
ular tools is feasible and substantially increases the propor-
tion of patients initiating treatment in high-burden settings. 
Importantly, as demonstrated in another cluster-randomized 
trial in South Africa (XTEND [30]), a scale-up of Xpert MTB/
RIF testing is unlikely to impact mortality—or transmission—
unless also accompanied by better linkage to care. Multiple 
ongoing studies are evaluating diagnostic tests of higher sensi-
tivity (eg, the Xpert Ultra test [31]) and/or greater portability in 
the context of active case finding.

Despite these promising developments, there remain several 
unanswered questions regarding interventions to halt tubercu-
losis transmission through diagnosis and case finding. These 
include cost-effectiveness, feasibility and impact in different 
settings, optimal combination of screening tools, and character-
ization of tuberculosis transmission from immunological, clin-
ical, and healthcare-seeking behavior perspectives. The relative 
importance of individual-level heterogeneity in infectiousness 
and the ability of newer tools such as cough aerosol sampling 
to identify individuals from whom the majority of transmission 
events originate also remain poorly characterized [32, 33].

With respect to drug-resistant tuberculosis, the diagnostic 
gap is even wider, with an estimated 70% of rifampin-resistant 
tuberculosis cases being undetected or unreported [1]. Given 
the high proportion of drug-resistant tuberculosis cases attrib-
utable to ongoing transmission [34] and the substantial delays 
often experienced in diagnosing and treating drug-resistant 
tuberculosis, the impact of improved case finding and diagnosis 
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should be even greater. The Xpert MTB/RIF test has shortened 
the time to treatment initiation for multidrug-resistant tuber-
culosis in South Africa [35, 36] and Latvia [37], and broader 
implementation of a rapid molecular test, even only for passive 
case detection, has been projected to avert substantial mor-
bidity and mortality due to rifampin-resistant tuberculosis in 
settings like India [38]. Thus, for drug-resistant tuberculosis, 
newer diagnostic tools could substantially reduce transmission 
by linking patients to appropriate therapy more quickly in set-
tings of active or passive case finding.

In summary, early data suggest that newer molecular diag-
nostic tools, if combined with active case finding, may help 
reduce tuberculosis transmission in high-burden settings. 
Additional needs include trials to evaluate the effectiveness of 
more-sensitive and/or more-scalable diagnostic tests (especially 
in the context of active case finding), studies of comparative 
cost-effectiveness and feasibility, new tools (eg, cough aerosol 
samplers and novel biomarkers) to identify patients with high-
est transmission risk, and conclusive studies demonstrating that 
earlier diagnosis and treatment initiation can reduce tuberculo-
sis burden at the population level.

INTERVENTIONS TO REDUCE TUBERCULOSIS 
TRANSMISSION IN THE BUILT ENVIRONMENT

Because of infinite dilution outdoors, most tuberculosis trans-
mission is believed to occur within buildings and other con-
gregate settings, such as shared public transport. Exactly how 
to reduce tuberculosis transmission in these settings has been 
a challenge since the airborne nature of tuberculosis transmis-
sion was proven almost 50 years ago. That it can be done was 
proven in the United States and other countries during the HIV-
associated resurgence of drug-resistant tuberculosis >30 years 
ago [39]. However, the extent of the problem, resources avail-
able, and conditions (eg, crowding) are very different in modern 
high-burden settings. Innovative approaches are needed.

Control strategies can be conveniently organized as source 
control, environmental control, and respiratory protection [40]. 
Source control implies understanding the sources of transmis-
sion. For decades, tuberculosis transmission control has focused 
on patients with known tuberculosis; thus, interventions have 
focused on patient separation or isolation in hospitals, cough 
hygiene, directional airflow, high ventilation rates, and respira-
tor use for healthcare workers. However, the infectiousness of 
patients with tuberculosis falls rapidly after initiation of effec-
tive therapy, long before sputum staining for acid-fast bacilli or 
culture conversion [41], and patients with unsuspected tuber-
culosis or tuberculosis with unsuspected drug resistance ulti-
mately represent a much greater risk of transmission [42]. This 
understanding has major implications for the design and use of 
healthcare facilities and for transmission control priorities.

Based on this knowledge, FAST (ie, find cases actively, sep-
arate cases temporarily, and treat cases effectively on the basis 

of rapid molecular test results), a refocused, intensified admin-
istrative approach to tuberculosis transmission control, has 
been proposed [43]. Ongoing FAST implementation research 
aims to determine the optimal screening strategy, efficient test-
ing protocols, and appropriate process indicators, such as time 
from facility entry to receipt of effective treatment. While FAST 
implementation is achievable in many hospitals and other res-
idential settings, application in crowded ambulatory settings 
is more challenging because of large numbers of symptomatic 
persons and the time required to make a diagnosis, even with 
rapid molecular testing.

In such settings, where contamination of the air is less easily 
prevented, use of environmental controls assumes particular 
importance. The World Health Organization has emphasized 
the role of natural ventilation—simply opening windows and 
doors—as highly effective and sustainable in high-burden set-
tings [44]. Although applicable to many tropical settings, lim-
itations include a dependence on suitable outdoor climate, air 
quality, and security conditions, and high rates of air change 
per hour may be difficult to achieve in internal corridors, which 
often serve as crowded waiting rooms. Alternatives to natural 
ventilation are few. Mechanical ventilation systems are widely 
used in developed countries and are effective in increasing 
air changes but are expensive to operate and may not achieve 
the same ventilation rates as natural ventilation [45]. Room 
air cleaners, although commonly sold, generally cannot move 
enough air to achieve the 6–12 equivalent air changes per 
hour recommended for airborne infection control. In con-
trast, upper-room ultraviolet germicidal air disinfection has 
been shown to reduce infectiousness of room air by 70% and is 
much more cost-effective than mechanical ventilation [46, 47]. 
With the advent of LED bulbs capable of generating ultraviolet 
light of the appropriate germicidal wavelength [48], efforts are 
now underway to provide guidelines, fixture specifications, and 
technical support to assure widespread sustainable use of this 
highly effective but poorly implemented technology.

Another important component of controlling tuberculosis 
transmission in the built environment is respiratory protection. 
Although they may not be worn in the presence of unsuspected 
cases, particulate respirators (eg, N95 masks) are nonetheless 
effective in helping to protect a critical population—healthcare 
workers who treat patients with tuberculosis. Even standard 
surgical masks, when worn by patients, halve the transmission 
of multidrug-resistant tuberculosis in the hospital setting [49] 
and can be given to all coughing patients. Thus, while unlikely 
to prevent the majority of tuberculosis transmission on its own, 
respiratory protection still plays an important role as part of a 
broader strategy of infection control in healthcare settings.

In summary, rational approaches to halting institutional 
tuberculosis transmission might combine FAST, natural ven-
tilation (where appropriate), upper-room ultraviolet radiation, 
and respiratory protection for both healthcare staff and patients 
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with tuberculosis symptoms. What is now required is a path to 
sustainable implementation. One such approach might include 
institutional coaching with ongoing person-to-person edu-
cation, support, feedback, and follow-up. A  broader evidence 
base of successfully implemented measures that stop tubercu-
losis transmission within the built environment across multiple 
epidemiological settings would be a major step forward.

EVALUATING INTERVENTIONS TO HALT 
TUBERCULOSIS TRANSMISSION

Ultimately, it is important to demonstrate not just that interven-
tions improve individual-level outcomes, but also whether such 
interventions reduce tuberculosis transmission at the popula-
tion level. In estimating population-level impact, randomized 
trials, quasi-experimental designs, interrupted time series anal-
yses, and mechanistic models all play a prominent role.

A fundamental design that captures population-level impacts 
of an intervention is the cluster-randomized trial (also known 
as a community-randomized trial) [50]. In designing clus-
ter-randomized trials, there 3 important features: (1) how the 
cluster is defined, (2) how randomization is conducted, and (3) 
what outcomes to use. While a larger number of smaller-sized 
clusters is statistically most efficient, larger clusters more effec-
tively capture both direct and indirect effects of interrupting 
transmission. In the ZAMSTAR study, for example, large clus-
ters incorporating entire and discrete populations were chosen, 
resulting in 24 clusters with a combined population of 1.2 mil-
lion [51]. For randomization, matched sets or stratification are 
often used to reduce between-cluster variation (thus maximiz-
ing power) and to balance study arms on variables that may be 
highly correlated with the main end point. Selecting outcomes 
for studies of tuberculosis transmission interruption currently 
involves an imperfect choice between 1 or more end points of 
tuberculosis prevalence, tuberculosis, M. tuberculosis infection 
incidence, and tuberculosis notifications [52, 53]. Limitations 
of prevalence include its dependence on disease duration and 
logistical difficulties in conducting prevalence surveys of suf-
ficient size for statistical power. Prospective measurement of 
tuberculosis incidence is also logistically complex and may 
require regular sampling of cohort members. Incidence of infec-
tion is often measured using tuberculin surveys (or interferon 
γ release assays) in children and may not represent infection 
patterns among adults. Tuberculosis case notification data are 
often low quality and lack a suitable denominator. Ultimately, 
no currently used epidemiological outcome measure is perfect, 
and investigators must weigh the relative strengths and limita-
tions of each.

An alternative to the parallel cluster-randomized trial is the 
stepped-wedge trial, where clusters are randomized as to the 
order of intervention implementation, such that all clusters 
start in the control phase and move to the intervention phase 
[54]. For any cluster-randomized trial, power calculations and 

analysis techniques must consider the clustered design, as well 
as any matching or stratification in the randomization [50].

When randomization is not feasible, quasi-experimental 
designs can estimate population-level impact by compar-
ing outcomes (such as tuberculosis prevalence) before and 
after an intervention, in the same [55] or multiple [56] com-
munities. Such studies are vulnerable to secular trends, but 
large and specific effects may still be persuasive. Comparison 
(nonintervention) communities can also be used, using a dif-
ference-in-differences analysis (or without a “baseline” mea-
surement). In these nonrandomized studies, controlling for 
confounding (through matching or analysis) is critical. Process 
evaluation to determine plausible pathways from intervention 
to outcome can also support inferences [57].

One final observational approach is the interrupted time 
series, where repeated measurements of (often routine) data are 
used to assess the effect of an intervention [56]. This approach, 
which addresses concerns about regression to the mean, is best 
used where there are clearly defined periods before and after 
then intervention and where the outcome changes quickly after 
intervention implementation [58].

In some cases, empirical data cannot feasibly be collected to 
demonstrate the impact of interventions; reasons include interven-
tion complexity, limited resources, time-dependent decision-mak-
ing, and ethical considerations. Mechanistic (ie, mathematical) 
models can be useful to project intervention impact into the 
future, understand the mechanistic underpinnings of interven-
tion effects, and generalize empirical findings to other settings 
[59]. Mechanistic models have successfully been used to describe 
the conditions needed to achieve tuberculosis elimination [4], 
understand the role of subclinical tuberculosis in determining the 
impact of diagnostic interventions [29], improve decision-mak-
ing regarding novel tuberculosis treatments [60], and evaluate 
the degree to which epidemics of drug-resistant tuberculosis 
are driven by transmission [34]. In developing comprehensive 
approaches to halt tuberculosis transmission in complex epidemi-
ological settings, it will become increasingly important to design 
trials and construct mechanistic models capable of evaluating not 
just individual interventions in isolation, but also multifaceted 
strategies, including prevention of progression, diagnosis and case 
finding, and improved infection control.

CONCLUSION

In public health, isolated interventions rarely solve major prob-
lems; this holds true for the challenge of interrupting tuberculo-
sis transmission. There are many potential leverage points, and 
effective strategies will need to direct interventions at the most 
important points, with the understanding that the portfolio of 
existing and novel tools will be wielded differentially in different 
epidemiological and environmental contexts. But ultimately, there 
is cause for optimism. There are effective interventions available 
to target each component of tuberculosis transmission (and the 
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analytical tools to demonstrate their effectiveness). Furthermore, 
the lack of a transmission-important animal reservoir facilitates 
focus on human populations, behaviors, and environments. The 
growing enthusiasm of researchers, funders, and policy-mak-
ers to intervene against tuberculosis transmission is supported 
by the fresh refocus on innovative approaches mandated by the 
ambitious global End TB Strategy targets [1]. Although intensive 
and integrated approaches will be needed, we have the neces-
sary building blocks to accomplish this goal. We must now use 
our existing knowledge base and analytical tools to develop new 
approaches to halt tuberculosis transmission globally.
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